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Myocardial perfusion imaging (MPI) plays an important role in patients with suspected

and documented coronary artery disease (CAD). Machine Learning (ML) algorithms have

been developed for many medical applications with excellent performance. This study

used ML algorithms to discern normal and abnormal gated Single Photon Emission

Computed Tomography (SPECT) images. We analyzed one thousand and seven polar

maps from a database of patients referred to a university hospital for clinically indicated

MPI between January 2016 and December 2018. These studies were reported and

evaluated by two different expert readers. The image features were extracted from a

specific type of polar map segmentation based on horizontal and vertical slices. A

senior expert reading was the comparator (gold standard). We used cross-validation

to divide the dataset into training and testing subsets, using data augmentation in the

training set, and evaluated 04ML models. All models had accuracy >90% and area

under the receiver operating characteristics curve (AUC) >0.80 except for Adaptive

Boosting (AUC = 0.77), while all precision and sensitivity obtained were >96 and

92%, respectively. Random Forest had the best performance (AUC: 0.853; accuracy:

0,938; precision: 0.968; sensitivity: 0.963). ML algorithms performed very well in image

classification. These models were capable of distinguishing polar maps remarkably into

normal and abnormal.

Keywords: machine learning, polar maps, myocardial perfusion imaging (MPI), coronary artery disease,

random forest

INTRODUCTION

Myocardial perfusion imaging (MPI) plays an essential role in the diagnosis and risk stratification
of a patient with suspected and documented coronary artery disease (CAD) (1). Thus, accurate
reporting of MPI is paramount and requires experienced professionals (2–4). Interpretation errors
by health professionals can impact patient care and need to be minimized. The use of MPI is
common. For instance, 61.9 studies were performed for every 1,000 Medicare beneficiaries in
2013. In Australia, there were 337 MPI studies per 100,000 people in 11 years (5). High volumes,
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increasing workload, and clinical demands can potentially lead to
interpretation errors. Therefore, a decision support tool capable
of interpreting could improve efficiency, accuracy, and costs (6).

Artificial intelligence (AI) has the potential to improve
healthcare delivery. It combines mathematical models
and computation, designed to emulate human intelligence
(7). In particular, machine learning (ML), a subset
of AI models, encompasses several methods capable
of performing tasks after exposure to data (8). It has
gained relevance in medicine and has transitioned from
structured data to image analysis in diagnostic imaging
and MPI (9).

In this context, designing an ML tool to give the physician
some support for his MPI reports would be necessary. This tool
would be precious for medical residents and other trainees in
disagreement between the reader and the algorithm. In case of
discordance, in-depth analysis and review will be necessary for

FIGURE 1 | ML algorithms flowchart to support decision making in MPI.

the final decision-making, allowing for better comprehension
of the method, improved reports’ quality, and better training
(Figure 1). We evaluated 04 supervisedML algorithms (Adaptive
Boosting, Gradient Boosting, Random Forest, and Extreme
Gradient Boosting) to distinguish between normal vs. abnormal
single-photon emission computed tomography (SPECT) MPI
polar maps.

MATERIALS AND METHODS

We analyzed 1,007 consecutive MPI studies (January 2016–
December 2018). Studies were acquired in the supine position
at stress and rest with additional prone imaging at stress
for males to correct for diaphragmatic attenuation artifact.
All patients underwent an 8-frame ECG-gated 2 day rest-
stress Tc-99m sestamibi myocardial perfusion single-detector
SPECT (Millennium MPR, GE Healthcare), according to the
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ASNC guidelines (10). Rest-stress doses were determined
based on the patient’s body weight by a factor of 0.25
mCi/kg. Acquisition times were 21min for stress and rest
imaging using a 180◦ orbit. We reconstructed the transaxial
emission images with ordered-subsets expectation maximization
(OSEM) algorithm with 04 subsets and 10 iterations and
a uniform initial estimate (11). We used Emory Cardiac
ToolboxTM (Emory University/ Syntermed, Atlanta, GA) for
image reconstruction, axis orientation, and polar maps. MPI
studies were analyzed and reported using all the relevant clinical
and stress-derived data. We used Emory Cardiac ToolboxTM
for image reconstruction, axis orientation, and polar map
generation. Images were classified as normal or abnormal using
visual analysis, quantitative parameters, and wall motion data.
MPI was considered normal in the presence of normal left
ventricular cavity size, normal regional wall motion and left
ventricular thickening, homogeneous perfusion throughout the
myocardium, a normal left ventricular ejection fraction (>45%),
and normal right ventricular uptake (12). A single expert
reader initially reported these studies, and then a second expert

