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A Mendelian randomization study of the effect
of type-2 diabetes on coronary heart disease
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In observational studies, type-2 diabetes (T2D) is associated with an increased risk of

coronary heart disease (CHD), yet interventional trials have shown no clear effect of glucose-

lowering on CHD. Confounding may have therefore influenced these observational estimates.

Here we use Mendelian randomization to obtain unconfounded estimates of the influence of

T2D and fasting glucose (FG) on CHD risk. Using multiple genetic variants associated with

T2D and FG, we find that risk of T2D increases CHD risk (odds ratio (OR)¼ 1.11 (1.05–1.17),

per unit increase in odds of T2D, P¼8.8� 10� 5; using data from 34,840/114,981 T2D

cases/controls and 63,746/130,681 CHD cases/controls). FG in non-diabetic individuals

tends to increase CHD risk (OR¼ 1.15 (1.00–1.32), per mmol � per l, P¼0.05; 133,010

non-diabetic individuals and 63,746/130,681 CHD cases/controls). These findings provide

evidence supporting a causal relationship between T2D and CHD and suggest that long-term

trials may be required to discern the effects of T2D therapies on CHD risk.
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U
nderstanding the role of type-2 diabetes (T2D) in the
pathogenesis of coronary heart disease (CHD) is a
fundamental problem for the design of effective

approaches for preventing cardiovascular disease1. T2D is
associated with an increased risk of CHD by—two to fourfold
in observational studies2,3, and this effect is independent of
known T2D-associated risk factors, such as low-density
lipoprotein (LDL) cholesterol, smoking, blood pressure, body
mass index (BMI) and inflammatory markers. In non-diabetic
patients, the two key metabolic traits associated with T2D,
elevated fasting glucose (FG) levels and insulin resistance, are also
associated with an increased risk of cardiovascular disease2,4.

Despite this observational evidence, recent large-scale rando-
mized controlled trials (RCTs) have shown conflicting and
inconclusive results on the effect of intensive glucose-lowering
therapies on the short-term prevention of CHD in patients with
T2D. Four large-scale RCTs5–8 have shown no benefit to intensive
glucose-lowering therapy; indeed, one was stopped prematurely
because of increased mortality in the treatment arm5.
Nevertheless, a recent meta-analysis of RCTs has indicated a
modest benefit to of glucose lowering on CVD outcomes9.
Furthermore, a recent follow-up observational study of patients
who had been enroled in the ACCORD RCT showed some
evidence of benefit of intensive glucose-lowering therapy on
cardiovascular outcomes10. Finally, leading clinical treatment
guidelines for T2D recommend control of blood glucose for the
prevention of macrovascular disease11,12.

This contradictory evidence has led to the suggestion that
elevated blood glucose does not cause CHD13, and if true, this
would raise the possibility that the effects of T2D and FG seen in
observational studies are largely due to confounding factors. The
causality of the relationships between T2D, FG and CHD are of
great importance to global public health, since the worldwide
prevalence of T2D was 6.4% in 2010 (ref. 14) and CHD is the
leading cause of death in the world15. Moreover, the total cost of
T2D exceeded $174 billion in the US alone in 2007 (ref. 16).

Confounding may strongly influence observational studies,
particularly when confounding factors are unknown or inade-
quately measured17. T2D and FG are closely associated with
several of the mechanisms that lead to CHD independently of
diabetes, such as increased body weight, LDL cholesterol, blood
pressure2 and impaired endothelial function18. If these factors
or unknown confounders influenced observational studies,
then clinical practice guidelines recommending glucose-
lowering therapy to prevent CHD and other macrovascular
complications in diabetic patients should be reconsidered11,19.
Unconfounded estimates of the relationship between T2D, related
metabolic traits and CHD risk are therefore needed to better
design and test interventions to reduce CHD risk in diabetic
individuals.

Mendelian randomization (MR) is a study design in which
genetic variants are employed as instrumental variables for
estimating the unconfounded effect of an exposure (for example,
T2D or FG) on a disease (for example, CHD)20. Although
common genetic variants typically have only small effects on
complex diseases, the combined use of multiple variants as
instruments increases the statistical power to detect associations
between exposure and outcome21–23. Because MR studies make
use of the random assortment of alleles at meiosis, their estimates
are much less vulnerable to confounding than observational
epidemiologic studies. Furthermore, because allele assignment at
meiosis precedes the onset of CHD, MR studies are not prone to
reverse causation. Last, MR studies describe the effect of lifetime
exposure to an allele, whereas RCTs assess the effect of an
intervention, generally for less than a decade. For these reasons,
when suitable genetic variants are available, MR studies can

provide evidence in support of a causal association between
exposure and outcome.

In the present study, we analyse summary-level genome-wide
association study (GWAS) data from multiple genetic variants to
obtain MR estimates of the effect of T2D and FG on CHD. We
assess FG in non-diabetic subjects since FG in the non-diabetic
range has previously been associated with CHD risk2, and since
precise estimates of the effects of genetic variants on FG in non-
diabetic subjects are available. We did not examine the effects of
FG in diabetic subjects since drugs used to treat T2D influence
FG. To obtain genetic variants that could serve as valid
and independent instruments, we first search the largest
available GWAS studies to date to identify single nucleotide
polymorphisms (SNPs) significantly associated with T2D24–26

and FG24. We then test for and exclude from our analysis any of
these candidate SNPs that either are in significant linkage
disequilibrium with one another, or that are associated with
known risk factors for CHD, including LDL cholesterol,
triglycerides, systolic blood pressure, diastolic blood pressure
and BMI. Using the remaining genetic variants as independent
instruments, we apply statistical methods from meta-analysis to
estimate the effect of T2D risk and FG levels on CHD risk. We
then apply similar methodology to genetic variants associated
with HbA1c. Finally, to examine the sources of heterogeneity in
our estimate, we perform a subgroup analysis in which genetic
variants are classified by their putative mechanism of action.

