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In this work, we adopt a new approach to study a new class of soft sets depending on the 
generalizations of open subsets in the parametric topological spaces. We first define the class 
of soft parametric somewhat-open sets and explore its basic features. We illustrate this class 
represents a proper extension of soft open and soft somewhat-open sets under a full soft topology. 
We derive the next formula

1 +
∏
𝜂∈H

(∣ Θ𝜂 ∣ −1) ≤∣ ϝ ∣≤ 1 + (2|𝔘| − 1)|H|,

which determines the lower and upper bounds of the cardinality number ϝ of the family of soft 
parametric somewhat-open subsets of a soft topological space (𝔘, Θ, H), where Θ𝜂 is a parametric 
topology inspired by Θ. Then, we introduce two novel kinds of soft compact and Lindelöf spaces 
inspired by the class of soft parametric somewhat-open sets and explain the relations between 
them with the aid of some counterexamples. We also examine the navigation of these spaces 
between soft and parametric (classical) structures and supply the necessary conditions that 
guarantee some directions. In the end, we introduce the concept of soft 𝑝𝑠-connected spaces 
and give some of its equivalent descriptions. Furthermore, we prove the identity between this 
concept and soft hyperconnected spaces and show that the existence of a somewhat connected 
(parametric) space is used to confirm the possession of a soft 𝑝𝑠-connected property.

1. Introduction

It was introduced the idea of soft sets in 1999 by Molodtsov [1] as a novel mathematical strategy for cope with uncertainties. 
This approach proved its useability and substance to address many real-life issues in different disciplines such as medical science 
(i.e. nutrition systems [2] and Covid-19 outbreak [3,4]), information system [5] and decision-making [6–8], etc. Over the past two 
decades, the essential principles of soft set theory have been established and studied by many authors [9,10]. During this period, 
it has been reviewed and adjusted the fundamentals of this theory in a way that is appropriate to use to deal with a large scope of 
theoretical and applied usage; see, [11,12].

Pakistani researchers Shabir-Naz [13], in 2011, set forth the structure so-called “soft topology” under the same corresponding 
terms of a classical topology, which are built under a constant set of parameters. In the same year, Turkish authors Çaǧman-Karataş-
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Enginoglu [14] presented soft topology in a different way than Shabir and Naz [13]; its terms are constructed under different subsets 
of parameters. It can be investigated the topological concepts via both structures by taking into account how these concepts behave 
under each one. In this work, we will follow the line of [13] and compare the obtained results and relationships with the published 
literature in this line.

Since the concept of soft topology was familiarized, many ideas of general topology have been explored and compared with their 
analogies in soft topologies. The basic concepts of soft operators and soft separation axioms were established by Shabir and Naz [13]. 
Min [15] proved that the relationships between soft 𝑇3 and soft 𝑇2 are similar to the systematic relation and he provided further 
properties of soft separation axioms. Losing of some properties by the previous types of soft separation axioms motivated us [16] to 
initiate new classifications inspired by new kinds of relations that describe the belonging and non-belonging of ordinary elements 
and soft sets. These relations were then exploited to initiate other soft sorts of separation axioms as introduced in the recent works 
by [17–19]. These concepts and others show the fruitful variety obtained from soft topological studies. Aygünoǧlu and Aygün [20]

displayed two of the main topological concepts “compactness and Lindelöfness” via soft topologies and scrutinized main features. 
They were popularized by Al-shami et al. [21]. By applying the relation (called recently total-belong), Hida [22] introduced and 
probed anther type of soft compact spaces. Compactness and Lindelöfness and their extensions (like almost and nearly compactness 
and Lindelöfness) have been recently defined with respect to some soft open sets generalizations such as soft regular closed [23], 
soft somewhere dense [24] and soft somewhat-open sets [25]. These contributions result in producing some pertinent examples with 
covering properties. As an important point, researchers and scholars should be noted that some classical properties of compactness 
and Lindelöfness are evaporated via soft topologies as elaborated by Al-shami [16]. Kočinac et al. [26] discussed selection principles 
via soft setting and introduced the concept of soft Menger spaces which were then generalized by him and Al-shami [27,28].

