
ORIGINAL RESEARCH
published: 17 March 2020

doi: 10.3389/fimmu.2020.00452

Frontiers in Immunology | www.frontiersin.org 1 March 2020 | Volume 11 | Article 452

Edited by:

Nardhy Gomez-Lopez,

Wayne State University, United States

Reviewed by:

Nandor Gabor Than,

Hungarian Academy of Sciences

(MTA), Hungary

Ashley St John,

Duke-NUS Medical School, Singapore

Julian Buchrieser,

Institut Pasteur, France

*Correspondence:

Catherine A. Blish

cblish@stanford.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Immunological Tolerance and

Regulation,

a section of the journal

Frontiers in Immunology

Received: 18 December 2019

Accepted: 27 February 2020

Published: 17 March 2020

Citation:

Seiler C, Bayless NL, Vergara R,

Pintye J, Kinuthia J, Osborn L,

Matemo D, Richardson BA,

John-Stewart G, Holmes S and

Blish CA (2020) Influenza-Induced

Interferon Lambda Response Is

Associated With Longer Time to

Delivery Among Pregnant Kenyan

Women. Front. Immunol. 11:452.

doi: 10.3389/fimmu.2020.00452

Influenza-Induced Interferon Lambda
Response Is Associated With Longer
Time to Delivery Among Pregnant
Kenyan Women
Christof Seiler 1,2†, Nicholas L. Bayless 3†, Rosemary Vergara 4†, Jillian Pintye 5,

John Kinuthia 6, Lusi Osborn 6, Daniel Matemo 6, Barbra A. Richardson 5,7,

Grace John-Stewart 5, Susan Holmes 1 and Catherine A. Blish 3,4,8*

1Department of Statistics, Stanford University, Stanford, CA, United States, 2Department of Data Science and Knowledge

Engineering, Maastricht University, Maastricht, Netherlands, 3 Immunology Program, Stanford University School of Medicine,

Stanford, CA, United States, 4Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,
5Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States, 6 Kenyatta National

Hospital, Nairobi, Kenya, 7Department of Biostatistics, University of Washington, Seattle, WA, United States, 8Chan

Zuckerberg Biohub, San Francisco, CA, United States

Specific causes of preterm birth remain unclear. Several recent studies have suggested

that immune changes during pregnancy are associated with the timing of delivery,

yet few studies have been performed in low-income country settings where the rates

of preterm birth are the highest. We conducted a retrospective nested case-control

evaluation within a longitudinal study among HIV-uninfected pregnant Kenyan women.

To characterize immune function in these women, we evaluated unstimulated and

stimulated peripheral blood mononuclear cells in vitro with the A/California/2009 strain

of influenza to understand the influenza-induced immune response. We then evaluated

transcript expression profiles using the Affymetrix Human GeneChip Transcriptome Array

2.0. Transcriptional profiles of sufficient quality for analysis were obtained from 54women;

19 of these women delivered <34 weeks and were defined as preterm cases and 35

controls delivered >37 weeks. The median time to birth from sample collection was 13

weeks. No transcripts were significantly associated with preterm birth in a case-control

study of matched term and preterm birth (n = 42 women). In the influenza-stimulated

samples, expression of IFNL1 was associated with longer time to delivery—the amount

of time between sample collection and delivery (n = 54 women). A qPCR analysis

confirmed that influenza-induced IFNL expression was associated with longer time to

delivery. These data indicate that during pregnancy, ex vivo influenza stimulation results

in altered transcriptional response and is associated with time to delivery in cohort of

women residing in an area with high preterm birth prevalence.
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INTRODUCTION

Preterm birth, defined as birth before the 37th week of gestation,
is a highly prevalent disorder of pregnancy that is a major
driver of childhood morbidity and mortality (1–4). Preterm birth
is divided into categories based on timing: extremely preterm
(before 28 weeks), very preterm (28–32 weeks), and moderate to
late preterm (32–37 weeks). These categories may differ in their
pathogenic underpinnings, which can include genetic factors,
multiple pregnancies, infections, and chronic conditions such as
diabetes and high blood pressure (5, 6). While most research
on the risk factors associated with preterm birth has occurred
in higher-income countries, lower-income countries have higher
rates of preterm births than high-income countries (12 vs. 9%),
with more than 60% of preterm deliveries occurring in Africa
and South Asia (7). An improved ability to predict who is at
risk of preterm birth across different settings is of high public
health importance.

