

Received 4 December 2016 Accepted 10 December 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; coumarins; β carboline; norharman; hydrogen bonding; π - π interactions.

CCDC reference: 1522101

Supporting information: this article has supporting information at journals.iucr.org/e

https://doi.org/10.1107/S2056989016019769

56

S. Samundeeswari,^a Manohar V. Kulkarni^a* and G. N. Anil Kumar^b

^aDepartment of Chemistry, Karnatak University, Dharwad, India, and ^bDepartment of Physics, M. S. Ramaiah Institute of Technology, Bangalore, India. *Correspondence e-mail: anilgn@msrit.edu

The title compound, $C_{21}H_{14}N_2O_2$, was prepared by Pictet–Spengler cyclization of tryptamine and 4-formyl coumarin. In the molecule, the dihedral angle between the mean planes of the coumarin and β -carboline ring systems is 63.8 (2)°. In the crystal, molecules are linked *via* N–H···N hydrogen bonds, forming chains along the *b*-axis direction. Within the chains, there are a number of offset π – π interactions present [shortest intercentroid distance = 3.457 (2) Å].

1. Chemical context

Naturally occurring coumarins (Murry, 2002) and their derivatives have a vast number of applications in different areas. They are precursor reagents for synthetic anti-coagulants (Bairagi et al., 2012), the most notable being warfarin (Holbrook et al., 2005). Coumarin dyes are also widely used in blue-green organic dves (Schafer, 1990; Duarte & Hillman, 1990; Duarte, 2003) and in OLED emitters (Duarte et al., 2005). Norharman is a β -carboline alkaloid which has the basic structural unit for a wide range of naturally occurring compounds, and is found in plants, animals and humans (Fekkes et al., 1992). They are used widely as neurotoxins to Parkinson's disease (Kuhn et al., 1996) and as mediators in the mutagenesis of DNA in the presence of another molecule (Mori et al., 1996). Given the ongoing research into the biological functions of norharman and the many related β -carboline derivatives, a single-crystal X-ray structure of norharman would be of use in theoretical modelling and related structural work. Norharman exhibits a one-dimensional herringbone motif (Thatcher & Douthwaite, 2011). Due to their extensive natural occurrence and common biological origin, there are no reports on compounds which contain these two systems in a single molecule. It was hence thought of considerable biological interest to synthesize new molecules which contain both β -carboline and coumarin ring systems.

The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The coumarin (r.m.s. deviation = 0.019 Å) and β -carboline (r.m.s. deviation = 0.034 Å) ring systems exhibit an *s*-trans arrangement across the bridging C7–C6 bond; their mean planes are inclined to one another by 63.8 (2)°.

3. Supramolecular features

In the crystal, molecules are linked *via* N–H···N hydrogen bonds, forming chains along [010]; see Table 1 and Fig. 2. Within the chains there are a number of offset π – π interactions present; the shortest intercentroid distance of 3.457 (2) Å, involves rings N2/C18–C20/C22 of the β -carboline ring system and O1/C1–C3/C8/C9 of the coumarin system.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom *et al.*, 2016) using 4,7-dimethyl-2*H*-chromen-2-one as the main skeleton revealed the presence of 66 structures. However, only six of these structures contain the 7-methyl-4-phenyl-2*H*-chromen-2-one nucleus (refcodes: BUFQUQ, FINNEX, GUFTUY, IFUMED, LENYIO, DUVVIB). There were no structures reported for a search of 7-methyl-4-(pyridin-2-yl)-2*H*-chromen-2-one skeleton.

5. Synthesis and crystallization

Acetic acid (10 ml) was added drop wise, at 273 K, to a mixture of tryptamine (1 eq) and 4-formyl coumarin (1 eq). The reaction mixture was stirred at room temperature for ca 12 h. After completion of the reaction, the solid that separated was filtered, washed several times with water and dried (yield

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2\cdots N1^{i}$	0.86	2.47	2.994 (3)	120

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

>70%) to give the intermediate. This intermediate compound (1 eq) was taken in 10 ml of dry chloroform and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2 eq) was added at intervals of 5 min in cold conditions, 273 K. Stirring was continued for *ca* 10 h. The reaction mixture was then quenched using aqueous sodium bicarbonate and extracted with chloroform. The organic layer was washed 2–3 times with sodium bicarbonate, water and brine solution, dried using sodium sulfate, and concentrated to afford the crude title product. It was purified by flash chromatography using 230–400 mesh silica-gels (35% ethyl acetate in hexane mixture; yield 75%). The solid obtained was recrystallized from dichloromethane, giving colourless block-like crystals of the title compound on slow evaporation of the solvent

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93–0.96 Å, and constrained to ride on their parent atoms with $U_{\rm iso}({\rm H})$ = $1.5U_{\rm eq}({\rm C-methyl})$ and $1.2U_{\rm eq}({\rm C,N})$ for other H atoms.