evaluated all the software’s polar maps before validating the
study. When the studies had conflicting interpretations, the
second reader analysis was considered for the ML algorithm.
All specialists who participated in the evaluation process have
a specialist in nuclear medicine and more than 15 years of
experience. The senior researcher responsible for conducting the
review and the title of specialist was president of the Brazilian
Society of Nuclear Medicine, has over 20 years of experience,
and more than 100 articles published in the area. Our work was
carried out at Hospital Universitario Antônio Pedro in Brazil,
and we only had access to anonymized polar maps in our study.
Polar maps were post-processed (GE Healthcare Xeleris R©) and
exported in.tiff format with matrix size 175 x 175.

So, we generated 02 polar maps (stress/rest) for female
patients and 03 (stress/rest/prone) for male patients. We did
not use the clinical data for the ML algorithms, but the image
attributes such as pixel position and intensity.

In our work, only images from myocardial perfusion
were used. The Ethics Committee (Universidade Federal
Fluminense) has authorized us to use these images as long

FIGURE 2 | Image slicing and feature extraction strategy.
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as they are anonymized in agreement with the Declaration
of Helsinki.

Features Extraction
We extracted image features using an image slicing process based
on Ouali et al. (13). In this process, each image was divided
into 05 horizontal and 05 vertical slices (Figure 2), where the
pixel intensities from each slice were sum, so we obtained a
total of 10 attributes. After processing, cardiac nuclear medicine
images are traditionally mapped to a colored single-channel
representation (the so-called GE color). Thus, we obtained a
matrix with 11 columns per 955 rows (one row for each image).
The first 10 columns represent the slicing process features, and
the last column corresponds to the label indicating whether the
polar map is normal (1) or abnormal (0). We complied with the
General Data Protection Regulation (GDPR) (14).

ML Algorithms
Four ensemble ML algorithms were used [Adaptive Boosting
(AB), Gradient Boosting (GB), Random Forests (RF), and
eXtreme Gradient Boosting (XGB)]. We built a set of base
classifiers in ensemble models and classified new data by voting
for these classifiers’ predictions. RF uses bootstrap aggregation
(bagging) in the process of constructing the base classifiers.
Boosting techniques (AB, GB, and XGB) were used to properly
combine a series of weak classifiers to obtain a stronger one.
A weak classifier occurred when a feature’s performance was
slightly superior to random guessing (15–24). Table A in
Section Supplementary Data 1 shows parameters used in our
ML algorithms.

We assessed the model’s performance using the following
metrics: AUC, sensitivity, precision (positive predictive value),
and F1 measure (the harmonic mean of the precision and
sensitivity). ML algorithms were implemented in Python 3 using
open-source libraries (25, 26).

Cross-Validation
We used ten-fold cross-validation to validate the classification
model results (27, 28). In the cross-validation, the training
database is divided into k (k = 10) parts of the same size, k-1
of which is for training and testing. Therefore, all data were used
in the training process. All images used were independent, and
there was no data leak in the cross-validation process.

TABLE 1 | Polar maps characteristics.

Rest M Str M Prone M Rest F Str F Total

normal 10 10 10 39 39 108

abnormal 91 91 91 313 313 899

Total 101 101 101 352 352 1,007

Rest M, rest male; Str M, stress male; Prone M, prone male; Rest F, rest female; Str M,

stress female.