Increasingly, attention has turned to the critical role the
immune system plays in establishing and maintaining a healthy
pregnancy (8). Changes in immune function during pregnancy
may increase susceptibility to, or complications from, a wide
range of infectious diseases (9). Further, pregnancy is not a
globally immunosuppressed state; some cell types increase in
frequency and function while others have diminished function,
both locally and systemically, during pregnancy (8, 10–16). Thus,
it is possible that immune mechanisms play a significant role
in driving preterm birth, an idea supported by the fact that
many of the known risk factors for preterm birth also alter
immune function. Consistent with this idea, several studies
have demonstrated that preterm birth is associated with altered
inflammatory responses, particularly detectable in the placenta
and in the amniotic fluid (5). For instance, elevated expression of
the inflammatory cytokine tumor necrosis factor (TNF) in the
amniotic fluid was associated with both infection and preterm
birth (17). A recent study demonstrated that activated T cells are
found at the maternal-fetal interface in women with spontaneous
preterm delivery, and that, in a mouse model, treatment with
progesterone can attenuate this inflammation and reduce risk of
preterm birth (18).

Transcriptomic evaluation of the uterus and fundus during
labor in term and preterm birth have identified inflammatory
signatures associated with labor and preterm birth (19–
22). Several additional studies have identified transcriptional
signatures of inflammation in the placentas of women who
undergo preterm delivery (23, 24). While it is clear that local
inflammation is associated with preterm birth, several additional
studies have sought to identify such signatures in the blood, as
this will be a more appropriate biomarker to stage interventions
in the long run. One group identified a blood transcriptomic
inflammatory signature associated with preterm delivery, but
as the women were in labor this could have been a signature
of labor itself and not the underlying cause of preterm birth
(25). This is particularly true as labor itself is associated with a
significant inflammatory signature (26–28). Heng et al. aimed to
address this concern, investigating maternal whole blood gene
expression profiles associated with spontaneous preterm birth

in asymptomatic pregnant women (29). In this study of 51
spontaneous preterm births and 114 term deliveries in Calgary,
they determined significant clinical factors and differential
gene expression profiles of inflammation including leukocyte
migration, lysosomes, NK-kB activation, and pathways involving
cytokines and their receptors (including IFN) were associated
with spontaneous preterm birth (29). Consistent with the idea
that preterm birth is an inflammatory state, monocytes from
women with a history of preterm birth demonstrated enhanced
inflammatory responses in response to stimulation in vitro (30).
More recently, significant progress was made in identifying
signatures predictive of preterm birth and delivery timing using
cell-free RNA in the blood (31, 32). The studies performed to
date have varied in the specific gene signatures identified, and
in fact, there has been very poor agreement between studies in
the genes identified (33). Despite significant heterogeneity in the
specific genes identified, a consistent theme has been that an
inflammatory signature is associated with preterm birth. One
limitation of these studies is that all have been performed in
North American women, and it is not clear if the signatures
identified are generalizable to other populations.

In addition to finding genes associated with the risk of preterm
birth, another goal has been to identify the factors that control
the timing and onset of labor (34). One proposal is that the
“clock” for pregnancy is controlled either through the placenta
(35, 36) or the decidua (37). Building on this idea, one recent
study sought to gain insight into associations between immune
function and the timing of delivery using mass cytometry
to profile a wide range of immune cells and their function
throughout pregnancy in 18 healthy women who delivered at
term (38). Their analysis revealed a large number of synchronous
changes in various cellular lineages during pregnancy. These
changes included increased STAT1 signaling responses following
stimulation with interferon (IFN) alpha and beta in multiple
innate and adaptive immune cell types and increased STAT5
activity among multiple T cell subsets (38). Overall, their data
supported the idea that changes in cellular programs, not a single
cell type, were predictive of the timing of pregnancy, leading
to the idea that an “immune clock” could regulate pregnancy
(38). Overall, these studies have indicated that assessing immune
function may allow us to estimate the timing of delivery and the
risk of preterm birth.