A view along the *a* axis of the crystal packing of the title compound. The $N-H \cdots N$ hydrogen bonds are shown as dashed lines (see Table 1), and the shortest offset $\pi-\pi$ interactions by a double-headed arrow. For clarity, only H atom H2 (grey ball) has been included.

research communications

Table 2 Experimental details.

Crystal data		
Chemical formula	$C_{21}H_{14}N_2O_2$	- 4
$M_{ m r}$	326.34	References
Crystal system, space group	Monoclinic, $P2_1/c$	Pairagi S H. Salaskar D.D. Laka S D. Surva N.N. Tanda
Temperature (K)	296	Durage M D (2012) Let L Diamic Deg A 16 10
a, b, c (A)	10.6784 (8), 8.0954 (6),	Dusara, M. D. (2012). Int. J. Pharm. Res. 4, 10–19. Dusara, (2012) , $CMADT$, $CADT$ and $CADADC$. Durchar
a (0)	17.9032 (14)	Bruker (2012). SMARI, SAINT and SADABS. Bruker A
$\beta(\tilde{c})$	98.105 (5)	Madison, Wisconsin, USA.
$V(\mathbf{A}^{2})$	1532.2 (2)	Duarte, F. J. (2003). In <i>Tunable Laser Optics</i> , Appendix
Z De distis a trace	4	Dyes. New York: Elsevier Academic.
Radiation type (mm^{-1})		Duarte, F. J. & Hillman, L. W. (1990). In Dye Laser Princip
μ (mm)	0.09 0.15 × 0.10	York: Academic Press.
Crystal size (mm)	$0.20 \times 0.13 \times 0.10$	Duarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 3
Data collection		3074.
Diffractometer	Bruker SMART CCD area-	Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Diffuctometer	detector	Fekkes, D., Schouten, M. J., Pepplinkhuizen, L., Brui
Absorption correction	Multi-scan (SADABS: Bruker.	Lauwers, W. & Brinkman, U. A. (1992). Lancet. 339, 506.
r · · · ·	2012)	Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (20
T_{\min}, T_{\max}	0.941, 0.971	Cryst B72 171–179
No. of measured, independent and	11601, 2848, 1446	Holbrook A M Pereira I A Labiris R McDonald H I
observed $[I > 2\sigma(I)]$ reflections		I D Crowther M & Wells P S (2005) Arch Intern M
R _{int}	0.059	1005 1106
$(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$	0.606	Kuhn W Müller T Grees H & Demmelenscher H (
		Kuini, W., Muller, I., Olope, H. & Kolinieispacifer, H. (
Refinement		Neural Transm. 103, 1435-1440.
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.060, 0.166, 0.94	Macrae, C. F., Bruno, I. J., Chisnolm, J. A., Edgington, P. R.,
No. of reflections	2848	P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Sti
No. of parameters	227	Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
H-atom treatment	H-atom parameters constrained	Mori, M., Totsuka, Y., Fukutome, K., Yoshida, T., Sugimu
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-})$	0.21, -0.27	Wakabayashi, K. (1996). Carcinogenesis, 17, 1499-1503.
		Murry P. D. H. (2002) The Naturally Occurring Course

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Acknowledgements

SS acknowledges Karnatak University for the data collection and support.