Data Augmentation
The database consisted of 108 normal images and 899 abnormal
images, an unbalanced training dataset (Table 1). In this context,
we increased the number of normal images using the polar
maps’ geometric properties. This data augmentation was done
only in training dataset splits to avoid leakage of information.
324 new polar maps were generated - three for each normal
polar map (3∗108). Therefore, cross-validation was done with
9 boxes containing 202 images in the test set and a training
set with the remaining 1,129 images. In the tenth box, the
training set consisted of 196 images. Figure A in Section
Supplementary Data 2 shows how the process was done. Data
used in the models are available in Supplementary Material.

RESULTS

In Table 2, we can see the ML algorithms performance. All
models had sensitivity >92%. However, only RF had 96%. AB,
GB, and XGB achieved, respectively, 92, 94, 95%. Sensitivity
standard deviation was lower in GB, RF, and XGB (0.02). RF
had the best accuracy (93%), followed by GB (92%), XGB (92%),
and AB (90%). Precision ranged from 0.96 (XGB, RF, AB) to
0.97 (GB) while F1 measure ranged from 0.94 (AB) to 0.96
(RF). All precision standard deviations were 0.01. We achieved
the best AUC by RF (0.85), followed by XGB (0.82), GB (0.81),
and AB (0.77). AUC standard deviation was lower in GB (0.05).
All processing time was lesser than 0.2 s. We obtained the best
processing time in AB (0.16).

DISCUSSION

This study evaluated ML algorithms’ ability to distinguish
between normal and abnormal SPECT myocardial perfusion
polar maps (without specifying the nature of the abnormality).
ML algorithms had high accuracy in image classification. Three
models obtained AUC higher than 0.80, and had precision
and sensitivity > 0.94. The performance was also high if we
consider the F1 measure. Indeed, these models can contribute
significantly to the decision-making process. The results obtained
in this work reiterate the role of these algorithms and their
importance in nuclear medicine. They add to other previous
successful experiences.

An example of this is Nakajima et al., who used artificial
neural networks in CAD diagnosis and had impressive
results. The AUC was superior to 0.9 (overall) in all cases
tested, including patients with previous myocardial infarction
and coronary revascularization (29–32). Another example of
successful performance (AUC = 0.81) was the use of an ML
algorithm (LogitBoost) to predict early revascularization after
myocardial perfusion imaging with SPECT (33, 34). Cortes (35)
had good results (AUC = 0.83) using a different ML algorithm,
called Support Vector Machine (SVM), to evaluate a patient’s risk
of cardiac death after adenosinemyocardial perfusion SPECT (1).

It is worth mentioning, as pointed out by Elhendy et al. (36),
that a study classified as normal has high relevance regarding
a patient’s prognosis: the annual mortality and cardiac event
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TABLE 2 | Ensemble ML algorithms performance (mean and standard deviation tenfold cross validation results).

Model Accuracy F1 Precision Sensitivity Time (s)