Here we set out to identify associations between immune
function and pregnancy outcomes (preterm birth and the timing
to delivery) in a cohort of women in Kisumu, Kenya, an area with
a high prevalence of preterm birth.We profiled immune function
using RNA microarrays in peripheral blood mononuclear cell
(PBMC) samples from pregnant women who were followed until
birth. In order to identify perturbations in the ability of immune
cells to respond to threats, PBMC samples were tested directly ex
vivo and also following an in vitro stimulation by viral infection.

MATERIALS AND METHODS

Study Design
The objective of this study was to identify associations between
immune function and pregnancy outcomes (preterm birth
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and the time to delivery) in a setting of high prevalence of
preterm birth. We used previously banked samples from a
prospective cohort study of HIV-1 acquisition in pregnant and
postpartum Kenyan women, the Mama Salama Study (39). The
Mama Salama Study enrolled 1304 women during pregnancy.
Gestational age was estimated based on last menstrual period.
Ultrasound was used to confirm gestational age when there was
a difference in estimated age of more than 2 weeks between
fundal height estimate and last menstrual period estimate.
Participants were eligible for inclusion in this substudy if they
had a PBMC sample collected at their enrollment visit during
pregnancy with 2 aliquots available. Twenty-five potential cases
were defined as ≤34 weeks gestation at birth, singleton birth,
uninfected with HIV at enrollment and follow up, live birth,
vaginal or unplanned cesarean delivery, and known delivery date.
Fifty potential controls were defined as ≥37 weeks gestation
at birth and with all other criteria of cases. Two analyses
were performed: first a case control study comparing the
women who gave birth preterm to the controls, and second
a study evaluating associations between transcript levels and
the time to delivery in all the women analyzed. All subjects
gave informed and written consent. All studies were performed
in accordance with the Declaration of Helsinki, and all study
procedures were approved by the Institutional Review Boards
of the University of Washington, Seattle, WA, USA (UW IRB
#38472) and Kenyatta National Hospital, Nairobi, Kenya (KNH
IRB P114/4/2010).

Sample Procesesing and Microarrays
PBMCs were purified in Kisumu, Kenya by Ficoll density
gradient centrifugation and stored in liquid nitrogen before
shipping to the University of Washington and subsequently to
Stanford University. PBMCs were thawed rapidly in a 37◦Cwater
bath before dropwise addition of 1mL of warm complete RPMI
media (supplemented with 10% FBS and antibiotics) containing
Benzonase (nuclease added to reduce cell clumping). The sample
was transferred to a 50ml conical tube containing an additional
9mL of pre-warmed media with Benzonase. Cells were spun
for 10min at 400 × g, the supernatant was decanted, and the
cell pellet was resuspended in 10mL complete RPMI before cell
counting using a BioRad TC20 cell counter. Cells were spun
again for 10min at 400 × g, the supernatant was removed, the
cells were resuspended in RPMI media and were dispensed into
a 96-well U bottom plate at 106 cells/well. To each well, either
PBS or influenza virus (H1N1/California/2009) was added at an
MOI of 1 for 1 h, followed by the addition of serum-containing
media for 6 additional hours at 37◦C. Following incubation,
cells were centrifuged, washed once with complete RPMI (200
uL/well), then resuspended in RNA lysis buffer (Qiagen). RNA
was extracted from each well using the column-based RNeasy kit
(Qiagen) according to the manufacturer’s instructions. Purified
RNA was quantified and characterized using a Nanodrop 3000.
For samples with RNA Integrity Number> 6, RNA aliquots were
submitted formicroarray analysis (Human TranscriptomeArray,
Affymetrix) at the Stanford PAN Facility (http://pan.stanford.
edu/index.html).

Preprocessing of Microarray Data
We normalized the raw expressions using the Robust Multichip
Average (RMA) algorithm implemented in R package oligo
(40). We removed background probes and probes that could
not be mapped to known gene symbols. We then filtered the
remaining probes by thresholding the mean of normalized
counts to maximize the number of differentially detected probes
at a fixed False Discovery Rate (FDR). We used automatic
independent filtering as described in the DESeq2 package (41).
Finally, we explored the preprocessed expressions with Principal
Component Analysis.