Bairagi, S. H., Salaskar, P. P., Loke, S. D., Surve, N. N., Tandel, D. V. &	
Dusara, M. D. (2012). Int. J. Pharm. Res. 4, 16-19.	
Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc,	
Madison, Wisconsin, USA.	
Duarte, F. J. (2003). In Tunable Laser Optics, Appendix of Laser	
Dyes. New York: Elsevier Academic.	
Duarte, F. J. & Hillman, L. W. (1990). In Dye Laser Principles. New	
York: Academic Press.	
Duarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 30, 3072-	
3074.	
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.	
Fekkes, D., Schouten, M. J., Pepplinkhuizen, L., Bruinvels, J.,	
Lauwers, W. & Brinkman, U. A. (1992). Lancet, 339, 506.	
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta	
<i>Cryst.</i> B 72 , 171–179.	
Holbrook, A. M., Pereira, J. A., Labiris, R., McDonald, H., Douketis,	
J. D., Crowther, M. & Wells, P. S. (2005). Arch. Intern. Med. 165,	
1095–1106.	
Kuhn, W., Müller, T., Gro β e, H. & Rommelspacher, H. (1996). J.	
Neural Transm. 103, 1435–1440.	
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe,	
P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. &	
Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.	
Mori, M., Totsuka, Y., Fukutome, K., Yoshida, T., Sugimura, T. &	

- Murry, R. D. H. (2002). The Naturally Occurring Coumarins, in Progress in the Chemistry of Organic Natural Products. Vienna: Springer-Verlag.
- Schafer, F. P. (1990). Editor. Dye Lasers, 3rd ed. Berlin: Springer-Verlag.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thatcher, R. J. & Douthwaite, R. E. (2011). Acta Cryst. C67, o241o243.

supporting information

Acta Cryst. (2017). E73, 56-58 [https://doi.org/10.1107/S2056989016019769]

Crystal structure of 4-(4b,8a-dihydro-9*H*-pyrido[3,4-*b*]indol-1-yl)-7-methyl-2*H*chromen-2-one

S. Samundeeswari, Manohar V. Kulkarni and G. N. Anil Kumar

Computing details

Data collection: *SMART* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

4-(4b,8a-Dihydro-9H-pyrido[3,4-b]indol-1-yl)-7-methyl-2H-chromen-2-one

Crystal data

C₂₁H₁₄N₂O₂ $M_r = 326.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.6784 (8) Å b = 8.0954 (6) Å c = 17.9032 (14) Å $\beta = 98.105$ (5)° V = 1532.2 (2) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.941, T_{\max} = 0.971$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.166$ S = 0.942848 reflections 227 parameters 0 restraints F(000) = 680 $D_x = 1.415 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1990 reflections $\theta = 3.3-26.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$

11601 measured reflections 2848 independent reflections 1446 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 25.5^\circ, \ \theta_{min} = 1.9^\circ$ $h = -12 \rightarrow 11$ $k = -9 \rightarrow 9$ $l = -21 \rightarrow 21$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0799P)^2]$	$\Delta ho_{ m max} = 0.21$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.85044 (16)	0.1787 (2)	0.24656 (10)	0.0445 (6)
O2	0.87191 (18)	0.3169 (3)	0.35363 (12)	0.0602 (7)
N1	0.3818 (2)	0.2835 (3)	0.17822 (12)	0.0413 (7)
N2	0.4360 (2)	0.0447 (3)	0.35591 (12)	0.0407 (7)
H2	0.5149	0.0259	0.3707	0.049*
C1	0.7990 (3)	0.2565 (4)	0.30347 (17)	0.0429 (8)
C2	0.6635 (2)	0.2570 (3)	0.29733 (15)	0.0427 (8)
H2A	0.6264	0.3055	0.3359	0.051*
C3	0.5878 (2)	0.1912 (3)	0.23877 (15)	0.0341 (7)
C4	0.5774 (3)	0.0283 (4)	0.11849 (15)	0.0401 (8)
H4	0.4895	0.0273	0.1126	0.048*
C5	0.6389 (3)	-0.0500 (4)	0.06608 (15)	0.0459 (8)
Н5	0.5921	-0.1047	0.0258	0.055*
C6	0.7705 (3)	-0.0486 (4)	0.07241 (15)	0.0427 (8)
C7	0.8384 (3)	0.0291 (4)	0.13369 (15)	0.0431 (8)
H7	0.9263	0.0302	0.1395	0.052*
C8	0.6443 (2)	0.1088 (3)	0.18005 (15)	0.0353 (7)
C9	0.7754 (2)	0.1051 (4)	0.18637 (15)	0.0370 (7)
C10	0.8380 (3)	-0.1277 (4)	0.01293 (17)	0.0635 (10)
H10A	0.924	-0.1509	0.0339	0.095*
H10B	0.8369	-0.0537	-0.0291	0.095*
H10C	0.7961	-0.2287	-0.0038	0.095*
C11	0.4475 (2)	0.2009 (4)	0.23601 (15)	0.0356 (7)
C12	0.2541 (3)	0.2974 (4)	0.17666 (16)	0.0464 (8)
H12	0.2093	0.3581	0.1376	0.056*
C13	0.1874 (3)	0.2280 (4)	0.22862 (17)	0.0449 (8)
H13	0.1	0.2388	0.2242	0.054*
C14	0.1087 (3)	0.0115 (4)	0.37782 (19)	0.0542 (9)
H14	0.0321	0.0482	0.3519	0.065*
C15	0.1115 (3)	-0.0820 (4)	0.44170 (19)	0.0595 (10)
H15	0.0361	-0.1107	0.4587	0.071*
C16	0.2255 (3)	-0.1345 (4)	0.48153 (18)	0.0589 (9)
H16	0.2248	-0.1961	0.5253	0.071*
C17	0.3403 (3)	-0.0978 (4)	0.45785 (16)	0.0489 (9)
H17	0.4166	-0.1329	0.4847	0.059*
C18	0.2223 (3)	0.0506 (4)	0.35234 (15)	0.0411 (8)