By analogue of classical connectedness, it was formulated the concept of soft connected spaces in [29,30]. Some contributions 
have been conducted to discover the main properties of this concept and generalized it. Among them, Asaad [31] defined extremally 
soft disconnected spaces and Ameen and Al-Ghour [32] presented the notion of a maximal soft connected topology. Also, Al-shami 
et al. described soft connectedness utilizing soft somewhat-open and soft somewhere dense sets which formulated in [25] and [24], 
respectively. One of the interesting findings that was proved is that the notions of soft 𝑠𝑤-connectedness and soft hyperconnectedness 
are correspondent.

The definition of soft mappings was first given by Kharal and Ahmad [33] by combining two crisp mappings. This definition was 
updated by Al-shami [34] in order to decrease burden of calculation and difficulty that arises from the forgoing one. Soft continuity 
and soft homeomorphism were characterized by [30,35]. The concepts of soft expandable spaces and soft vietoris topology were 
introduced in [36] and [37]. The link between soft and fuzzy topologies was researched by Alcantud [38]. Production of soft 
topologies by operators was investigated in [39,40].

Generalizations of soft open sets and their applications have been studied by some authors. Chen [41] launched this line by 
presenting soft semi-open sets and studying basic features. Then, it was introduced the class of soft 𝛼-open sets by Akdag and 
Ozkan [42]. Al-shami [43] displayed a new class called somewhere dense sets and applied to investigate soft continuity and soft 
compactness. The notions of soft 𝑄-sets [44] and minimal soft sets [45] were defined by Al-Ghour. Recently, Ameen et al. [46] have 
provided several soft functions motivated by the family of soft somewhat-open sets, which were exploited to initiate some classes 
of separation axioms by Al-shami [2]. We draw attention of the readers to that the existing generalizations of soft open sets are 
formulated following a similar technique of their counterparts in classical topologies; that is, it was utilizing soft interior and closure 
operators to define them. But, Al-shami with his co-authors [47–49] came up with another methodology to study generalizations of 
soft open sets inspired by classical topologies induced from a soft topology. This methodology is limited to one parametric topology. 
The approach adopted in this manuscript to create generalizations of soft open sets is also based on the parametric topologies, but 
it is different from the aforementioned approach by stipulating all all parametric topologies induced from a soft topology instead of 
one parametric topology.

As it is well-known that classical topologies are special frames obtained from the soft-topologies when the set of parameters is a 
singleton. Another method to produce classical topologies Θ𝜂 from a soft topology Θ is given in [13] as follows: Θ𝜂 = { (𝜂) ∶ ( , H) ∈
Θ}. The links and navigation of the concepts and their properties from a soft topology to its classical topologies and vise versa 
have been revealed and discussed in some interesting studies [44,25]. Al-shami and Kočinac [50] demonstrated the interchangeable 
characteristic for the operators of interior and closure between specific kind of soft topology namely “extended soft topology” and 
their classical topologies.

It is designed this article as follows. After this introduction, we recall the fundamentals that are prerequisites to being familiar with 
the manuscript topics in Section 2. The core idea of this work is the concept of soft parametric somewhat-open sets introduced and 
studied in Section 3. Then, in Section 4 we employ soft parametric somewhat-open sets to establish four types of covering properties 
namely soft 𝑝𝑠-compact, almost soft 𝑝𝑠-compact, soft 𝑝𝑠-Lindelöf and almost soft 𝑝𝑠-Lindelöf spaces. These spaces are characterized 
and some interesting examples that reveal the interrelations between them are furnished. Also, we investigate the condition under 
which some features navigate from soft topologies to their classical topologies. The last main part is Section 5 which is appointed 
to research a new sort of connectedness called “soft 𝑠𝑝-connectedness”. We give some descriptions for it and elaborate on the role 
of full soft topology to obtain some properties and relations. In the end, we write Section 6 to outline the major contributions and 
demonstrate their unique characteristics as well as plan for some future work.

2. Preliminaries
2

This section will mention the needful knowledge to be familiar with the results and relationships produced in this article.
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2.1. Theory of soft set

Definition 2.1. [1] Take a nonempty set H to represent a set of parameters. Then, we call a pair ( , H) a soft set over the universal set 
𝔘 provided that  is an ordinary mapping from H to the power set 2𝔘 of 𝔘. Symbolically, ( , H) = {(𝜂,  (𝜂)) ∶ 𝜂 ∈H and  (𝜂) ∈ 2𝔘}.

The image of each parameter  (𝜂) represents a component of ( , H).