Statistical Modeling of Microarray Data
We performed differential expression analysis using an empirical
Bayes approach implemented in R package limma (42). We
added biological context using the R package BioNet by assigning
unadjusted p-values to nodes of a network (43, 44).BioNet derives
the gene network structure form the protein-protein interaction
database STRING (45). This allowed us to assemble differentially
expressed gene networks controlled at a fixed FDR. We also
performed pathway analysis by calculating the overlap between
our discovered network with known pathways in KEGG (46)
using R package KEGGREST (47). We calculated the overlap as
the number of intersecting genes in a pathway and our network,
divided by the total number of genes in a pathway. In all our
models, we use gene expression as the response variable. The
case-control analysis is an analysis on paired samples where each
preterm and term match are a pair. We used R package matchit
and the method “optimal.” Optimality is defined as the smallest
average absolute distance across the matched pairs (48). The
model is encoded in limma using the following design formula:
gene expression ∼ pair + preterm indicator. For the time to
delivery analysis, we coded the model in limma as follows: gene
expression ∼ time to delivery + gestage age at delivery. For
both analyses, we subsetted data to stimulated and unstimulated
samples before fitting separate models to each subset. Initially,
our analysis used interaction terms on the combined data which
was harder to interpret, but yielded similar results.

Real-Time PCR Analysis
Complementary DNA (cDNA) was generated using the
SuperScript VILO Master Mix Kit (Thermo Fisher 11755250)
using the total RNA isolated from each PBMC sample.
Quantitative polymerase chain reaction (qPCR) was performed
using the Taqman Universal Master Mix II Kit with UNG
(Thermo Fisher 4440044). Primers and probes were ordered
as separate oligos through ElimBio (Hayward, CA) with
added modification 5 -FAM/3 -BHQ-1 to the probes: IFNL
Forward Primer 5′-ATC TGT CAC CTT CAA CCT CTT
C-3′, IFNL reverse primer 5′-GTA GGG CTC AGC GCA
TAA ATA-3′, IFNL Prober 5′-AAT ATG TGG CCG ATG
GGA ACC TGT- 3′, Samples were run on the Thermo Fisher
Scientific Step One Real-Time PCR System. All values were
standardized to the constitutively expressed hypoxanthine
phosphoribosyltransferase 1 (HPRT1) endogenous control
(Thermo Fisher 4326321E) and relative mRNA expression levels
were determined using the 2-11CT analysis method.
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Statistical Modeling of Real-Time PCR
Data
We fitted a robust linear model using an M-estimator with the
Huber weight function, implemented in R package MASS (49).
We fit one model to unstimulated samples, and a second model
to stimulated samples. The models have the following terms:
gene expression ∼ time to delivery + gestational age at birth.
We computed confidence intervals and p-values using bootstrap
resampling (50) with R packages car (51) and boot (52, 53).

RESULTS

Case-Control Analysis With Gestational
Age Matching
To assess whether there were significant changes in expression
patterns of transcripts between the women who gave birth
preterm vs. those who gave birth at term in an area of
high prevalence of preterm birth, we used PBMCs from 42
women enrolled in the Mama Salama study in Kisumu, Kenya
in whom we obtained sufficient quality RNA. As there was
variation in the gestational age at which PBMCs were collected,
we matched preterm and term women on gestational age at
sample collection. The matching results are illustrated with a
dot plot in Supplementary Figure 1A (for stimulated samples)
and Supplementary Figure 1B (for unstimulated samples). The
demographics of these individuals are summarized in Table 1.
The twenty cases gave birth at median gestational age of 30.2
weeks, which was significantly less than in the controls, which
had a median gestational age of 39.2 weeks (Table 1). The median
time to delivery (time from sample collection to delivery) also
differed significantly, at 6.3 weeks for cases (preterm) and 19
weeks for controls (term). Cases and controls did not significantly
differ in terms of the age of the women or other risk factors for
preterm birth such as number of children, years since last birth,
and STIs (Table 1)

In comparing the transcriptome profiles between cases and
controls, we chose to stimulate the samples in order to increase
the chances of uncovering differences in immune function, which
are best observed following stimulation. Thus, we evaluated
gene expression in both unstimulated PBMCs and in PMBCs
stimulated in vitro with the human influenza virus as previously
described (10). We then compared the expression profiles of
cases and controls in both the unstimulated and influenza-
stimulated samples. After adjusting for multiple comparisons
with an FDR of 0.1, we did not identify any genes that
were significantly differentially expressed between cases and
controls (Figure 1A and Supplementary Material). Similarly, no
genes were significantly differentially expressed between preterm
birth cases and controls in the influenza-stimulated samples
(Figure 1B and Supplementary Material).