Results
T2D and CHD risk. To identify candidate instruments for
assessing the effect of T2D on CHD risk, we found 38 genetic
variants that had genome-wide significant (Po5� 10� 8 for the
allelic effect of each SNP on T2D risk) associations with T2D
in the largest GWA study to date (DIAGRAMv3, containing
34,840 cases and 114,981 controls)25, and assessed their
effect on CHD risk in the largest GWA study of CHD to
date (CARDIoGRAMplusC4D, containing 63,746 cases and
130,681 controls)27. If SNP results were absent from
CARDIoGRAMplusC4D, their effects were drawn from
CARDIoGRAM28, the second largest CHD GWAS to date.
In all, 37 of 38 SNPs were assessed using either
CARDIoGRAMplusC4D or CARDIoGRAM data. For 1 of the
38 variants (rs11651052 from the HNF1B [TCF2] locus), neither
the index SNP nor any of its proxies (defined as variants with
linkage disequilibrium r240.9 in HapMap CEU population) was
found in either the CARDIoGRAMplusC4D or CARDIoGRAM
dataset. This variant was thus excluded from further analyses. The
set of 37 T2D risk-increasing variants for which both T2D and
CHD data were available constituted the set of candidate variants,
and SNPs in this set were further evaluated in our MR study
(Table 1 and Fig. 1). We found through a random-effects meta-
analysis of the 37 T2D risk-increasing candidate variants that the
typical genome-wide significant T2D risk allele was associated
with an odds ratio (OR) for risk of T2D of 1.11 (95% confidence
interval (95% CI): 1.09–1.12) (Supplementary Table 1).

Since MR analysis requires that variants with known pleiotropy
be excluded, we then tested the 37 candidate variants for
association with known pleiotropic factors (including LDL-C,
triglycerides systolic blood pressure, diastolic blood pressure
and BMI) using cross-phenotype meta-analysis (CPMA),
a statistical procedure for using summary-level GWAS data to
identify pleiotropic associations among traits29 (Table 1 and
Supplementary Table 2A). Of the 37 candidate variants, 11 were
found to have potentially pleiotropic associations. Linkage
equilibrium among the remaining 26 variants was confirmed
using the HapMap dataset, accessed through the online tool
SNAP30 (Fig. 1). The resulting set of 26 variants free of
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pleiotropic association with known risk factors and independent
from one another by linkage constituted the MR-instrument set
for T2D. Effect-size data for this set of non-pleiotropic variants
provided the basis for our MR analysis.

We first carried out an analysis of instrumental-variables
estimates derived from all 37 SNPs in the set of candidate
variants, including the 11 SNPs with pleiotropic effects on serum
lipid profiles, blood pressure and BM; this yielded an OR of 1.11
(95% CI: 1.05–1.16); P¼ 1.7� 10� 4 for MR analyses; I2¼ 63%
(95% CI: 47–74%) (Table 2). Of the six SNPs in the set of
candidate variants that were associated with the largest absolute
effects on CHD risk, five were found to have pleiotropic
associations with confounding risk factors. These pleiotropic
SNPs included three with large positive effects (for example,
MC4R, IRS1 and FTO) and two with large negative effects
(for example, CILP2 and ADAMTS9) on CHD risk. Because of
their pleiotropic associations, they were excluded from MR
analysis (Table 1 and Supplementary Table 2A). As discussed
below, the remaining SNP, near BCAR1, made a dominant
contribution to the heterogeneity of the MR estimate assessed
using the MR-instrument set.

To estimate the effect of genetically raised T2D risk on CHD
risk, we used a random-effects model in which the 26 T2D

risk-increasing variants of the MR-instrument set were treated
as instrumental variables. (Table 1 and Methods section).
A random-effects model derived from the MR-instrument set
yielded a pooled MR estimate of the effect of T2D on CHD risk,
and demonstrated that T2D increased the odds of CHD by 1.11
(95% CI: 1.05–1.17); P¼ 8.8� 10� 5, I2¼ 38 (95% CI: 1–62%)
(Table 2, Fig. 2). Fixed-effects estimates for both the full set of
candidate SNPs and for the set of MR instruments yielded results
similar to those of the random-effects model (Supplementary
Table 3).

To assess whether individual variants made large contributions
to the heterogeneity of the MR estimate, we exhaustively
computed and compared random-effects estimates of all
subgroups of non-pleiotropic variants in the MR-instrument
set, using a previously described combinatorial approach31.
A single variant near BCAR1 with a large effect on T2D risk
dominated the heterogeneity in our MR estimate; removing this
variant produced a risk estimate of markedly lower heterogeneity:
(OR¼ 1.09 (95% CI: 1.05–1.14); P¼ 5.0� 10� 5 for MR analysis;
I2¼ 15% (95% CI: 0–48%)). Two other variants in the
MR-instrument set (at the KLDHC5 and CDKN2A/B loci) were
found through exhaustive subgroup analysis to make important
contributions to the heterogeneity in the MR estimate. Removing

Table 1 | Characteristics of SNPs considered for use in Mendelian randomization analysis of the effect of T2D on CHD risk.

