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Abstract

Purpose

Neurite Orientation Dispersion and Density Imaging (NODDI) is a diffusion MRI (dMRI) tech-

nique used to characterize tissue microstructure by compartmental modelling of neural

water fractions. Intra-neurite, extra-neurite, and cerebral spinal fluid volume fractions are

measured. The purpose of this study was to determine the reproducibility of NODDI in the

rat brain at 9.4 Tesla.

Methods

Eight data sets were successfully acquired on adult male Sprague Dawley rats. Each rat

was scanned twice on a 9.4T Agilent MRI with a 7 ± 1 day separation between scans. A

multi-shell diffusion protocol was implemented consisting of 108 total directions varied over

two shells (b-values of 1000 s/mm2 and 2000 s/mm2). Three techniques were used to ana-

lyze the NODDI scalar maps: mean region of interest (ROI) analysis, whole brain voxel-wise

analysis, and targeted ROI analyses (voxel-wise within a given ROI). The coefficient of vari-

ation (CV) was used to assess the reproducibility of NODDI and provide insight into neces-

sary sample sizes and minimum detectable effect size.

Results

CV maps for orientation dispersion index (ODI) and neurite density index (NDI) showed high

reproducibility both between and within subjects. Furthermore, it was found that small bio-

logical changes (<5%) may be detected with feasible sample sizes (n < 6–10). In contrast,

isotropic volume fraction (IsoVF) was found to have low reproducibility, requiring very large

sample sizes (n > 50) for biological changes to be detected.
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Conclusions

The ODI and NDI measured by NODDI in the rat brain at 9.4T are highly reproducible and

may be sensitive to subtle changes in tissue microstructure.

Introduction

Diffusion weighted magnetic resonance imaging (dMRI) is a powerful magnetic resonance

modality that provides a wealth of information regarding tissue microstructure, from which

structural connectivity and pathological changes within the brain can be inferred [1,2]. As dif-

ferent microstructures predictably retard diffusion, the apparent diffusion of molecules com-

bined with the angle of an applied diffusion gradient provides an indirect measure of

neuroanatomy [3]. The most commonly used dMRI technique is diffusion tensor imaging

(DTI). For DTI, a series of pulsed-gradient, spin–echoes are used to produce a 3x3 symmetric

matrix modelling Gaussian diffusion (3). Most commonly, DTI characterizes the overall water

diffusion within a given voxel by measuring mean diffusivity (MD) and the degree of direc-

tionality of the principle component of this diffusion, through fractional anisotropy (FA). This

technique has been utilized for many years and has provided valuable insights into the effects

of disease, as well as neurological and physiological processes [4–8].

However, subtle tissue diffusion characteristics may be missed in DTI because the method

lacks the specificity to identify unique microstructural environments. For example, DTI can-

not distinguish between distinct processes such as the loss of structural integrity and neural

remodelling, and as a result provides an inherently vague and limited model of neuroanatomy

[9,10]. Several more sophisticated dMRI models have been developed to overcome the limita-

tions of DTI such as Q-Ball imaging [11], CHARMED [12], diffusion kurtosis imaging [13],

oscillating gradient diffusion MRI [14], and more recently neurite orientation dispersion and

density imaging (NODDI) [15]. NODDI examines neurite morphology by specifically probing

the unique diffusion patterns within three separate microstructural environments: intra-neur-

ite, extra-neurite, and CSF compartments [15].

Diffusion patterns within the brain may be separated into three distinct microstructural

environments: highly restricted within neurites (intra neurite compartment), hindered diffu-

sion near neurites (extra-neurite compartment) and free diffusion within the CSF compart-

ment [16]. A carefully designed diffusion weighting scheme in an MRI pulse sequence

combined with NODDI modelling is used to produce scalar maps indicating the volume frac-

tion contribution of each compartment to the full diffusion signal. The intra-neurite space is

modelled as cylinders of zero radius (modelling highly restricted diffusion perpendicular to

neurites and free diffusion parallel to neural tracts) dispersed according to the Watson distri-

bution (ranging from heavily dispersed to entirely parallel) while the extra-neurite space is

modelled as Gaussian anisotropic diffusion [17]. Lastly the CSF compartment is modelled with

Gaussian isotropic diffusion [15].