Training set: Mean +/- Standard Deviation

AB 0.961 +/- 0.006 0.970 +/- 0.004 0.982 +/- 0.004 0.959 +/- 0.005 0.175 +/- 0.023

GB 0.993 +/- 0.001 0.995 +/- 0.001 0.999 +/- 0.001 0.991 +/- 0.002 0.411 +/- 0.043

RF 1.000 +/- 0.000 1.000 +/- 0.000 1.000 +/- 0.000 1.000 +/- 0.000 0.297 +/- 0.046

XGB 1.000 +/- 0.000 1.000 +/- 0.000 1.000 +/- 0.000 1.000 +/- 0.000 0.174 +/- 0.018

Model Accuracy F1 Precision Sensitivity Time (s) AUC

Test set: Mean +/- Standard Deviation

AB 0.907 +/- 0.032 0.947 +/- 0.020 0.969 +/- 0.014 0.927 +/- 0.044 0.164 +/- 0.044 0.778 +/- 0.068

GB 0.927 +/- 0.020 0.959 +/- 0.012 0.970 +/- 0.012 0.949 +/- 0.027 0.416 +/- 0.056 0.815 +/- 0.059

RF 0.938 +/- 0.017 0.965 +/- 0.010 0.968 +/- 0.015 0.963 +/- 0.025 0.273 +/- 0.048 0.853 +/- 0.070

XGB 0.924 +/- 0.019 0.957 +/- 0.011 0.963 +/- 0.014 0.952 +/- 0.029 0.186 +/- 0.028 0.820 +/- 0.083

AB, AdaBoost; GB, Gradient Booting; RF, Random Forests; XGB, eXtreme Gradient Boost; AUC, Area Under the Receiver Operating Characteristics Curve (ROC).

rate is <1% during 5-year follow-up after a normal MPI. In
our application, the best model was RF, although GB and XGB
had good results. RF was previously used successfully to predict
mental problems in adolescents from specific questionnaires
(AUC: 0.739) (37) and to forecast 1-, 2-, 3-, 4- and 5-year all-
cause mortality from pre-implant variables of patients submitted
to cardiac resynchronization therapy (38), to foresee the
outcome of 90Y-radioembolization in patients with intrahepatic
tumors (39) and also to predict complete pathological response
in rectal cancer after chemoradiotherapy using computed
tomography radionics and 18F-fluorodeoxyglucose positron
emission tomography (40) and Cantoni et al. (41) have evaluated
the performance of SPECT and cadmium-zinc-telluride (CZT)-
SPECT in patients with CAD (or suspected) and have compared
the diagnostic accuracy using RF. The sensitivity of CZT-SPECT
and SPECT were 96 and 88%, respectively. The main advantage
of RF is its lower computational cost compared to Deep
Learning, for example, generally eliminating Graphics Processing
Units (GPUs). RF is a simple and powerful ML algorithm
with applications even in other different contexts, such as
the prediction of suicidal ideation (42) and right ventricular
hypertrophy (43); however, its performance may vary depending,
for example, on the application and the parameters used in
the ML model. In assessing the first 5-year all-cause mortality
separately, the results indicated an AUC that ranged between
0.76 and 0.8, while in predicting the response to chemotherapy,
the AUC obtained was 0.94 (38, 40). Also, no ML model is
better than the others in all situations. Baskaran and colleagues,
for instance, were successful in predicting obstructive coronary
artery disease (AUC: 0.779) and revascularization (AUC: 0.958)
from clinical and imaging data (44). Thus, it is usually interesting
to analyze more than one model. Besides, the increase in the
training database can contribute to making these algorithms’
performance even better.

Besides the low computational effort for processing the
algorithms, another advantage in our study was polar maps. A
single two-dimensional image obtained during the stress, rest, or

prone phase contains an adequate myocardium representation.
However, some distortion may be induced in this process.
In light of that, polar maps were used to obtain new
images from the rotation (data augmentation) only in the
training set, which resulted in a considerable expansion of
the training databases in cross-validation. This increase in the
database allows for an improved model training process and
contributes to better results. It is an important alternative,
especially when dealing with a database with an asymmetry
of the outcomes-as highlighted by Thabtah and colleagues, a
classification algorithm’s performance can be affected if the study
data is highly unbalanced (45). Kocheturov et al. emphasized
that this asymmetry is considered a significant obstacle. It can
lead to biased rules in favor of the majority of the result-which
requires unique approaches to the issue (46). In our work, for
example, images considered normal corresponded to about 10%.
However, after carrying out the data augmentation, this value
increased to 32%, which significantly improved the imbalance
between classes.