Locus SNP EA NEA OR T2D P value T2D OR CHD P value CHD Pleiotropic effect Physiologic cluster

ADCY5 rs11717195 T C 1.11 6.5E� 14 1.00 8.3E�01 No BC
CDKAL1 rs7756992 G A 1.17 7.0E� 35 1.02 7.2E�02 No BC
CDKN2A/B rs10811661 T C 1.18 3.7E� 27 1.00 6.8E�01 No BC
DGKB rs17168486 T C 1.11 5.9E� 11 1.00 6.6E�01 No BC
HHEX/IDE rs1111875 C T 1.11 2.0E� 19 1.02 1.3E�02 No BC
PROX1 rs2075423 G T 1.07 8.1E�09 1.00 7.1E�01 No BC
SLC30A8 rs3802177 G A 1.14 1.3E� 21 1.01 3.3E�01 No BC
THADA rs10203174 C T 1.14 9.5E� 12 1.01 5.9E�01 No BC
MTNR1B rs10830963 G C 1.10 5.3E� 13 1.01 2.6E�01 No HG
ANK1 rs516946 C T 1.09 2.5E� 10 1.01 2.8E�01 No NA
BCAR1 rs7202877 T G 1.12 3.5E�08 1.07 2.7E�05 No NA
HMG20A rs7177055 A G 1.08 4.6E�09 1.01 2.1E�01 No NA
KLHDC5 rs10842994 C T 1.10 6.1E� 10 0.99 2.4E�01 No NA
TLE1 rs2796441 G A 1.07 5.4E�09 1.02 9.5E�02 No NA
UBE2E2 rs1496653 A G 1.09 3.6E�09 1.01 5.8E�01 No NA
ZMIZ1 rs12571751 A G 1.08 1.0E� 10 0.99 5.2E�01 No NA
ARAP1 (CENTD2) rs1552224 A C 1.11 1.8E� 10 0.99 3.4E�01 No PI
BCL11A rs243088 T A 1.07 1.8E�08 1.02 3.8E�02 No UC
HMGA2 rs2261181 T C 1.13 1.2E�09 1.01 4.0E�01 No UC
IGF2BP2 rs4402960 T G 1.13 2.4E� 23 1.02 1.5E�02 No UC
JAZF1 rs849135 G A 1.11 3.1E� 17 1.02 5.8E�03 No UC
KCNQ1 rs163184 G T 1.09 1.2E� 11 1.02 2.2E�02 No UC
PRC1 rs12899811 G A 1.08 6.3E�09 1.01 1.4E�01 No UC
TSPAN8/LGR5 rs7955901 C T 1.07 6.5E�09 0.99 4.6E�01 No UC
WFS1 rs4458523 G T 1.10 2.0E� 15 1.01 4.6E�01 No UC
ZBED3 rs6878122 G A 1.10 5.0E� 11 1.02 3.8E�01 No UC
TCF7L2 rs7903146 T C 1.39 1.2E� 139 1.03 5.7E�03 Yes BC
IRS1 rs2943640 C A 1.10 2.7E� 14 1.03 5.2E�04 Yes IR
PPARG rs1801282 C G 1.13 1.1E� 12 1.00 7.8E�01 Yes IR
ANKRD55 rs459193 G A 1.08 6.0E�09 1.02 2.5E�02 Yes NA
CILP2 rs10401969 C T 1.13 7.0E�09 0.93 7.3E�05 Yes NA
FTO rs9936385 C T 1.13 2.6E� 23 1.03 4.2E�03 Yes NA
GRB14 rs13389219 C T 1.07 1.0E�08 1.02 7.2E�02 Yes NA
MC4R rs12970134 A G 1.08 1.2E�08 1.03 1.8E�03 Yes NA
SPRY2 rs1359790 G A 1.08 1.4E�08 0.99 4.7E�01 Yes NA
ADAMTS9 rs6795735 C T 1.08 7.4E� 11 0.98 1.8E�02 Yes UC
KCNJ11 rs5215 C T 1.07 8.5E� 10 1.02 1.8E�02 Yes UC

BC, beta-cell dysfunction; CHD, coronary heart disease; CPMA, cross-phenotype meta-analysis; EA, effect allele; HG, hyperglycemic; IR, insulin resistance; NA, not available; NEA, non-effect allele; OR,
odds ratio; PI, pro-insulin; SNP, single nucleotide polymorphism; T2D, type-2 diabetes; UC, unclassified.
Pleiotropic effect: ‘Yes’ indicates that the SNP was associated with at least one confounding trait in the CPMA analysis. See Supplementary Table 2 for a full description of these pleiotropic associations.
Physiologic Clusters: UC, IR, BC, PI, HG and NA. Note that the OR for CHD is not weighted for the effect of each SNP on T2D or fasting glucose. Figures report the OR for CHD weighted by their effect
on T2D.
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from the MR-instrument set the three variants associated with
the BCAR1, KLHDC5 and CDKN2A/B loci yielded a risk
estimate with a heterogeneity estimate of zero. (OR¼ 1.12 (95%
CI: 1.07–1.16); P¼ 2.7� 10� 7 for MR analysis; I2¼ 0% (95% CI:
0–45%)).

Biological subgroup analysis. We next grouped T2D candidate
variants based on their pathophysiologic mechanism, as proposed
by a clustering analysis based on their genetic association with
glycemic traits32. The candidate variants for which classification
data were available and were placed in one of the five subgroups:
(i) altered insulin sensitivity; (ii) reduced insulin secretion;
(iii) defects in insulin processing; (iv) insulin secretion without

a detectable changed in plasma glucose and (v) unclassified
(Table 1). Importantly, all of the T2D variants associated with
altered insulin sensitivity (GCKR, IRS1, KLF14 and PPARG) also
influenced additional metabolic traits such as LDL cholesterol
(Supplementary Table 4) and thus were not part of the
MR-instrument set and were not included in the MR analysis.
The pro-insulin cluster contained only one SNP, which was found
to have pleiotropic effects; and the hyperglycemia cluster contains
only two SNPs, one of which was found to have pleiotropic
effects. After removing pleiotropic SNPs, there were only
sufficient numbers of SNPs remaining to test the beta-cell
subgroup and the unclassified subgroup. A random-effects
analysis of the subgroup of the MR-instrument set associated
with decreased beta-cell function (N¼ 8) yielded an MR estimate
of the effect of T2D on CHD risk of 1.07 (95% CI: 1.01–1.14);
P¼ 0.02 for MR analysis; I2¼ 0% (95% CI: 0–68%)) and
estimates based on T2D risk alleles with no clear effect on the
above mechanisms (N¼ 18) also conferred increased risk of
CHD (OR¼ 1.13 (1.04–1.23); P¼ 3.4� 10� 3 for MR analysis;
I2¼ 60% (32–76%)) (Table 3 and Fig. 3).