We adopt in this manuscript the symbols H and 𝔘 to denote respectively a set of parameters and the universal set.

Definition 2.2. [11] If (𝜂) =𝔘 − (𝜂) for each 𝜂 ∈H, then it is called (, H) a complement of ( , H). For simplicity, it will be refereed 
for the complement of a soft set ( , H) by ( , H)𝑐 = ( 𝑐 , H).

Definition 2.3. [1,51] ( , H) is said to be:

(i) absolute soft set, refereed by �̃�, if  (𝜂) =𝔘 for all 𝜂 ∈H;

(ii) null soft set, refereed by 𝜙, if all components are empty. In other words, it is a complement of the absolute soft set.

(iii) a soft-point if there exists a 𝜐 ∈𝔘 such that  (𝜂) = {𝜐} for a fixed parameter 𝜂 ∈ H and the image of all 𝜌 ∈ H − {𝜂} are empty. 
Herein, we use the symbol 𝜐𝜂 to refer to a soft-point;

(iv) pseudo constant soft set if all images are 𝔘 or ∅. That is, for all 𝜂 ∈H we have  (𝜂) =𝔘 or ∅ for each 𝜂 ∈H;

(v) finite (resp., infinite) soft set if  (𝜂) is finite (resp., infinite) for all (resp., some) 𝜂 ∈H. Note that the complement of an infinite 
soft set need not be a finite soft set.

Definition 2.4. [9] ( , H) is considered as a soft-subset of (, H) (or (, H) as a soft-superset of ( , H)), refereed by ( , H)⊆̃(, H) if 
 (𝜂) ⊆ (𝜂) for all 𝜂 ∈H.

Definition 2.5. We define the operators of union and intersection between soft sets ( , H) and (, H) as follows.

(i) ( , H)⋃̃(, H) = (, H), in which for all 𝜂 ∈H (𝜂) =  (𝜂) ⋃(𝜂) [11].

(ii) ( , H)⋂̃(, H) = (, H), in which for all 𝜂 ∈H (𝜂) =  (𝜂) ⋂(𝜂) [10].

Definition 2.6. [16] The belonging relations of 𝜐 ∈𝔘 with a soft set ( , H) are defined as follows.

(i) 𝜐 ∈ ( , H) if 𝜐 ∈  (𝜂) for every 𝜂 ∈H.

(ii) 𝜐 ⋐ ( , H) if 𝜐 ∈  (𝜂) for some 𝜂 ∈H.

The negation of these relations is defined as follows:

(i) 𝜐 ∉ ( , H) if 𝜐 ∉  (𝜂) for some 𝜂 ∈H.

(ii) 𝜐 ̸⋐ ( , H) if 𝜐 ∉  (𝜂) for each 𝜂 ∈H.

In connection with a soft-point 𝜐𝜂 , we write 𝜐𝜂 ∈ ( , H) if 𝜐 ∈  (𝜂).

Definition 2.7. [34] Let 𝖬 ∶𝔘 →𝔙 and 𝓁 ∶ H → E be ordinary (classical) mappings. It is defined a soft mapping (or soft function) 
𝖬𝓁 from the class of soft points defined over 𝔘 with H (as a domain) to the class of soft points defined over 𝔙 with E (as a codomain) 
is a relation associated every soft point in the domain with only one soft point in the codomain in which

𝖬𝓁(𝜐𝜂) =𝖬(𝜐)𝓁(𝜂) for each 𝜐 ∈𝔘 and, 𝜂 ∈H.

In addition,

𝖬−1
𝓁 (𝜔𝛾 ) =

⎧⎪⎨⎪⎩

⋃̃
𝜐∈𝖬−1(𝜔)
𝜂∈𝓁−1(𝛾)

𝜐𝜂 ∶ 𝓁−1(𝛾) and 𝖬−1(𝜔) are nonempty

𝜙 ∶ 𝓁−1(𝛾) or 𝖬−1(𝜔) are empty

2.2. Soft topology

Definition 2.8. [13] A soft topology Θ (in short, ST) on 𝔘 as a universal set and H as a set of parameters is a class of soft sets, 
defined over 𝔘 with H, that is closed under finite soft intersections and arbitrary soft unions as well as contains �̃� and 𝜙.