Time to Delivery Analysis
In our secondary analysis, we evaluated samples from all 54
women with samples that yielded high-enough quality RNA in
both stimulated and unstimulated samples. The demographics
of these women are described in Table 2. We fitted a linear

model to evaluate the associations between transcript levels
and the time to delivery, controlling for gestational age
at birth. The time to delivery was defined as the time
interval between when the sample was collected and the
actual birth.

In order to better visualize the biological significance of
these findings, we fitted the same linear model individually on
the unstimulated and stimulated samples. In our analysis on
unstimulated samples, we found no genes whose expression
levels could be explained by the time to delivery variable
(TimeToDelivery_Microarray_Mock.pdf). In the analysis of
samples stimulated with influenza virus, we detected 170
differentially expressed genes (TimeToDelivery_Microarray_
H1N1.pdf, Supplementary Table 1) at an FDR of 0.1, and 6
genes at an FDR of 0.05 (Table 3). The top hit was IFNL1. To
visualize the genes whose expression levels following influenza-
virus stimulation were associated with time to delivery, we
mapped these transcripts to known protein-protein interactions
using the STRING database as previously described (54, 55).
We colored coded this network analysis result using t-statistics
(Figure 2A) and regression coefficients (Figure 2B). Gene nodes
colored in red increase expression as women get closer to
delivery, whereas blue nodes decrease expression. This analysis
reveals networks of genes, particularly within the IFN pathway,
that decrease in their expression in response to influenza
stimulation as women get closer to delivery. A further network
analysis shows that 8% of genes overlap with the Rig I
Pathway (Supplementary Figure 2).

To confirm the association between influenza-induced IFN
stimulation and the time to delivery, IFN lambda transcript levels
were assessed by qPCR (TimeToDelivery_qPCR_H1N1.pdf). We
fitted a robust linear regression model. The robust fit yielded a
p-value of 0.002 for the time to delivery slope in the stimulated
samples. Figures 2C,D shows the two estimated slopes from
the robust regression fit. The fit suggests that, in stimulated
samples, the expression of IFNL decreases as women approach
delivery. This result further confirms our observations from the
microarray data.

REPRODUCIBILITY

The entire analysis workflow is written in R markdown and
available from our GitHub repository at https://github.com/
ChristofSeiler/PTB_Study. The resulting reports can be found in
the Supplementary Material. To rerun and reproduce all plots
and results knit the corresponding Rmd files (e.g., in RStudio
using Knit button). Before knitting make sure to copy all. CEL
files into the same folder as the Rmd file.

DISCUSSION

Preterm birth is a major contributor to childhood morbidity
and mortality worldwide, particularly in low income countries.
Better understanding of the mechanisms underlying preterm
birth may highlight pathways that could be therapeutically
targeted to reduce the rates of preterm birth. One of the
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TABLE 1 | Characteristics of the study population for case control analysis, by case statusa (n = 42).

N (Percentage) or Median (Interquartile range)

Characteristic N All women

(n = 42)

Controls

(n = 22)

Cases

(n = 20)

p-valuee

Demographic

Age (years) 42 22.0 (20.0, 24.0) 22.5 (19.0, 24.0) 22.0 (20.0, 26.0) 0.69

Highest level of education (years) 42 8.0 (8.0, 12.0) 8.0 (8.0, 12.0) 8.0 (7.5, 8.5) 0.23

<8 years of completed education 42 27 (64%) 12 (55%) 15 (75%) 0.17

Currently married 42 34 (81%) 19 (86%) 15 (75%) 0.35

Duration of partnership (years)b 37 3.0 (1.0, 6.0) 2.5 (0.5, 4.5) 4.0 (2.0, 6.0) 0.10