FG and CHD risk. We identified 33 variants that showed
genome-wide significant (Po5� 10� 8) associations with FG
levels (Table 4 and Fig. 4) using data from the MAGIC
consortium’s most recent GWAS for FG, which included 133,010
non-diabetic individuals24. Just as for the analysis of T2D
candidate variants described above, the effects of the FG
variants on CHD risk were ascertained in the largest GWAS to
date for CHD27, and if unavailable in the second largest GWAS to
date for CHD28 (Fig. 4). Data on CHD for all 33 SNPs were
available, and thus all 33 SNPs were included in the set of
candidate variants for FG. We found through a random-effects
meta-analysis of this set of FG-increasing candidate variants
that a typical genome-wide significant FG risk allele was
associated with a 0.028 mmol l� 1 increase in FG (95% CI:
0.021–0.035 mmol l� 1) (Supplementary Note 1 and Supplementary
Table 1).

Just as for T2D risk alleles, we used the CPMA statistic to test
the FG candidate variants for pleiotropic associations with
LDL-C, triglycerides, systolic blood pressure, diastolic blood
pressure and BMI (Table 4 and Supplementary Table 2B). Of
these 33 candidate SNPs, 9 were found to have pleiotropic effects.
Just as for the T2D analysis described above, all FG candidate
variants were confirmed to be in pairwise linkage equilibrium.
The remaining 24 non-pleiotropic, independent variants con-
stituted the MR-instrument set for FG, and were used to compute
the MR estimate for the effect of FG on CHD.

A random-effects analysis using the full set of 33 candidate
variants yielded an effect-size estimate of 1.27 CHD odds per
1 mmol l� 1 increase in FG (95% CI: 1.04–1.54 CHD odds per
1 mmol l� 1 increase in FG); P¼ 0.02 for MR analysis; I2¼ 39%
(7–60%) (Table 2). The effect of FG on CHD, as measured using
the 24 FG risk alleles of the MR-instrument set for FG, was 1.15
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Figure 1 | Selection and validation of T2D SNPs used as instruments

in the Mendelian randomization analysis of the effect of T2D on

CHD risk. .

Table 2 | Random-effects model estimates for the effect of T2D and fasting glucose on CHD risk.

Instrument set Effect size (95% CI) P value I2 (95% CI)

T2D (all significant SNPs, n¼ 37) 1.11 (1.05–1.16) 1.7E�04 62.7 (46.8–73.8)
T2D (excluding pleiotropic SNPs, n¼ 26) 1.11 (1.05–1.17) 8.8E�05 38.4 (1.2–61.6)
Fasting glucose (all significant SNPs, n¼ 33) 1.27 (1.04–1.54) 2.0E�02 39.1 (7.3–60.0)
Fasting glucose excluding pleiotropic SNPs, n¼ 24) 1.15 (1.00–1.32) 5.3E�02 0 (0–44.6)

CHD, coronary heart disease; CI, confidence interval; MR, Mendelian randomization; SNP, single nucleotide polymorphism; T2D, type-2 diabetes.
Effect size for T2D analysis is the effect on odds of CHD per odds increase in risk of T2D. Effect size for fasting glucose analysis is the effect on odds of CHD per 1 mmol l� 1 increase in fasting glucose in
non-diabetics. Each P value is for the MR analyses.
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CHD odds per 1 mmol l� 1 FG (95% CI: 1.00–1.32 CHD odds per
1 mmol l� 1 increase in FG); P¼ 0.05 for MR analysis, I2¼ 0%
(0–44.6%) (Table 2 and Fig. 5).

To assess whether related glycemic traits in non-diabetics also
were causally associated with increased risk of CHD, we
undertook a similar analysis of HbA1c levels on CHD risk,
which did not yield statistically significant results (Supplementary
Note 2).

Discussion
Using summary-level data for T2D and FG risk alleles, our MR
study supports observational evidence, suggesting that T2D and
FG lead to CHD. These findings have important implications
both for the care of T2D patients, and for the design of clinical
trials to assess the effect of T2D treatments on cardiovascular risk;
they support the hypothesis that lowering T2D risk and glucose
levels can help prevent CHD. While these findings contrast with
recent short-term RCTs investigating the effect of glucose

lowering in T2D5–8, an important difference between MR
studies and RCTs is that MR studies describe the effect of a
lifetime of exposure to glucose lowering alleles in the general
population, whereas RCTs measure the short-term effects (that is,
o7 years) of intensive glucose-lowering therapy on CHD risk in
patients with diabetes (and therefore with established
hyperglycemia)5–8. While it is possible that RCTs designed to
test glucose lowering may need substantially longer follow-up
times to fully estimate the effect of these interventions on CHD,
our data does not permit direct insights into this hypothesis, and
other mechanisms could be responsible for the lack of clear effect
demonstrated in RCTs to date (such as the mechanisms by which
glucose is lowered, or potential adverse cardiovascular effects of
some of the T2D treatments used in clinical trials).

Importantly, almost all current treatments for T2D focus on
lowering glucose levels. Our study considered the effects of FG on
CHD for individuals without T2D. However, since the effect
of FG on CHD risk is considerably higher among diabetic
individuals2, the observed effect for FG in this study may
underestimate the effect of genetically elevated glucose levels in
individuals with T2D. To our knowledge, this hypothesis is not
testable at present, since there are currently an insufficient
number of genetic variants robustly associated with FG among
diabetic individuals. Nonetheless, we find that even a small
increase in genetically elevated FG levels in non-diabetic
individuals is associated with a trend towards increased CHD
risk. This result suggests that glucose is an important mediator
linking T2D and CHD pathogenesis.