We name the elements of Θ soft open sets and the term of “soft closed set” is given for the complement of a soft open set. The 
3

triplet (𝔘, Θ, H) is called a soft topological space (in short, 𝑆𝑇 -space).
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Definition 2.9. [13] A soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H) is called a soft neighbourhood of a soft-point 𝜐𝜂 if there exists a 
soft open set (, H) such that 𝜐𝜂 ∈ (, H)⊆̃( , H).

Definition 2.10. [13] Respectively, it is defined the soft interior and closure of a soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H):

(i) the soft union of all soft open subsets of ( , H); referred by 𝑖𝑛𝑟( , H).
(ii) the soft intersection of all soft closed supersets of ( , H); referred by 𝑐𝑙𝑟( , H).

Definition 2.11. An 𝑆𝑇 -space (𝔘, Θ, H) is said to be:

(i) soft compact [20] there is a finite subcover for every soft open cover of �̃�.

(ii) almost soft compact [21] if every soft open cover has a finite subcover such that the closures of whose members cover �̃�.

In the above definition, if we replace the word “finite” by “countable”, then we obtain the definitions of soft Lindelöf and almost 
soft Lindelöf spaces.

Definition 2.12. [21] Let {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} be a family of soft sets. If for any finite (resp., countable) subset 𝛿 of 𝐼 , we have ⋂̃
𝜅∈𝛿(𝜅 , H) ≠ 𝜙, then we say that this family has the FIP (resp., CIP).

Definition 2.13. [29] An 𝑆𝑇 -space (𝔘, Θ, H) is said to be:

(i) soft connected if the only soft clopen subsets (i.e., soft open and soft closed) are absolute and null soft sets.

(ii) soft hyperconnected if Θ does not contain disjoint non-null soft open subsets.

Definition 2.14. [42,46,25,41] A soft subset ( , H) of (𝔘, Θ, H) is said to be:

(i) soft somewhat-open (shortly, soft 𝑠𝑤-open) providing that it is a null soft set or its soft interior is non-null.

(ii) soft 𝛼-open (resp. soft semi-open) if ( , H)⊆̃𝑖𝑛𝑟(𝑐𝑙𝑟(𝑖𝑛𝑟( , H))) (resp. ( , H)⊆̃𝑐𝑙𝑟(𝑖𝑛𝑟( , H)).
(iii) soft dense if 𝑐𝑙𝑟( , H) = �̃�.

The complements of soft 𝑠𝑤-open, soft 𝛼-open and soft semi-open sets are respectively called soft somewhat closed (briefly, soft 
𝑠𝑤-closed), soft 𝛼-closed and soft semi-closed sets.

Definition 2.15. (see, [43]) An 𝑆𝑇 -space (𝔘, Θ, H) is said to be soft 𝛼-compact (resp., soft semi-compact, soft pre-compact) if every 
soft 𝛼-open (resp., soft semi-open, soft pre-open) cover of �̃� has a finite subcover.

The next result offers an interesting method to generate some classical topologies from an ST.

Proposition 2.16. [13] Let (𝔘, Θ, H) be an 𝑆𝑇 -space. Then Θ𝜂 = { (𝜂) ∶ ( , H) ∈ Θ} produces a topology (we name parametric topology) 
on 𝔘 for each 𝜂 ∈H.

Definition 2.17. [50] For a soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H), we respectively define (𝑖𝑛𝑟( ), H) and (𝑐𝑙𝑟( ), H) by 𝑖𝑛𝑟( )(𝜂) =
𝑖𝑛𝑟( (𝜂)) and 𝑐𝑙𝑟( )(𝜂) = 𝑐𝑙𝑟( (𝜂)), in which 𝑖𝑛𝑟( (𝜂)) and 𝑐𝑙𝑟( (𝜂)) represent the interior and closure of  (𝜂) in (𝔘, Θ𝜂), respectively.

Remark 2.18. When it is necessary, we will write 𝑖𝑛𝑡𝜂 and 𝑐𝑙𝜂 instead of 𝑖𝑛𝑡 and 𝑐𝑙, respectively, to refer that the interior and closure 
operators that are calculated with respect to the parametric topological space (𝔘, Θ𝜂 ).

Definition 2.19. An ST Θ is called:

(i) an enriched ST [20] if Θ contains all pseudo constant soft sets;

(ii) an extended ST [51] if ( , H) ∈Θ iff  (𝜂) ∈Θ𝜂 for each 𝜂 ∈H.