Partner >10 years olderb 34 6 (18%) 4 (24%) 2 (12%) 0.37

Employed 42 22 (52%) 13 (59%) 9 (45%) 0.36

Crowded living conditions (>3 people/room) 42 11 (26%) 6 (27%) 5 (25%) 0.87

Sexual behavior and partner characteristics

Number of sexual acts (last 30 days) 42 2.0 (0.0, 4.0) 2.5 (1.0, 4.0) 1.0 (0.0, 2.5) 0.12

Any reported condomless sex (last 30 days) 42 28 (67%) 16 (73%) 12 (60%) 0.38

Number of sexual partners (last 30 days) 42 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.55

Circumcised male partnerb,c 38 11 (29%) 6 (30%) 5 (28%) 0.88

HIV-infected partnerb,c 30 2.0 (0.0, 4.0) 2.5 (1.0, 4.0) 1.0 (0.0, 2.5) 0.12

Gynecological history

Gestational age at enrolment 42 21.0 (19.0, 24.0) 21.0 (19.0, 23.0) 21.0 (19.0, 24.0) 0.89

Gestational age at birth 42 37.4 (30.9, 39.3) 39.2 (38.3, 41.0) 30.2 (27.0, 32.4) <0.001*

Number of children 42 1.0 (1.0, 2.0) 1.0 (0.0, 2.0) 1.5 (1.0, 2.5) 0.48

<2 years since last birthd 27 3 (11%) 1 (8%) 2 (13%) 0.68

Any reported vaginal washing (last week) 42 16 (38%) 8 (36%) 8 (40%) 0.81

Any reported vaginal drying (last week) 42 4 (10%) 1 (5%) 3 (15%) 0.25

Self-reported history of STIs 42 2 (5%) 2 (9%) 0 (0%) 0.17

Laboratory-confirmed STI diagnosis

Trichomonas vaginalis 42 2 (5%) 0 (0%) 2 (10%) 0.13

Chlamydia trachomatis 42 1 (2%) 1 (5%) 0 (0%) 0.33

Neisseria gonorrhoeae 42 1 (2%) 0 (0%) 1 (5%) 0.29

Syphilis 30 0 (0%) 0 (0%) 0 (0%) -

Bacterial vaginosis 42 14 (33%) 8 (36%) 6 (30%) 0.66

Candidiasis 42 8 (19%) 2 (9%) 6 (30%) 0.12

From the total of 42 women (some of which had only either stimulated or unstimulated samples available), we 1:1matched 19 cases/controls in stimulated samples, and 20 cases/controls

in unstimulated samples.

*p<0.05.
aMissing data not shown; all characteristics assessed at baseline unless indicated.
bAmong women reporting current relationship.
cMale circumcision and HIV status of male partners reported by female partner.
dAmong women with >1 children.
eKruskall-Wallis tests for continuous measures and Chi-squared tests for proportions detected differences in baseline characteristics between preterm birth cases and controls. Fisher’s

exact tests were used for cell counts <10.

major challenges in identifying such mechanisms is the fact
that several distinct pathways, including prior pregnancy history,
infection, and genetic factors can contribute to preterm birth
(2, 56). Many of these risk factors can significantly influence
immune function, which may therefore act as a biomarker for
preterm birth, highlighting the importance of understanding
the immune system during pregnancy (57). Thus, here we
set out to identify immune pathways associated with preterm
birth and the timing of delivery in a cohort of women
in Africa, an area where determinants of preterm birth
are understudied.

Our case control analyses did not reveal any transcripts
that were significantly associated with preterm birth, but we
hope the availability of this data will inform future studies.
We did find that the magnitude of the influenza-induced
IFN-lambda transcriptional response significantly decreased as
delivery approaches, suggesting that such inflammatory pathways
are influenced temporarily during pregnancy. Overall, these data
highlight the heterogeneity in these pathways and the difficulty
in identifying a single factor predictive of preterm birth. In fact,
a prior meta-analysis highlighted the heterogeneity in preterm
birth (33). This study found minimal overlap in the genes
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FIGURE 1 | Volcano plots of gene expression comparisons between women who have birth preterm vs. at term in unstimulated (A) and influenza-virus stimulated (B)

PBMC samples. No genes were significantly associated with preterm birth after correcting for multiple comparisons.

associated with preterm birth across a range of studies, despite
the fact that most were performed in North America. Given
that prior studies have not found definitive gene signatures for
preterm birth, we are not surprised that a more clear signature
did not emerge in this novel study from sub-Saharan Africa.