The NODDI acquisition incorporates a multi-shell protocol that leads to a multi-compart-

mental diffusion MR signal. Previous work has shown that the use of 2 shells (each shell corre-

sponding to a subset of diffusion weightings known as b-values) combined with several b = 0

images, is sufficient to obtain NODDI scalar maps in-vivo [15]. These images are recon-

structed based on the Stejskal-Tanner equations for a pulsed gradient spin-echo (PGSE) exper-

iment, and the total signal determined to be the sum of the individual contributions from

three non-exchanging tissue compartments (intra-cellular, extra-cellular, and CSF
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compartments) [15]. From this signal, quantitative scalar image maps may be reconstructed yield-

ing the following NODDI metrics: Orientation Dispersion Index (ODI), Neurite Density Index

(NDI), and Isotropic volume fraction (IsoVF). Additionally, by ensuring one shell conforms to

DTI acquisition standards (e.g. a single shell with> six directions of b = 1000 s/mm2 and one

b = 0 volume) [1], it is possible within a single scan to obtain standard diffusion tensor metrics

such as fractional anisotropy (FA) and mean diffusivity (MD). It is commonly recommended that

DTI and NODDI be acquired simultaneously and analyzed together [10]. While MD and FA are

routine measures obtained in diffusion imaging, the addition of the ODI, NDI, and IsoVF scalar

maps can provide a more specific analysis of complex neuroanatomy [9,10]. ODI characterizes

the angular variation and spatial configuration of neurite structures. NDI represents the fraction

of tissue that comprises axons or dendrites (also referred to as intra-neurite volume fraction).

Extra-neurite fraction may be reconstructed as 1- NDI, and as such provides does not provide

unique information above NDI. IsoVF represents the CSF water fraction [15].

Previous use of NODDI has focused largely on the feasibility, reproducibility, and applica-

tion to human imaging at field strengths up to 3 Tesla [18–24]. Specifically, it was shown that

NODDI metrics were significantly dependent on field strength [25]. Many pre-clinical studies

use rodent models to study neuro-pathological processes requiring extremely small voxel sizes

relative to that used in human MRI. Image signal to noise ratio (SNR) is directly proportional

to voxel size and to main magnetic field strength. Therefore, the use of ultra-high field

strengths combined with strong imaging gradients helps to achieve adequate SNR for diffusion

modelling at the image resolution required in rodent models [26]. While the feasibility of

NODDI at 9.4 Tesla has been shown [27], we are aware of no studies that have explored repro-

ducibility in rodent models at 9.4 Tesla. As ultra-high field MRI, and specifically pre-clinical

rodent MRI, faces many unique challenges such as increased magnetic field inhomogeneities

and physiological noise [28], it is important to carefully define reproducibility in the context of

ultra-high field rodent imaging. Thus, our specific objective was to determine the reproducibil-

ity of the three most commonly derived NODDI metrics (ODI, NDI and IsoVF) at 9.4 Tesla in

the rat brain. This information is crucial for the planning of future studies involving rat models

of neurodegenerative disease or neurological injury.

Methods

Subjects

Ten adult male Sprague Dawley rats were scanned twice on separate days with 7 ± 1 days

between scans. Sample sizes were chosen to reflect common practice in pre-clinical imaging

studies. On the day of the scans, anesthesia was initiated by placing the animals in an induction

chamber with 4–5% isoflurane and an oxygen flow rate of 1–1.5 L/min. Following induction,

isoflurane was maintained between 1.5–2.5% with an oxygen flow rate of 1–1.5 L/min through

a custom-built nose cone. All animal procedures were approved by the University of Western

Ontario Animal Use Subcommittee and were consistent with guidelines established by the

Canadian Council on Animal Care.

Imaging

All images were acquired using a 31 cm bore 9.4 T Agilent small animal MRI scanner at the

Centre for Functional and Metabolic Mapping at the University of Western Ontario. Images

were acquired with an eight-channel receive coil used in conjunction with a 2-channel trans-

mit coil. The receive coil consisted of eight loops adhered to the inner surface of a conformal

helmet that was adjustable in width to accommodate varying head sizes. Low input-impedance

preamplifiers were used to reduce inter-element coupling. The transmit coil was comprised of
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two overlapped rectangular loops mounted on an inverted U-shaped former. The coil design

and optimization followed that built for marmoset imaging [29], but with dimensions opti-

mized for rat imaging.