(iii) a full ST [25] if all  (𝜂) are nonempty for every ( , H) ∈ Θ.

In [50], it was shown the corresponding between extended and enriched soft topologies. For the sake of unite terminology, we 
name this kind of ST an extended ST and name (𝔘, Θ, H) an extended 𝑆𝑇 -space. The below fact helps us to describe the characteristics 
of classical and soft topological concepts using their analogs in both settings.

Theorem 2.20. [50] An 𝑆𝑇 -space (𝔘, Θ, H) is extended iff (𝑖𝑛𝑟(𝐹 ), H) = 𝑖𝑛𝑟( , H) and (𝑐𝑙𝑟(𝐹 ), H) = 𝑐𝑙𝑟( , H) for every soft subset ( , H) of 
4

(𝔘, Θ, H).
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Definition 2.21. [35] A soft mapping 𝖬𝓁 ∶ (𝔘, Θ, H) → (𝔙, Λ, E) is said to be soft continuous if the inverse image of every soft open 
set in Λ is a soft open set in Θ.

Theorem 2.22. [50] If 𝖬𝓁 ∶ (𝔘, Θ, H) → (𝔙, Λ, E) is soft continuous, then 𝖬 ∶ (𝔘, Θ𝜂) → (𝔙, Λ𝓁(𝜂)) is continuous for all 𝜂 ∈H.

3. Soft parametric somewhat-open sets

In this section, we define the concept of soft parametric somewhat-open sets as a new class of soft subsets of an 𝑆𝑇 -space (𝔘, Θ, H). 
This definition is based on the corresponding generalizations of open subsets of all parametric topological spaces. We elucidate the 
relationship between the new class and the forgoing ones and discuss the condition under which they are identical. We also explore 
some characterizations and properties and provide some counterexamples.

Henceforth, ℕ will denote the set of natural numbers.

Definition 3.1. A soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H) is said to be a soft parametric somewhat-open set (briefly, soft 𝑝𝑠-open 
set) if ( , H) = 𝜙 or 𝑖𝑛𝑟( (𝜂)) is nonempty for all 𝜂 ∈ H. The term of “soft 𝑝𝑠-closed set” is given for the complement of soft 𝑝𝑠-open 
set.

Recall that a subset of a topological space is called somewhat-open if it is empty or its interior points is nonempty. So we can say 
that ( , H) is a soft 𝑝𝑠-open set if ( , H) = 𝜙 or  (𝜂) is nonempty somewhat-open for all 𝜂 ∈H.

We furnish the next example which we will need to show some results and relationships presented herein.

Example 3.2. Taking 𝔘 = {𝜐, 𝜔, 𝜇} and H = {𝜂, 𝜌} as a universal set and a set of parameters, respectively. Let ( , H), (, H) and (, H)
be soft sets over 𝔘 given as follows

( , H) = {(𝜂, {𝜐}), (𝜌, {𝜔})};

(, H) = {(𝜂, {𝜐}), (𝜌, {𝜔, 𝜇})} and

(, H) = {(𝜂, {𝜐, 𝜇}), (𝜌, {𝜔, 𝜇})}.

Then the family Θ = {𝜙, ̃𝔘, ( , H), (, H), (, H)} forms an ST on 𝔘. Now, {(𝜂, {𝜐, 𝜇}), (𝜌, {𝜐, 𝜔})} is a soft 𝑝𝑠-open set because 
𝑖𝑛𝑡𝜂({𝜐, 𝜇}) and 𝑖𝑛𝑡𝜌({𝜐, 𝜔}) are nonempty, whereas {(𝜂, {𝜔}), (𝜌, 𝔘)} is not a soft 𝑝𝑠-open set because 𝑖𝑛𝑡𝜂({𝜔}) = ∅.

The following proposition gives an equivalent condition for proper soft 𝑝𝑠-closed subsets.

Proposition 3.3. A proper soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-closed iff 𝑐𝑙𝑟( (𝜂)) ≠𝔘 for all 𝜂 ∈H.