Many aspects of immune function are altered during
pregnancy to strike a balance between accommodating the

semi-allogeneic fetus and protecting both mother and fetus
from infection (9). These changes alter immunity to a wide
range of pathogens, including influenza virus, which significantly
drives morbidity and mortality in the pregnant population.
In general, women have enhanced innate NK cell, monocyte,
and dendritic cell responses to influenza virus (10, 11, 13,
58), yet there are also reports that there is reduced IFN-alpha
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TABLE 2 | Characteristics of the study population for time to delivery analysis, by

case statusa (n = 54).

N (Percentage) or Median

(Interquartile range)

Characteristic N All women

(n = 54)

Demographic

Age (years) 54 22.0 (19.0,

24.0)

Highest level of education (years) 54 8.0 (7.0, 12.0)

≤8 years of completed education 54 35 (65%)

Currently married 54 42 (78%)

Duration of partnership (years)b 47 3.0 (1.0, 6.0)

Partner ≥10 years olderb 43 12 (28%)

Employed 54 25 (46%)

Crowded living conditions (≥3 people/room) 54 17 (31%)

Sexual behavior and partner characteristics

Number of sexual acts (last 30 days) 54 1.0 (0.0, 3.0)

Any reported condomless sex (last 30 days) 54 35 (65%)

Number of sexual partners (last 30 days) 54 1.0 (1.0, 1.0)

Circumcised male partnerb,c 49 14 (29%)

HIV-infected partnerb,c 39 1 (3%)

Gynecological history

Gestational age at enrolment 54 21.0 (19.0,

24.0)

Gestational age at birth 54 39.0 (31.7,

40.9)

Number of children 54 2.0 (1.0, 3.0)

<2 years since last birthd 34 4 (12%)

Any reported vaginal washing (last week) 54 23 (43%)

Any reported vaginal drying (last week) 54 6 (11%)

Self-reported history of STIs 54 3 (6%)

Laboratory-confirmed STI diagnosis

Trichomonas vaginalis 54 2 (4%)

Chlamydia trachomatis 54 2 (4%)

Neisseria gonorrhoeae 54 1 (2%)

Syphilis 36 0 (0%)

Bacterial vaginosis 54 17 (31%)

Candidiasis 54 13 (24%)

aMissing data not shown; all characteristics assessed at baseline unless indicated.
bAmong women reporting current relationship.
cMale circumcision and HIV status of male partners reported by female partner.
dAmong women with ≥1 children.

and IFN-lambda production in response to influenza (59). In
general, adaptive immune function is thought to be suppressed
during pregnancy, though pregnant women respond adequately
to influenza immunization (9, 60). Here we find that the
IFN-lambda transcriptional response to influenza infection is
blunted as delivery approaches, suggesting a less robust antiviral
response. In fact, our network analysis demonstrated that not just
IFN-lambda, but a variety of IFN genes and transcripts associated
with the RIG-I pathway were reduced later in pregnancy. This
could represent an adaptation necessary to tolerate the increasing
burden of the semi-allogeneic fetus. This is consistent with

TABLE 3 | Differentially expressed genes in stimulated samples for time to deliver

term.

Top 6 genes ordered by p-value for time to delivery term.

Gene symbol Coefficient Unadjusted p-value Adjusted p-value

IFNL1 −0.06 1e-07 0.018

NEURL1B −0.03 1e-06 0.020

INPP5A 0.03 1e-06 0.020

SNORD18A 0.13 1e-06 0.024

KRT33A −0.02 1e-05 0.049

PAQR4 −0.03 1e-05 0.049

We included the following covariates in the linear model: intercept, time to delivery, and

gestational age at birth.

In the table, we show the top 6 genes for the time to delivery term. See Figure 2 for a full

network analysis on all genes. The full table is in the Supplementary Material.

the idea that baseline inflammation can blunt responses to
stimuli (61). In fact, this could be entirely consistent with
the inflammatory signatures identified in earlier studies (5,
17–24), all of which were performed in the absence of an
exogenous stimulus.