A relatively small proportion (4.8%) of the variance in FG
levels in the non-diabetic population is explained by the common

NOTE: Weights are from random effects analysis
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SLC30A8

ADCY5

BCAR1

ANK1

DGKB

HHEX/IDE

ZMIZ1

KCNQ1

PROX1

CDKAL1

PRC1

CDKN2A/B

TSPAN8/LGR5

TLE1

HMGA2

THADA

MTNR1B

LOCUS

UBE2E2

ARAP1 (CENTD2)

WFS1

JAZF1

HMG20A

KLHDC5

BCL11A
ZBED3

IGF2BP2

rs3802177

rs11717195

rs7202877

rs516946

rs17168486

rs1111875

rs12571751

rs163184

rs2075423

rs7756992

rs12899811

rs10811661

rs7955901

rs2796441

rs2261181

rs10203174

rs10830963

SNP

rs1496653

rs1552224

rs4458523

rs849135

rs7177055

rs10842994

rs243088
rs6878122

rs4402960

1.11 (1.05, 1.17)

1.08 (0.93, 1.25)

0.98 (0.81, 1.19)

1.77 (1.36, 2.30)

1.14 (0.90, 1.44)

1.05 (0.85, 1.29)

1.23 (1.04, 1.45)

0.93 (0.74, 1.16)

1.28 (1.04, 1.57)

1.05 (0.80, 1.39)

1.12 (0.99, 1.26)

1.19 (0.95, 1.51)

0.97 (0.85, 1.11)

0.91 (0.71, 1.17)

1.26 (0.96, 1.66)

1.10 (0.88, 1.38)

1.06 (0.86, 1.31)

1.13 (0.91, 1.41)

ES (95% CI)

1.07 (0.84, 1.35)

0.90 (0.72, 1.12)

1.08 (0.89, 1.30)

1.26 (1.07, 1.48)

1.16 (0.92, 1.47)

0.87 (0.70, 1.10)

1.30 (1.02, 1.67)
1.23 (0.78, 1.95)

1.20 (1.04, 1.39)

100.00

5.67

4.18

2.76

3.31

3.83

5.11

3.55

3.84

2.58

6.71

3.32

6.02

3.02

2.64

3.43

3.72

3.57

Weight

3.27

3.63

4.28

5.10

3.25

3.47

3.01
1.11

5.63

0.434 1 2.3

Odds ratio for CHD per T2D odds

Figure 2 | The Mendelian randomization estimate of the effect of T2D on CHD using a random-effects model. For each of the 26 non-pleiotropic

SNPs (Table 1), the Forest plot shows the estimate of the effect of genetically increased T2D risk on CHD risk, as assessed for each SNP. Also shown for

each SNP is the 95% confidence interval (black line segment) of the estimate and the inverse-variance weight (% proportional to the size of the grey

square) in the random-effects meta-analysis.

Table 3 | Mendelian randomization estimate of effect of T2D
on CHD risk for subgroup analyses of SNP physiologic
clusters.

Cluster name Effect size (95% CI) P value I2 (95% CI)

No cluster 1.13 (1.04–1.23) 3.4E�03 59.5 (32.0–75.9)
Beta-cell cluster 1.07 (1.01–1.14) 2.3E�02 0 (0–67.6)

CHD, coronary heart disease; CI, confidence interval; MR, Mendelian randomization; SNP, single
nucleotide polymorphism; T2D, type-2 diabetes.
Each P value is for the MR analyses.
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genetic variants used in this study24. Our use of multiple variants
in the MR analysis increases the statistical power to detect causal
associations, although at the expense of increased finite sample
bias21. The variance explained by genetic factors will likely
increase as the number of individuals participating in large-scale
GWAS increases and as results from large-scale whole-genome
and whole-exome sequencing studies identify additional
genetic variants associated with elevated blood glucose levels.
Furthermore, as genetic factors explain a greater proportion of
the variance in FG, the error in the associated MR estimates of
the effect of FG on CHD would be expected to decrease.
This is because MR estimates which use instrumental variables
explaining little variance in a trait tend to be biased towards

the null17. Such bias is unlikely to have influenced either the
direction or significance of the results of this study since our MR
analysis shows a positive relationship between FG and CHD. We
note that FG may have a non-linear relationship with CHD, but
only for individuals with low glucose levels, which represents a
minority of the general population2. Last, results from our MR of
HbA1c levels may have been biased towards the null since many
HbA1c variants are clearly non-glycemic24.

A strength of our study is that data on associations between
exposure, outcome and confounder traits were typically gathered
in different population samples; this approach reduces the
possibility of over-fitting effect-size estimates. Moreover, the fact
that we draw effect-size data from separate large-scale GWA
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Figure 3 | Mendelian randomization estimate of genetically increased T2D risk on CHD risk: subgroup analysis by physiologic cluster, computed using

a random-effects model. Shown for each SNP is mean value (black sqaure), the 95% confidence interval (black line segment) of the estimate and the

inverse-variance weight (% proportional to the size of the grey square) in the random-effects meta-analysis (blue diamond). Of five biologically distinct

clusters of genetic variants, only two clusters contained enough significant, non-pleiotropic variants for further analysis: (a) the cluster of variants

influencing beta-cell function; and (b) the cluster unclassified variants.
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studies for exposure and outcome traits means that effect sizes are
more precisely assessed than would be possible by the analysis of
individual-level data from a smaller study.