Proof. Let ( , H) be a proper soft 𝑝𝑠-closed subset. Then, 𝑖𝑛𝑡[( 𝑐(𝜂))] ≠ ∅ for all 𝜂 ∈ H. So 𝑐𝑙𝑟( (𝜂)) ≠ 𝔘 for all 𝜂 ∈ H. Conversely, 
let ( , H) be a soft subset such that 𝑐𝑙𝑟( (𝜂)) ≠𝔘 for all 𝜂 ∈ H. Then, 𝑖𝑛𝑟( 𝑐(𝜂)) ≠ ∅ for all 𝜂 ∈ H. Thus, ( 𝑐 , H) is soft 𝑝𝑠-closed, as 
required. □

Proposition 3.4. Every soft superset of a non-null soft 𝑝𝑠-open set is also soft 𝑝𝑠-open.

Proof. Suppose that ( , H) is a non-null soft 𝑝𝑠-open set and let (, H) be a soft set with ( , H)⊆̃(, H). By assumption, 𝑖𝑛𝑟( (𝜂)) ≠ 𝜙

for all 𝜂 ∈H, we obtain ∅ ≠ 𝑖𝑛𝑟( (𝜂))⊆𝑖𝑛𝑟((𝜂)) for all 𝜂 ∈H. Hence, (, H) is also soft 𝑝𝑠-open. □

The proofs of the next corollaries are obvious, so we omit them.

Corollary 3.5. Every soft subset of a proper soft 𝑝𝑠-closed is soft 𝑝𝑠-closed.

Corollary 3.6. The arbitrary soft union of soft 𝑝𝑠-open subsets of an 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-open.

Corollary 3.7. The arbitrary soft intersection of soft 𝑝𝑠-closed subsets of an 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-closed.

The finite soft intersection of soft 𝑝𝑠-open subsets need not be soft 𝑝𝑠-open and the finite union of soft 𝑝𝑠-closed subsets need not 
be soft 𝑝𝑠-closed as the next example shows.

Example 3.8. Let ℕ be the set of natural numbers and take H = {𝜂, 𝜌} as a set of parameters. Then Θ = {𝜙, ̃ℕ, ( , H)⊆̃ℕ̃ ∶ 1 ∈  (𝜂)
and 2 ∉  (𝜌)} be an ST on ℕ. It is obvious that (, H) = {(𝜂, {1, 5}), (𝜌, {1, 2})} and (, H) = {(𝜂, ℕ), (𝜌, {2, 3})} are soft 𝑝𝑠-open sets, and 
(, H) = {(𝜂, {6, 7}), (𝜌, {1})} and ( , H) = {(𝜂, {6, 8}), (𝜌, ℕ ⧵ {1})} are soft 𝑝𝑠-closed sets. Now, neither (, H)∩̃(, H) is soft 𝑝𝑠-open nor 
(, H)∪̃( , H) is soft 𝑝𝑠-closed.
5

The relationship among the current class and some of the previous ones are discussed in the following.
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Proposition 3.9.

(i) Every soft 𝑠𝑤-open subset of a full 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-open.

(ii) Every soft 𝑝𝑠-open subset of an extended 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑠𝑤-open.

Proof. (i): Let ( , H) be a soft 𝑠𝑤-open set. Then there is a soft open set (, H) such that

(,H)⊆̃( ,H). (1)

Since (𝔘, Θ, H) is full, 𝑖𝑛𝑟((𝜂)) ≠ ∅ for all 𝜂 ∈ H. According to relation (1), we obtain (𝜂) ⊆  (𝜂) for all 𝜂 ∈ H. Thus, 𝑖𝑛𝑟( (𝜂)) ≠ ∅
for all 𝜂 ∈H. Hence, ( , H) is a soft 𝑝𝑠-open set.

The proof of (ii) follows from the fact that the extended ST grantees the equality (𝑖𝑛𝑟(𝐹 ), H) = 𝑖𝑛𝑟( , H) as given in Theo-

rem 2.20. □

Corollary 3.10. Every soft open (soft 𝛼-open, soft semi-open) subset of a full 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-open.

Proof. As it is well-known that every soft open (soft 𝛼-open, soft semi-open) is soft 𝑠𝑤-open; so by (i) of Proposition 3.9, we get the 
desired result. □

It can be seen from Example 3.2 that the converses of (i) in the above proposition fail. The next example demonstrates that the 
converse of (ii) need not be true.