The NODDI diffusion encoding scheme was incorporated into a centric-ordered spin echo

echo-planar-imaging (EPI) acquisition pulse sequence (number of shots = 4, number of aver-

ages = 2, 25 slices with slice thickness = 500 μm, FOV 40 x 40 mm, matrix size 160 x 160,

resulting in-plane resolution = 250 × 250 μm, TE = 25 ms, TR = 5.0 s). Two averages were

used, rather than increased diffusion directions, to ensure adequate SNR in the higher b-value

shell for NODDI reconstruction. As it is recommended that NODDI be used in conjunction

with standard DTI metrics (FA and MD) [10] we chose a b-value of 1000 s/mm2 for the inner

shell. Following the work of Zhang et. al. [15], a second b-value of 2000 s/mm2 was chosen.

Use of these b-values has been shown to produce reproducible values of NODDI specific met-

rics in human imaging at lower field strengths, and can be used to obtain standard DTI mea-

sures [15]. To sample q-space, we chose a scheme totaling 108 directions spread across two b-

values, optimized according to Caruyer et. al. [30]. This sampling scheme allows for twice the

number of directions in the higher b-value shell. Specifically, the outer shell consisted of 72 b-

value = 2000 s/mm2 directions (gradient strength (G) = 339.1 mT/m, time between the start of

the first and second diffusion pulse (Δ) = 14.44 ms, the duration of a single gradient pulse (δ) =

4.32 ms, TE = 25 ms and TR = 5.0s). The inner shell consisted of 36 b-value = 1000 s/mm2

directions (G = 169.6 mT/m, Δ = 14.44 ms, δ = 4.32 ms, TE = 25 ms and TR = 5.0s). Fifteen

b = 0 s/mm2 were interspersed evenly throughout the acquisition and two preparation volumes

were acquired at the beginning of each average but not used, resulting in a total imaging time

of 83 minutes. A single reverse phase encoded b = 0 volume was acquired at the end of the dif-

fusion sequence for subsequent use in TOPUP and EDDY (number of shots = 4, number of

averages = 2, 25 slices with slice thickness = 500 μm, FOV 40 x 40 mm, matrix size 160 x 160,

resulting in-plane resolution = 250 × 250 μm, TE = 25 ms, TR = 5.0 s). Anatomical images

were also acquired for each subject within each session using a 3D fast low angle shot [31]

pulse sequence (250-μm isotropic resolution, FOV 40 x 40 x 20 mm, matrix size = 160 x 160 x

50, TE = 5.0 ms, TR = 30.0 ms, total acquisition time = 7 min).

Image processing

Images were pre-processed using fMRI Software Library (FSL, v.5.0.10, Oxford, UK). TOPUP

[32] followed by EDDY [33] was used to correct for eddy current induced distortions as well

as susceptibility-induced distortions. Brain masks were produced using the 3D Pulse Coupled

Neural Network (PCNN) tool for Matlab [34]. The NODDI Matlab toolbox (available from

the UCL Microstructure Imaging Group) was then used to produce maps of ODI, NDI, and

IsoVF in diffusion space.

For each subject, the first volume in each diffusion data set (b = 0) was aligned with its cor-

responding anatomical images using a linear registration in FSL (FLIRT) [35]. The transfor-

mation matrix from the preceding step was then used to bring all NODDI scalar maps into

anatomical space. Anatomical images were then aligned to the Waxholm Space Atlas Sprague

Dawley template [36] using a linear transformation (FLIRT) followed by a non-linear transfor-

mation (FNIRT) [37] in FSL. FNIRT registration parameters were optimized for the registra-

tion of rodent images. While a quantitative analysis (such as Dice coefficient) of registration

quality was not performed, anatomical images were visually inspected to ensure good registra-

tion quality. The Waxholm Space Atlas Sprague Dawley template includes binary masks for

the relevant brain regions of interest in this study. Inverse transformation matrices from the

preceding steps were used to bring these masks from template space into the anatomical image

Reproducibility of NODDI at 9.4 Tesla
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space of each rat. Each mask was eroded by 5% around the edges to avoid partial volume effects

within a given ROI.