Although this has the potential to introduce error because
variation in risk exposure between study populations can distort
the estimated effect, this error is expected to be small since the
various studies that were part of the DIAGRAMv3, CARDIo-
GRAM and MAGIC meta-analyses often drew subjects from the
same overall population samples. Several factors can lead to bias
in our estimate of the effect of genetically elevated risk of T2D
and FG22,23. Although we checked for pleiotropic associations
with major known confounders, there may be associations with
unknown confounders leading to bias. A further complication
arises from feedback interactions (such as canalization) and
other non-linear interactions between the exposure and its
confounders. Canalization, the process by which compensatory
feedback mechanisms reduce the phenotypic consequences of
genetic variation, has been extensively studied in the context of
MR (reviewed elsewhere)33–35. However, since canalization tends
to bias results towards the null, the presence of canalization
would not alter the statistical significance or direction of the
effects we detect through MR.

MR has previously been used to show that non-FG in non-
diabetic individuals is causally related to ischaemic heart
disease36. This previous study used individual-level data from a

large group of Danish subjects, and its findings on the effect of
non-FG levels are consistent with our findings on FG levels. An
additional study showed that variants that predict CHD risk were
significantly associated with related metabolic phenotypes in a
population of 1,208 diabetic subjects, but did not directly assess
whether T2D risk variants were associated with risk of CHD37.

In addition to non-fasting blood glucose, numerous other
traits have been assessed through MR studies for their impact
on cardiovascular risk38, including traits related to glucose
metabolism36,38. Some appear to be biomarkers without
substantial causal influence: HDL39, CRP40, homocysteine41,
bilirubin42 and uric acid43. Other traits appear to be causally
related, including hypertension44, lipid metabolism such as
LDL45, Lp(a)46, triglycerides47,48 and adiposity49. While
adiponectin shares an allelic architecture with CHD50, this is
likely due to pleiotropic effects51. Our study provides evidence
that T2D, like LDL and obesity, has a causal effect on CHD; and
that this effect is discernible even after correcting for pleiotropic
associations with known confounding factors.

In this study, we used MR analysis of summary-level GWAS
data to provide evidence that genetically increased risk of T2D
leads to increased CHD risk. We also provide evidence through
MR analysis for a trend, indicating that increases in FG in non-
diabetics leads to an increase in CHD risk. Our results support
the hypothesis that the relationship between T2D and CHD is

Table 4 | Characteristics of SNPs considered for use in Mendelian randomization analysis of the effect of fasting glucose on
CHD risk.

Locus SNP EA NEA Effect on FG (mmol l� 1) OR FG P value FG OR CHD P value CHD Pleiotropic effect

ADCY5 rs11708067 A G 0.02 1.02 1.3E� 18 1.00 7.0E�01 No
ADRA2A rs11195502 C T 0.03 1.03 2.0E� 18 1.02 2.8E� E�01 No
ARAP1 rs11603334 G A 0.02 1.02 1.1E� 11 0.99 4.0E�01 No
CDKAL1 rs9368222 A C 0.01 1.01 1.0E�09 1.02 5.3E�02 No
CDKN2B rs10811661 T C 0.02 1.02 5.7E� 18 1.00 6.8E�01 No
CRY2 rs11607883 G A 0.02 1.02 6.3E� 24 1.00 8.1E�01 No
DGKB/TMEM195 rs2191349 T G 0.03 1.03 1.3E�42 1.01 4.3E�01 No
DNLZ rs3829109 G A 0.02 1.02 1.1E� 10 1.00 9.5E�01 No
FOXA2 rs6113722 G A 0.04 1.04 2.5E� 11 1.00 8.8E�01 No
G6PC2 rs560887 C T 0.07 1.07 1.4E� 178 1.02 1.5E�01 No
GCK rs2908289 A G 0.06 1.06 3.3E�88 1.00 9.8E�01 No
GLIS3 rs10814916 C A 0.02 1.02 2.3E� 13 0.99 1.7E�01 No
GRB10 rs6943153 T C 0.02 1.02 1.6E� 12 0.99 1.7E�01 No
IGF2BP2 rs7651090 G A 0.01 1.01 1.8E�08 1.02 1.8E�02 No
IKBKAP rs16913693 T G 0.04 1.04 3.5E� 11 1.03 3.5E�01 No
KL rs576674 G A 0.02 1.02 2.3E� 8 1.02 3.9E�01 No
MADD rs11039182 T C 0.02 1.02 4.8E� 22 1.00 8.9E�01 No
MTNR1B rs10830963 G C 0.08 1.08 1.1E� 215 1.01 2.6E�01 No
PCSK1/MIR583 rs4869272 T C 0.02 1.02 1.0E� 15 0.99 5.8E�01 No
PDX1 rs11619319 G A 0.02 1.02 1.3E� 15 1.01 3.4E�01 No
PROX1 rs340874 C T 0.01 1.01 4.1E� 10 1.00 8.7E�01 No
SLC30A8 rs11558471 A G 0.03 1.03 7.8E� 37 1.01 2.2E�01 No
VPS13C/C2CD4A/B rs4502156 T C 0.02 1.02 1.4E� 25 0.99 5.0E�01 No
WARS rs3783347 G T 0.02 1.02 1.3E� 10 1.02 1.7E�01 No
AMT rs11715915 C T 0.01 1.01 4.9E�08 1.05 6.3E�06 Yes
FADS1 rs174576 C A 0.02 1.02 1.2E� 18 1.02 8.9E�02 Yes
GCKR rs780094 C T 0.03 1.03 2.6E� 37 1.01 5.4E�01 Yes
GIPR rs2302593 C G 0.01 1.01 9.3E� 10 1.03 1.2E�01 Yes
P2RX2 rs10747083 A G 0.01 1.01 7.6E�09 1.02 4.2E�01 Yes
PPP1R3B/LOC157273 rs983309 T G 0.03 1.03 6.3E� 15 1.00 7.9E�01 Yes
SLC2A2 rs1280 T C 0.03 1.03 8.6E� 18 1.01 6.4E�01 Yes
TCF7L2 rs7903146 T C 0.02 1.02 2.7E� 20 1.03 5.7E�03 Yes
TOP1 rs6072275 A G 0.02 1.02 1.7E�08 0.99 3.4E�01 Yes