supporting information

C19	0.3358 (3)	-0.0063 (4)	0.39225 (15)	0.0403 (7)
C20	0.2544 (2)	0.1410 (3)	0.28810 (16)	0.0370 (7)
C22	0.3865 (2)	0.1313 (3)	0.29183 (15)	0.0342 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0319 (11)	0.0588 (15)	0.0433 (12)	-0.0005 (10)	0.0069 (9)	-0.0029 (11)
O2	0.0450 (13)	0.0760 (18)	0.0575 (14)	-0.0050 (12)	-0.0001 (11)	-0.0134 (13)
N1	0.0356 (14)	0.0428 (17)	0.0454 (15)	0.0022 (12)	0.0056 (11)	0.0007 (13)
N2	0.0321 (13)	0.0503 (18)	0.0406 (14)	0.0004 (12)	0.0083 (11)	0.0003 (13)
C1	0.0423 (18)	0.044 (2)	0.0434 (18)	-0.0038 (16)	0.0090 (15)	-0.0018 (16)
C2	0.0376 (17)	0.049 (2)	0.0419 (18)	0.0018 (15)	0.0083 (14)	-0.0027 (16)
C3	0.0332 (15)	0.0306 (19)	0.0397 (16)	0.0001 (13)	0.0086 (13)	0.0041 (14)
C4	0.0372 (16)	0.043 (2)	0.0409 (17)	-0.0026 (15)	0.0071 (13)	0.0029 (15)
C5	0.048 (2)	0.048 (2)	0.0419 (18)	-0.0040 (16)	0.0066 (15)	0.0008 (16)
C6	0.055 (2)	0.037 (2)	0.0376 (17)	0.0076 (16)	0.0135 (15)	0.0056 (15)
C7	0.0359 (16)	0.049 (2)	0.0468 (18)	0.0071 (15)	0.0150 (14)	0.0058 (16)
C8	0.0385 (17)	0.0310 (19)	0.0373 (16)	-0.0013 (14)	0.0086 (13)	0.0032 (14)
C9	0.0311 (16)	0.041 (2)	0.0393 (17)	-0.0008 (14)	0.0060 (13)	0.0051 (15)
C10	0.070 (2)	0.071 (3)	0.054 (2)	0.0156 (19)	0.0223 (17)	-0.0037 (19)
C11	0.0333 (16)	0.036 (2)	0.0382 (16)	-0.0008 (14)	0.0086 (13)	-0.0025 (14)
C12	0.0383 (18)	0.050 (2)	0.0500 (19)	0.0041 (16)	0.0011 (15)	-0.0005 (16)
C13	0.0320 (16)	0.045 (2)	0.058 (2)	0.0013 (15)	0.0074 (15)	-0.0065 (17)
C14	0.0461 (19)	0.048 (2)	0.074 (2)	0.0008 (17)	0.0276 (17)	-0.0005 (19)
C15	0.064 (2)	0.051 (2)	0.073 (2)	-0.0048 (19)	0.0414 (19)	-0.001 (2)
C16	0.078 (2)	0.049 (2)	0.056 (2)	-0.006 (2)	0.0313 (19)	0.0005 (18)
C17	0.059 (2)	0.041 (2)	0.0487 (19)	0.0011 (17)	0.0127 (16)	0.0001 (16)
C18	0.0375 (17)	0.037 (2)	0.0509 (19)	-0.0006 (15)	0.0157 (14)	-0.0048 (16)
C19	0.0418 (17)	0.0379 (19)	0.0440 (18)	-0.0030 (15)	0.0157 (14)	-0.0038 (15)
C20	0.0310 (16)	0.036 (2)	0.0445 (17)	0.0027 (14)	0.0093 (13)	-0.0075 (15)
C22	0.0324 (16)	0.033 (2)	0.0372 (17)	0.0017 (13)	0.0059 (13)	-0.0078 (14)