Statistical analysis

Statistical analyses to examine measurement reproducibility were performed for the mean

region of interest (ROI) analysis, the whole brain voxel-wise analysis, and the voxel-wise analy-

sis within a given ROI. These three techniques were chosen as they represent the most com-

mon analysis techniques in neuroimaging studies. The ROI analysis focused on six different

tissue regions: thalamus, corpus callosum, dentate gyrus, hippocampus, whole brain white

matter, and whole brain grey matter. In both the ROI and voxel-wise analyses the scan-rescan

reproducibility were characterized using the coefficient of variation (CV). CV was chosen as it

reflects both the reproducibility and variability of these metrics as well as provides insight into

necessary sample sizes and minimum detectable effect size. CVs were calculated between sub-

jects and within subjects to quantify the between subject reproducibility and within subject

reproducibility respectively. The between subject CV was calculated separately for the scan

and rescan conditions as the group standard deviation divided by the mean values from sub-

jects 1–8. These two CV values were then averaged for the mean between subjects CV in each

case. The within subject CV was calculated as the standard deviation of the two scans divided

by the mean value. The 8 within subjects CVs were then averaged to determine the mean

within subject CV. Furthermore, the between subject CV was used to determine the minimum

number of subjects needed per group to detect a defined biological effect. Similarly, the within

subject CV was used to calculate the minimum detectable biological effect with a given number

of subjects per group. The details of these calculations follow those presented in van Belle [38].

The minimum number of subjects and minimum detectable biological effect were both deter-

mined at a 95% significance level (α = 0.05) and power of 80% (1−β = 0.80).

Results

The minimum accepted average whole-brain SNR was 25 at b = 0 for each of the included data

sets. Two data sets were removed from the analysis due to low SNR causing significant recon-

struction bias. Therefore, data were successfully acquired and analyzed from eight subjects

(age 102 ± 13 days at time of initial scan, weight 323 ± 37 g) at two separate time points. For

each subject the re-scan time point was between six and eight days after the original scan. The

time of day was not standardized for the scans. Fig 1 shows representative cross sections of raw

diffusion data (b = 0) from a single subject, as well as scalar maps of ODI, NDI, and IsoVF.

ROI analysis

Similar to previous human and rodent studies, higher average ODI values were observed

within grey matter regions compared to that of white matter regions (Fig 2) as expected

because neurites are more widely dispersed throughout grey matter [25,27]. NDI and IsoVF

values were similar between white and grey matter. Mean between and within subject CV for

ODI ranged from 4.0–9.2% within all ROIs, NDI ranged from 1.9–11.3%, while IsoVF ranged

from 9.0–48.6% (Fig 3). In general, for each metric within a given ROI the mean between sub-

ject CV was higher than the within subject CV.

Whole brain voxel-wise analysis

The whole brain voxel-wise analysis showed a similar trend to the ROI analysis in terms of

CVs. In the between subject histogram, over 90% of voxels fell below a CV of 20% for ODI

Reproducibility of NODDI at 9.4 Tesla
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while in the within subject histogram 90% of voxels fell below a CV of 17% (Figs 4 and 5). For

NDI over 90% of voxels fell below a CV of 15% and 12% for the between and within subject

histograms respectively. The CV for IsoVF, ranged well above 100% for many voxels for both

histograms.

Fig 1. Representative in-plane cross sections from a single subject showing unprocessed raw diffusion image data (4 shot, centric ordered, 2 averages, 25

coronal slices with slice thickness = 500 μm, 250 × 250 μm in plane resolution, FOV 40 x 40 mm, matrix size = 160 x 160, TE = 25 ms, TR = 5.0 s), and

corresponding scalar image maps of the following NODDI values: Orientation Dispersion Index (ODI), Neurite Density Index (NDI), and Isotropic

Volume Fraction (IsoVF).

https://doi.org/10.1371/journal.pone.0215974.g001

Fig 2. Region of interest (ROI) values for ODI, NDI and IsoVF in both the scan and rescan conditions for several representative brain regions. Each

box represents the range from 25th to 75th percentile (Interquartile Range) with the median depicted by the line within the box. The whiskers shown extend to the

maximum and minimum value of each measurement.

https://doi.org/10.1371/journal.pone.0215974.g002
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Voxel-wise ROI analysis

The voxel-wise approach targeted to specific ROIs (Fig 6) reinforced the results observed in

mean ROI and the voxel-wise approaches. For ODI, over 90% of voxels fell below a CV of 18%

in the between subject histogram, and 12% in the within subject histogram for all ROIs. For

NDI, over 90% of voxels fell below a CV of 10% in the between subject histogram and 8% in

the within subject histogram for all ROIs. The CV for IsoVF once again ranged well above

100% for many voxels in all ROIs. In all cases, dispersion of CV values increased with increas-

ing ROI sizes. Likewise, in all cases and all ROIs the CVs and dispersion of CV values were

lower within subjects compared to between subjects.