CHD, coronary heart disease; CPMA, cross-phenotype meta-analysis; EA, effect allele; FG, fasting glucose; NEA, non-effect allele; OR, odds ratio; SNP, single nucleotide polymorphism; T2D, type-2
diabetes.
Pleiotropic Effect: ‘Yes’ indicates that the SNP was associated with at least one confounding trait in the CPMA analysis. See Supplementary Table 2 for a full description of these pleiotropic associations.
Note that the OR for CHD is not weighted for the effect of each SNP on fasting glucose. Figures report the OR for CHD weighted by their effect on fasting glucose.
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Figure 4 | Selection and validation of fasting glucose SNPs used as instruments in the Mendelian randomization analysis of the effect of fasting

glucose on CHD risk.
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Figure 5 | The Mendelian randomization estimate of the effect of fasting glucose on CHD using a random-effects model. For each of the 24

non-pleiotropic SNPs (Table 4), the Forest plot shows the estimate of the effect of the Fasting Glucose risk allele upon CHD risk, as assessed for each SNP,

the 95% confidence interval (black line segment) of the estimate and the inverse-variance weight (proportional to the size of the grey square) in the

random-effects meta-analysis (blue diamond).
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indeed causal, and that associated metabolic traits in non-
diabetics may also have a causal influence on CHD risk. These
findings suggest that long-term efforts to prevent T2D and lower
glucose levels can decrease CHD risk.

Methods
Candidate instrument selection. We gathered data from large meta-analyses of
GWA studies examining the exposure (T2D and FG), outcome (CHD) and con-
founder traits (specifically: LDL cholesterol, triglycerides, systolic blood pressure,
diastolic blood pressure and BMI) from the largest GWAS studies to date21–23. We
used as our initial set of instrumental variables the 38 genome-wide significant
(P valuer5� 10� 8) SNPs associated with increased T2D risk identified in the
DIAGRAM consortium, the largest meta-analysis to date of the T2D GWAS
studies25. The DIAGRAM meta-analysis includes data from 34,840 T2D cases and
114,981 controls of predominantly European descent25. Allele frequencies for this
meta-analysis were drawn from the 1000 Genomes dataset, and linkage
disequilibrium was calculated using CEU linkage data.

We gathered GWAS data on FG from the largest meta-analysis to date (carried
out by the MAGIC consortium)24 of GWA studies examining the genetic
architecture of glycemic traits in non-diabetic individuals. For FG, 33 independent
genome-wide significant SNPs were selected.

For each of the susceptibility variants for T2D and FG, we sought summary-
level data for CHD from the CARDIoGRAMplusC4D Metabochip study, since this
is the largest GWAS meta-analysis for CHD to date27. This study profiled
B200,000 SNPs contained in loci previously associated with cardiometabolic trait
expression or disease risk in 63,746 cases and 130,681 controls of predominantly
European descent. Since the Metabochip has limited SNP content, summary-level
data for SNPs in the T2D or FG reference sets that were not genotyped in the
CARDIoGRAMplusC4D Metabochip study were obtained from the
CARDIoGRAM GWAS, which was the next largest study and comprised 22,233
cases and 64,762 controls28 (Fig. 1). We verified through an analysis of the
demographic data available for the CARDIoGRAMplusC4D study that the
exposure to T2D for individuals enroled in this study was of sufficient duration for
an MR analysis to provide a reliable estimate of the effect of T2D on CHD
(Supplementary Note 3).

In all, 37 of 38 significant T2D variants were represented either in the
CARDIoGRAMplusC4D or CARDIoGRAM datasets. One of the 38 T2D variants,
namely rs11651052, was absent from both the CARDIoGRAMplusC4D and the
CARDIoGRAM datasets. Moreover, no variant in close linkage disequilibrium with
rs11651052 could serve as a proxy for it in our analysis. For this reason, we
excluded it from further analysis. The remaining set of 37 candidate variants
provided the basis for our analysis of the effect of T2D on CHD, and contains
most of the lead variants used previously in genetic risk scores for predicting the
risk of T2D (refs 52,53). All 33 significant FG variants were represented in the
outcome datasets, and thus all were further evaluated for inclusion in our MR
analysis.

For pleiotropic traits, summary-level results were similarly sourced from the
largest GWAS conducted to date for each trait: (i) LDL-C54, (ii) triglycerides54,
(iii) systolic blood pressure, (iv) diastolic blood pressure55 and (v) BMI56. Cohorts
contributing to these pleiotropic traits were largely population based54–56. Linkage
equilibrium of all variants was assessed using SNAP30 applied to the HapMap
European samples.

Candidate instrument validation. We assessed each SNP for evidence of
pleiotropic associations using an omnibus test on P values called CPMA29. The
CPMA test compares the observed distribution of P values across phenotypes to
that predicted by the null hypothesis of no pleiotropic association, under which
P values are uniformly distributed. Variants with any detectable association
with pleiotropic traits were removed from the analysis, and the remaining
non-pleiotropic variants were taken as instruments for the MR analysis
(Supplementary Table 2A,B).