Geometric parameters (Å, °)

01—C1	1.377 (3)	С8—С9	1.389 (3)
O1—C9	1.383 (3)	C10—H10A	0.96
O2—C1	1.206 (3)	C10—H10B	0.96
N1-C11	1.344 (3)	C10—H10C	0.96
N1-C12	1.365 (3)	C11—C22	1.388 (3)
N2—C22	1.384 (3)	C12—C13	1.369 (4)
N2—C19	1.391 (3)	C12—H12	0.93
N2—H2	0.86	C13—C20	1.388 (4)
C1—C2	1.435 (4)	C13—H13	0.93
С2—С3	1.341 (3)	C14—C15	1.368 (4)
C2—H2A	0.93	C14—C18	1.392 (4)
С3—С8	1.447 (3)	C14—H14	0.93
C3—C11	1.494 (3)	C15—C16	1.388 (4)

supporting information

C4—C5	1.374 (4)	C15—H15	0.93
C4—C8	1.388 (3)	C16—C17	1.385 (4)
C4—H4	0.93	C16—H16	0.93
C5—C6	1.394 (4)	C17—C19	1.384 (4)
С5—Н5	0.93	C17—H17	0.93
C6-C7	1 379 (4)	C18 - C19	1 396 (4)
C6-C10	1.579(1) 1 510(4)	C18 $C20$	1.390(1) 1 445(4)
C7 - C9	1.378(4)	C_{20} C	1.115(1) 1.405(3)
С7—Н7	0.93	020 022	1.405 (5)
07-117	0.75		
C1C9	121.7 (2)	H10A—C10—H10C	109.5
C11—N1—C12	117.9 (2)	H10B—C10—H10C	109.5
C22—N2—C19	108.0 (2)	N1—C11—C22	120.6 (2)
C22—N2—H2	126	N1-C11-C3	117.7 (2)
C19—N2—H2	126	C22—C11—C3	121.7(2)
02-C1-01	117.0 (3)	C13 - C12 - N1	124.5(3)
02-C1-C2	126.4 (3)	C13—C12—H12	117.8
01-C1-C2	116.6 (3)	N1-C12-H12	117.8
$C_{3} - C_{2} - C_{1}$	1233(3)	$C_{12} - C_{13} - C_{20}$	117.0 117.9(3)
$C_3 - C_2 - H_2 A$	118.4	C12—C13—H13	121
C1 - C2 - H2A	118.4	C20—C13—H13	121
$C_{2}-C_{3}-C_{8}$	119.0 (2)	C15-C14-C18	118.8 (3)
$C_2 - C_3 - C_{11}$	119.7 (3)	C15—C14—H14	120.6
C8—C3—C11	121.3 (2)	C18—C14—H14	120.6
C5-C4-C8	121.0(2) 121.1(3)	C14-C15-C16	120.9(3)
C5-C4-H4	119.4	C14—C15—H15	119.6
C8-C4-H4	119.4	C16—C15—H15	119.6
C4—C5—C6	121.0 (3)	C17—C16—C15	121.8 (3)
C4—C5—H5	119.5	C17—C16—H16	119.1
C6—C5—H5	119.5	C15—C16—H16	119.1
C7—C6—C5	118.6 (3)	C16—C17—C19	116.6 (3)
C7—C6—C10	120.3 (3)	C16—C17—H17	121.7
C5—C6—C10	121.0 (3)	C19—C17—H17	121.7
C6—C7—C9	119.7 (3)	C14—C18—C19	119.5 (3)
С6—С7—Н7	120.1	C14—C18—C20	133.8 (3)
С9—С7—Н7	120.1	C19—C18—C20	106.7 (2)
C9—C8—C4	117.0 (3)	C17—C19—N2	128.3 (3)
C9—C8—C3	118.0 (2)	C17—C19—C18	122.3 (3)
C4—C8—C3	124.9 (2)	N2—C19—C18	109.4 (2)
C7—C9—O1	116.1 (2)	C13—C20—C22	118.0 (3)
C7—C9—C8	122.5 (3)	C13—C20—C18	135.5 (3)
01	121.4 (2)	C22—C20—C18	106.4 (2)
C6-C10-H10A	109.5	C11—C22—N2	129.7 (2)
C6-C10-H10B	109.5	C11—C22—C20	120.9 (3)
H10A—C10—H10B	109.5	N2-C22-C20	109.4 (2)
C6-C10-H10C	109.5		
C9—O1—C1—O2	179.9 (2)	C11—N1—C12—C13	-2.4 (4)