Sample sizes and minimum detectable effect

Using the between subject whole brain voxel-wise CVs, the minimum number of subjects was deter-

mined on a voxel-by-voxel basis that would allow detection of a statistically significant change of

5%, 10%, 15% and 20% between subjects in each metric. ODI produced detectable changes on the

order 10% in all voxels for moderate sample sizes (n< 10) but required large sample sizes (n> 10)

for whole brain voxel-wise detection of changes on the order of 5% (Fig 7). NDI was able to detect

changes on the order of 5% in all voxels with small sample sizes (n< 6 for all voxels). IsoVF required

large sample sizes (n> 10) to detect changes of any magnitude on a voxel-wise basis.

Using the within subject whole brain voxel-wise CVs, the minimum statistically significant

change that may be detected in each metric on a voxel-wise basis was determined using a scan

re-scan protocol for sample sizes of 6, 8 and 10 within each group. For over 90% of voxels,

ODI was also to detect small changes (<10%) on a scan-rescan basis with all sample sizes dis-

cussed, NDI showed detection of very small changes (<5%) with all sample sizes discussed and

IsoVF lacked the ability to detect significant changes at any samples size explored.

Discussion

This study examined the reproducibility of the three most commonly derived NODDI metrics

(ODI, NDI, and IsoVF) in the rodent brain at 9.4 Tesla. ODI and NDI were reproducible,

Fig 3. Mean coefficient of variation (CV) for each ROI. Values for the between subject condition represent the mean ± standard deviation within each ROI averaged

over a scan-rescan protocol. Values for the within subject condition represent the mean ± standard deviation within each ROI averaged over the eight subjects.

https://doi.org/10.1371/journal.pone.0215974.g003
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showing low coefficients of variation in both the between and within subject conditions. CVs

were lower within subjects compared to between subjects, indicating less variability on a

within subject scan-rescan basis, as expected. These trends were observed in the mean ROI,

whole brain voxel-wise, and targeted voxel-wise analyses.

Using the whole brain coefficients of variation on a voxel-by-voxel basis it was possible to

detect changes on the order of 10% and 5% respectively in ODI and NDI metrics with feasible

study samples sizes. For ODI, over 90% of voxels showed the ability to detect a 10% or greater

change with sample sizes of five or more, while NDI showed the ability to detect a change of

5% or greater with sample sizes of five or more. NDI was the most sensitive in all cases, fol-

lowed by ODI. Furthermore, it was shown that using a scan-rescan protocol and standard

sample sizes (6, 8, and 10) it was possible to detect very small changes for both ODI and NDI.

For example, sample sizes of eight per group (common to many preclinical studies) allowed

biological effects as small as 5% to be detected on a voxel by voxel basis for both metrics.

While ODI and NDI were shown to be reproducible metrics, IsoVF was not. This was

shown previously in similar studies of the human brain [25]. The IsoVF metric suffers from

not only low values intrinsically in the given context but is also highly susceptible to noise [25].

This combination led to high average CVs (> 20%) in all measures explored in this study.

Consequently, with the scan parameters used in this study, the reproducibility of IsoVF is lim-

ited. Improvements in SNR could increase the reproducibility of IsoVF but would come at the

Fig 4. Whole brain average between subject CV maps and histogram. Values for the between subject condition represent the mean CV within each voxel for

the scan and rescan conditions averaged over the two scans. The resulting histogram has been extracted from the averaged scans. Heat maps from a

representative slice show the regional variation for each metric.

https://doi.org/10.1371/journal.pone.0215974.g004
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cost of increased scan time, decreased image resolution, or decreased angular resolution. It

should be noted that inaccurate estimates of IsoVF could slightly bias the absolute values of

NDI at low SNR, however this bias is expected to be consistent across all subjects and scans,

allowing meaningful comparisons to be made under consistent scan parameters. As of now the

optimal angular and image resolution in a rodent model of NODDI has yet to be explored,

and it must be assumed that higher resolution in both improves the quality of the resulting sca-

lar metric maps. Thus, an increase in scan time would be necessary. As the scan time in the

present study was already high (83 minutes) it may be that the necessary scan time to improve

the quality of IsoVF scalar maps is not feasible or cost effective.