Our finding that an entire transcriptional network of IFN-
associated genes was temporally altered in pregnancy was
consistent with the study by Aghaeepour and colleagues, in which
they found multiple functional modules that were temporally
altered during pregnancy, leading them to propose the idea of an
“immune clock” (38). Both studies show temporal regulation of
immune function during pregnancy despite a range of difference
in approach, including evaluation of transcriptome vs. proteome,
stimulation with virus vs. cytokine/chemical activation, inclusion
of women who gave birth preterm and at term vs. full term
only, and setting in Kenya vs. North America. Thus, while the
pathways identified are different, this is not surprising as the
prior study evaluated a more limited range of assays (based on
the mass cytometry panels), compared to broader profiling by
transcriptome. It is important to also note that transcriptome
and proteome do not always agree, justifying the need to evaluate
both. Interestingly, another study suggests that immune changes
associated with preterm birth may be durable, as women with
a history of preterm birth (but who were not actually pregnant
at the time of evaluation) had alterations in innate immune
signaling function, particularly classical monocytes (30).

Our study provides insight into potential immune
mechanisms that could drive preterm birth, but did not
identify a clear biomarker for preterm birth akin to the signature
recently identified using analysis of cell-free DNA (31). In fact,
it will be important to validate such signatures in cohorts drawn
from a range of geographic areas, with a particular focus on
Africa and Asia where preterm birth is most prevalent. New
approaches to evaluate transcriptomic signatures at the single
cell level have the potential to improve our understanding of
the maternal fetal interface and better identify the mechanisms
driving preterm birth (62–64).

This study has several important limitations, the first of
which is the relatively modest sample size and availability

Frontiers in Immunology | www.frontiersin.org 7 March 2020 | Volume 11 | Article 452

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Seiler et al. Interferon Response and Delivery Time

FIGURE 2 | Virus-induced induction of interferon is associated with the time to delivery. (A) Network analysis with p-values from fitting a model that explains gene

expression from time to delivery with gestational age at birth as a covariate. The shape of the nodes represent how these nodes contribute to the overall score of the

network. Triangles contribute positively and increase the overall network false discovery rate (FDR), whereas circles contribute negatively and decrease overall FDR.

The color gradient represents t-statistics. (A) positive t-statistic means that gene expression increases with approaching delivery. (B) Network analysis as in (A) with

the color gradient representing the actual estimated regression coefficients. Confirmatory RT-PCR analysis of IFN-lamba expression was performed on unstimulated

PBMCs (C) and on influenza-stimulated PBMCs (D). Expression levels were fit to a linear model with the following covariates: intercept, time to delivery, and

gestational age at birth. Shown are fitted time to delivery slopes for unstimulated mock (C) and stimulated H1N1 (D) samples. The slope on the H1N1 stimulated

samples is significant (p = 0.002). The y-axis is the residual expression not explained by gestational age at birth.

of good quality PBMC and RNA samples for these analyses.
Particularly in light of the multiple distinct risk factors for
preterm birth, which could be operating through distinct
immune pathways, this definitely hinders our ability to find a
clear signal. Another possible limitation was highlighted by a
recent paper demonstrating that Affymetrix arrays were the least
sensitive method to identify signatures associated with preterm
birth in placental tissues (23). We hope that by placing this data
in the public domain, others will be able to combine it with
other datasets for more robust analyses. Another limitation is
that culturing the cells will change the transcriptome, though
we controlled for this by treating unstimulated and stimulated
samples identically. Finally, we did not have universal ultrasound
available for gestational dating in the low-middle income setting.
This could have led tomisclassification of preterm vs. term births,
and was one of the reasons for our secondary analysis of time to
delivery, as that timing was known with greater precision.

Overall, many risk factors for preterm birth are well-
characterized, and many could drive preterm birth by inducing
changes in immune function. Here we sought to identify specific

immune pathways associated with preterm birth in women in
a setting of high preterm birth prevalence in Kenya. While we
did not identify a clear signature of preterm birth, we did find
that the IFN response following a viral stimulation is temporally
regulated during pregnancy, with reduced IFN induction as
delivery approaches. This adds to our knowledge of immune
regulation during pregnancy, but more study is clearly needed
to further understand this complex immunologic time.
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