Moreover, the storage size of images is small since each image
is <25KB. Another significant advantage is that our slicing
process proved to be quite adequate to generate features. The
use of vertical and horizontal slicing has already been used in
different contexts. Shih et al., for instance, exhibited horizontal
and vertical slices taking from 2-day 99mTc-tetrofosmin SPECT
images of a patient with duodenogastric reflux in a hiatal hernia
(47). Teramoto et al. (48) used these slices to visualize the root
system architecture of rice using X-ray computed tomography.
Thus, this work brings as a novelty, not the issue of using
vertical and horizontal cuts per se, but the use of this tool in
generating attributes for ML models from polar maps. It was the
first time that this type of slicing process was used in nuclear
cardiology, to the best of our knowledge. The results obtained in
this work suggest a potential use of this type of slicing. However,
they do not exclude the possibility or validity of other types of
approaches. Betancur et al. also took advantage of using polar
maps. They developed successful neural networks (deep learning)
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to automatically predict obstructive coronary disease from MPI
compared with current clinical methods (49). Togo et al. did a
similar analysis using PET/CT images, also been successful with
the use of polar maps. The idea was to assess the ML model
(in case, deep learning) to distinguish between two different
outcomes: cardiac sarcoidosis and non-cardiac sarcoidosis (50).

The excellent performance of our tool in the classification
of polar maps has mainly two potential applications. The first
one would be to analyze polar maps and compare them to the
first report originated to assess any potential misinterpretation.
Trägardh et al. (51) emphasized that reporting an image is
usually the only form of communication between the physician
and the caregiver, being one of the critical components of care
delivery that can occasionally become legal evidence. Besides,
suppose all images obtained during the stress, rest, and prone
phase (in the case of a male patient) are considered normal
in an ML algorithm evaluation. In that case, the final report
should be normal, reducing the risk of mistakes in the medical
report with the advantage of only analyzing 2 or 3 images.
Also, the physician and ML model will act synergistically, as the
model can identify potential errors. The specialist will identify
false positives/negatives, which is essential for retraining and
improving the models and their performance. Although the costs
involved (financial, emotional, and others) could be significant, it
seems that there are a few works related to this subject (reviewing
previous evaluated reports). We also believe that ML tools could
significantly differ in the medical training process in this context.
For instance, medical residents can have an additional source to
compare their reports, contributing to improving the learning
process, therefore supporting their education.

LIMITATIONS AND FUTURE WORK

There are some limitations to this study: (a) it is essential to point
out that we have collected all data retrospectively from a single
center. Although the benefits of using ten-fold cross-validation,
deriving a predictive model from historical data may affect the
generalization of the results since we could have seen changes
in the patient’s characteristics as time goes by (1, 52). (b) A few
experts were responsible for producing the medical report. (c)
We used a 2-days protocol. So, we may not be able to use this
model for a 1-day protocol. In light of that, it is essential to
validate our results in different data and distinct contexts. (d)
We did not use any clinical information, which could improve
the models’ performance. In future work, we believe that the
methodology developed here can be applied to other contexts,
including polar maps obtained with different radiotracers or even

different outcomes, such as the definition of the territory where
the abnormality was verified. (e) Possibly the originality of the
proposed method could be explained because of our dimensional
reduction method. In this context, different types of reduction
methods, such as principal component analysis (PCA) (53) and
independent component analysis (ICA) (54) could improve our
results and should be explored in future work. (f) Themodel has a
focus on predicting only whether theMPI is normal or abnormal.

We did not provide any information on the ischemic heart
area and the patient’s prognosis. Despite this, we believe that our
tool could also help optimize and prioritize reporting queues.

CONCLUSIONS

We have successfully implemented 4 ensemble ML algorithms
(RF, GB, XGB, AB) to distinguish normal vs. abnormal
SPECT myocardial perfusion polar maps. We used 10 different
features extracted using an image slicing process and ten-fold
cross-validation. Data augmentation was done in the training set,
considering the polar maps’ geometric properties and rotating
normal images through small angles. The computational times
were very low, and RF had the best AUC. We believe that
our tool can contribute to a reevaluation of previously reported
images and a medical training process for residents, identifying
possible mistakes.
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