These findings are consistent with previous research using human subjects. In humans,

NODDI has been shown to produce accurate and reproducible metrics of ODI and NDI both

between and within subjects [25]. The magnitude of NDI, ODI, and IsoVF have been shown

to vary at different field strengths [25], and thus it is important to characterize these metrics

not only in new animal models, but also at each field strength used. At the time of writing we

are not aware of any other studies that specifically look at the reproducibility of NODDI in an

in-vivo rodent model. This study shows NODDI to be reproducible in a rodent model at 9.4

Tesla and that this technique has the potential to detect very subtle tissue microstructure

changes in a rodent model.

There are several limitations that should be considered in this study. Registration was per-

formed using FLIRT [35] and FNIRT [37] in FSL. The quality of these registrations was not

Fig 5. Whole brain average within subject CV maps and histogram. Values for the within subject condition represent the mean CV within each voxel for

each subject averaged over all eight subjects. The resulting histogram has been extracted from the averaged scans. Heat maps from a representative slice show

the regional variation for each metric.

https://doi.org/10.1371/journal.pone.0215974.g005
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specifically quantified in terms of similarity overlap. As the quality of registration is important

to both ROI and voxel-wise analyses, future studies may benefit from improvements and opti-

mization of the registration process. Specifically, when using a targeted voxel-wise approach

within a given ROI, registration can be optimized within that region, thereby increasing the

precision of the analysis. Currently, the optimal angular resolution, image resolution and b-

value combination in our NODDI pulse sequence has not been fully explored in a rodent

Fig 6. Voxel-wise between and within subject CV histograms within each representative ROI. Voxel-wise values for the between subject condition

represents the mean CV within each ROI for both the scan and rescan conditions averaged over the two scans. Voxel-wise values for the within subject

condition represent the mean CV within each ROI averaged over the eight subjects.

https://doi.org/10.1371/journal.pone.0215974.g006

Reproducibility of NODDI at 9.4 Tesla

PLOS ONE | https://doi.org/10.1371/journal.pone.0215974 April 29, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0215974.g006
https://doi.org/10.1371/journal.pone.0215974


model at 9.4 Tesla. It is possible that at high angular resolution more subtle changes in orienta-

tion are detected, and at higher image resolution more subtle changes in neurite microstruc-

ture may be shown. Furthermore, these parameters may vary greatly in coherently ordered

white matter compared to less ordered structures within regions of grey matter and may be

altered in disease states. These considerations must be balanced against scan time for any in-
vivo study. Further exploration of optimal angular resolution sampling schemes and image res-

olution would lend strength to this technique and lead to a more robust acquisition and

Fig 7. Whole brain voxel-wise histograms representing the i) number of subjects necessary to detect a statistically significant effect with a change in the

given metric of 5%, 10%, 15% and 20% and ii) the minimum detectable effect with each metric under a scan-rescan study design given group sample sizes

of 6, 8 and 10. Note the varied scales for the IsoVF metric in each category as opposed to the ODI and NDI metrics.

https://doi.org/10.1371/journal.pone.0215974.g007
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analysis pipeline. Additionally, the optimal b-value has not been expressly explored in rodents

at 9.4 Tesla. In humans, the optimal b-values were explored through simulation and in-vivo

study, and it was found that as long as two shells with moderate b-value were used, the precise

choice of b-value made minimal difference [15]. Finally, it should be noted that for the within-

subject calculation of CV, the standard deviation was determined from only two data points.

As a result this this standard deviation may not accurately represent the spread of data within

the population, leading to an unknown bias in the resulting CV.

The current study was designed to evaluate reproducibility of the NODDI metrics over a

one-week interval, as this interval is relevant for many time course studies. While subtle

changes in brain plasticity were of some concern, the results show that over this interval the

ODI and NDI metrics were reproducible. Finally, we know of no studies which have expressly

attempted to produce a template of absolute values of NODDI metrics within various brain

regions of rodents at 9.4 Tesla. While intrinsic variability will always be present in these values

due to scan parameters, it would be useful to attempt this characterization for all brain regions.

Preclinical imaging techniques, and specifically diffusion imaging techniques, are designed

to detect very subtle changes in disease models, which may not be seen with anatomical based

imaging techniques. The potential to improve the ability to detect these very small changes

through novel neuroimaging techniques, such as NODDI, could illuminate early events in dis-

ease processes such as neurodegeneration. Early detection of key pathways and mechanisms

involved in the progression of these devastating diseases may lead to a more thorough under-

standing of the downstream biological effects. By showing NODDI metrics to be reproducible

in a rodent model at ultra-high field strengths, we may now apply this technique to appropriate

pre-clinical models, in an effort to further our understanding of complex diseases processes

affecting neuroanatomy.
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