C9-01-C1-C2	0.2(4)	N1_C12_C13_C20	1.7(4)
$0^{2}-0^{1}-0^{2}-0^{3}$	1781(3)	$C_{18} - C_{14} - C_{15} - C_{16}$	1.7(4) 13(5)
$O_2 = C_1 = C_2 = C_3$	-22(4)	C_{14} C_{15} C_{16} C_{17}	-1.2(5)
$C_1 = C_2 = C_3$	2.2(4)	$C_{14} = C_{15} = C_{16} = C_{17} = C_{10}$	1.2(3)
$C_1 = C_2 = C_3 = C_8$	2.0(4)	C15 - C10 - C17 - C19	-0.2(4)
	-1/8.3(3)	C15 - C14 - C18 - C19	0.1(4)
	-1.1 (4)		1/8.5 (3)
C4—C5—C6—C7	1.8 (4)	C16—C17—C19—N2	-179.0 (3)
C4—C5—C6—C10	-177.1 (3)	C16—C17—C19—C18	1.6 (4)
C5—C6—C7—C9	-0.9 (4)	C22—N2—C19—C17	179.2 (3)
С10—С6—С7—С9	178.0 (3)	C22—N2—C19—C18	-1.3 (3)
C5—C4—C8—C9	-0.5 (4)	C14—C18—C19—C17	-1.6 (4)
C5—C4—C8—C3	-178.6 (3)	C20-C18-C19-C17	179.7 (3)
C2—C3—C8—C9	-1.4 (4)	C14—C18—C19—N2	178.9 (3)
C11—C3—C8—C9	179.8 (2)	C20-C18-C19-N2	0.1 (3)
C2—C3—C8—C4	176.6 (3)	C12—C13—C20—C22	0.7 (4)
C11—C3—C8—C4	-2.2 (4)	C12-C13-C20-C18	-179.2 (3)
C6—C7—C9—O1	179.3 (2)	C14-C18-C20-C13	2.6 (6)
C6—C7—C9—C8	-0.8 (4)	C19—C18—C20—C13	-178.9 (3)
C1—O1—C9—C7	-179.1 (2)	C14—C18—C20—C22	-177.4 (3)
C1—O1—C9—C8	1.0 (4)	C19—C18—C20—C22	1.1 (3)
C4—C8—C9—C7	1.5 (4)	N1-C11-C22-N2	-178.8 (2)
C3—C8—C9—C7	179.7 (2)	C3—C11—C22—N2	-0.5 (4)
C4—C8—C9—O1	-178.6 (2)	N1-C11-C22-C20	2.0 (4)
C3—C8—C9—O1	-0.4 (4)	C3—C11—C22—C20	-179.7 (2)
C12—N1—C11—C22	0.4 (4)	C19—N2—C22—C11	-177.3 (3)
C12—N1—C11—C3	-177.9 (2)	C19—N2—C22—C20	2.0 (3)
C2-C3-C11-N1	118.4 (3)	C13—C20—C22—C11	-2.5 (4)
C8—C3—C11—N1	-62.9 (3)	C18—C20—C22—C11	177.4 (2)
C2—C3—C11—C22	-60.0 (4)	C13—C20—C22—N2	178.1 (2)
C8—C3—C11—C22	118.8 (3)	C18—C20—C22—N2	-1.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…N1 ⁱ	0.86	2.47	2.994 (3)	120

Symmetry code: (i) -x+1, y-1/2, -z+1/2.