The CPMA approach to screening for pleiotropic associations has several
limitations. First, it is possible that variants have pleiotropic effects that are not
detected by the CPMA test. Further data than is currently available from publicly
accessible GWAS datasets may be necessary to detect some associations. Second,
the CPMA method treats every statistically significant association with a potentially
pleiotropic pathway as a true instance of pleiotropy. This approach is conservative
in that it excludes any variant for which there is statistical evidence of potentially
pleiotropic effects, independent of the strength or the direction of such effects.
Although it is possible that some non-pleiotropic variants may be excluded by this
method, removing such variants from the MR analysis will favour the null
hypothesis of no association between exposure and outcome. Consequently, an MR
analysis that uses this procedure and yields statistically significant results is likely to
reflect a true causal association between exposure and outcome.

Statistical analysis of instrumental-variable estimates. For each instrument,
we obtained an estimate of the effect of the exposure on the outcome using
summary-level data. Let x and y denote the centred and scaled exposure and

outcome traits, respectively, and these are related by the linear structural equation:
y¼ axþ Z. Here Z is a stochastic error term, and in general x and Z are correlated
because of confounding. The parameter a quantifies the causal effect of x on y, and
is thus the parameter we seek to estimate. Let ui denote the allele dosage variable of
the ith genetic variant. Let gi and bi denote effect-size estimates (derived from
GWAS data) of ui on the exposure x and outcome y, respectively, and let s(bi)
denote the s.e. of bi. Then the MR estimate associated with the ith genetic
variant is:

ai ¼ bi=gi ð1Þ
and the variance of this estimate is:

vi ¼ sðbiÞ=gið Þ2 ð2Þ
Define the precision of the ith MR estimate of a by wi¼ 1/vi. The inverse-variance-
weighted fixed-effects estimate is then:

afixed ¼
Xn

i¼1
wiai=

Xn

i¼1
wi ð3Þ

and the s.e. s(afixed) of this estimate is given by

sðafixedÞ ¼
Xn

i¼1
wi

� �� 1=2
ð4Þ

We observe that afixed may also be interpreted as the regression coefficient
resulting from the generalized linear regression of the outcome effect size bi on the
exposure effect size gi assuming heteroskedastic errors; in this regression, the ith
error term has a variance equal to s(bi)2, and the offset coefficient in the regression
is zero.

The random-effects estimate arandom estimate and its s.e. s(arandom) are
constructed from the individual estimates using standard methods57, in which
the weights are adjusted to account for the intrinsic variability (or heterogeneity) in
the effect size. Heterogeneity may be quantified in the random-effects model with
the parameter I2, which reports the fraction of the total variance in the meta-
analytic estimate that is due to intrinsic variability in the effect size, as distinct from
the variability arising due to measurement error58. The random-effects estimate
arandom and its s.e. s(arandom) are given by equations analogous to those for afixed

and s(afixed), in which the weights assigned to individual estimates are adjusted to
take into account heterogeneity in the effect size.

For each of the exposure traits (T2D and FG), we carried out a meta-analysis of
estimates obtained from individual susceptibility variants using both fixed-effects
and random-effects models to obtain pooled estimates of the effect of exposure on
outcome. Such meta-analytic methods are commonly used to summarize
information from independent studies for the effect of an intervention on a health
outcome. In this study design, we use independent genetic variants as instruments
to assess the effect of exposure (T2D or FG) on outcome (CHD), and then pool
these individual estimates using statistically efficient estimators formally analogous
to those of inverse-variance-weighted meta-analysis31.

For each of the exposure traits, we also carry out a random-effects meta-
analysis. Because the heterogeneity in the effect sizes for individual SNPs is large
for each of the exposures, our random-effects estimates are close to an unweighted
average of the effect sizes.

For all MR meta-analyses, we report estimates from the random-effects models
(in the main text and in Table 2) and fixed-effects models (Supplementary Table 3).
The effect-sizes for each meta-analysis is reported as the OR describing the effect of
the exposure on the outcome, given by exp(afixed) for the fixed-effects model and by
exp(arandom) for the random-effects model.

Subgroup analyses. Combinatorial analysis of heterogeneity. Heterogeneity of
effects on risk of CHD may be observed and may point to pathways that have
disparate effects on risk of T2D and CHD. To determine which SNPs are
responsible for heterogeneity measured by I2, we undertook a sensitivity analysis
using a combinatorial approach31, in which the heterogeneity indicators were
computed for risk scores in which we exhaustively computed effect size and
heterogeneity estimates for groups of variants in which combinations of SNPs were
excluded31.

We carried out a heterogeneity analysis both of the pooled effect-size estimates
derived from the full set of variants and of set of variants used for MR analysis,
from which pleiotropic SNPs were excluded. The purpose of this kind of analysis is
to determine whether one or a small number of variants contribute heavily to the
effect-size heterogeneity estimates31.
Biological subgroups of T2D variants: To assess the sources of heterogeneity in the
pooled estimates, we carried out a subgroup analysis using an approach that
clusters instruments according to the mechanisms through which they act on risk
of T2D. We used a classification of T2D SNPs proposed by Dimas et al.32, based on
a cluster analysis of their associations with related metabolic traits. Under this
clustering, T2D risk alleles were assigned to one of the five categories according to
the association between their corresponding loci and (i) altered insulin sensitivity;
(ii) reduced insulin secretion; (iii) defects in insulin processing; (iv) insulin
secretion without a detectable changed in plasma glucose; (v) no clear association
with glycemic traits (Supplementary Table 4). This analysis permits an assessment
of the mechanistic pathways through which T2D genetic variants may impact risk
of CHD. As expected all four SNPs in the insulin resistance subgroup delineated by
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Dimas et al.32, at loci (GCKR, IRS1, KLF14 and PPARG) had pleiotropic effects
(Table 1, Supplementary Table 4) and were thus excluded from our main analysis.
A large proportion of the previously classified SNPs had P values below the
genome-wide significant threshold (Supplementary Table 4), and consequently
were also excluded from further analysis. After excluding non-significant and
pleiotropic SNPs only two subgroups remained: beta-cell and unclassified variants.
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