Example 3.11. Θ = {𝜙, ̃𝔘, (𝜅 , H) ∶ 𝜅 = 1, 2, 3, 4} be an extended ST over 𝔘 = {𝜐, 𝜔, 𝜇} with H = {𝜂, 𝜌}, where

(1, H) = {(𝜂, 𝔘), (𝜌, ∅)};

(2, H) = {(𝜂, ∅), (𝜌, 𝔘)};

(3, H) = {(𝜂, {𝜐}), (𝜌, ∅)};

(4, H) = {(𝜂, {𝜐}), (𝜌, 𝔘)}.

Then, {(𝜂, {𝜐}), (𝜌, {𝜇})} is a soft 𝑠𝑤-open set but it is not a soft 𝑝𝑠-open set because 𝑖𝑛𝑡𝜌({𝜇}) = ∅.

Proposition 3.12. The finite soft intersection of soft 𝑝𝑠-open subsets of an 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-open provided that all parametric 
topological spaces (𝔘, Θ𝜂) are hyperconnected.

Proof. Let ( , H) and (, H) be soft 𝑝𝑠-open subsets of an 𝑆𝑇 -space (𝔘, Θ, H). Putting (, H) = ( , H)∩̃(, H). Now, 𝑖𝑛𝑟((𝜂)) = 𝑖𝑛𝑟( (𝜂) ∩
(𝜂)) = 𝑖𝑛𝑟( (𝜂)) ∩ 𝑖𝑛𝑟((𝜂)). Suppose that 𝑖𝑛𝑟((𝜂)) = ∅ for some 𝜂 ∈H. Then we get that 𝑖𝑛𝑟( (𝜂)) and 𝑖𝑛𝑟((𝜂)) are disjoint nonempty 
open subsets for some 𝜂 ∈ H, which means that some parametric topological spaces are dishyperconnected. But this contradicts the 
given. So, it must 𝑖𝑛𝑟((𝜂)) ≠ ∅ for all 𝜂 ∈H. Hence, ( , H)∩̃(, H) is a soft 𝑝𝑠-open set. □

Corollary 3.13. If every topological space produced by an 𝑆𝑇 -space (𝔘, Θ, H) is hyperconnected, then the class of soft 𝑝𝑠-open subsets forms 
an ST.

Proof. By Definition 3.1 the null and absolute soft sets belong to this class. The closedness of this class under arbitrary soft unions 
and finite soft intersections are respectively obtained from Corollary 3.6 and Proposition 3.12. □

Proposition 3.14. A full 𝑆𝑇 -space (𝔘, Θ, H) is soft hyperconnected iff all parametric topological spaces (𝔘, Θ𝜂) are hyperconnected.

Proof. Necessity: Let the given conditions be satisfied. Suppose that there is 𝜂∗ ∈ H such that (𝔘, Θ𝜂∗ ) is dishyperconnected. Then 
Θ𝜂∗ contains nonempty disjoint open subsets; say, 𝑉 , 𝑊 . This means there are non-null soft open subsets ( , H) and (, H) such that 
 (𝜂∗) = 𝑉 and (𝜂∗) =𝑊 . By a condition of full, it must ( , H) and (, H) are disjoint, which contradicts the given. This means that 
(𝔘, Θ𝜂) is hyperconnected for all 𝜂 ∈H.

Sufficiency: Let every topological space (𝔘, Θ𝜂) produced by a full 𝑆𝑇 -space (𝔘, Θ, H) be hyperconnected. Suppose, to the contrary, 
that (𝔘, Θ, H) is soft dishyperconnected. Then Θ contains non-null disjoint soft open subsets ( , H) and (, H). By a condition of full, 
 (𝜂) and (𝜂) are nonempty disjoint open subsets. So that, all (𝔘, Θ𝜂) are dishyperconnected. But this contradicts the given. Hence, 
(𝔘, Θ, H) is soft hyperconnected, as required. □

Corollary 3.15. The class of soft 𝑝𝑠-open subsets of a full soft hyperconnected 𝑇𝑆 forms an ST.

Proof. Follows from Corollary 3.13 and Proposition 3.14. □
6

Two examples below confirm that the term “full ST” is necessary.
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Example 3.16. Let Θ = {𝜙, ̃𝔘, ( , H), (, H)} be an ST over 𝔘 = {𝜐, 𝜔, 𝜇} with H = {𝜂, 𝜌}, where

( , H) = {(𝜂, 𝔘), (𝜌, ∅)} and

(, H) = {(𝜂, ∅), (𝜌, 𝔘)}.

Then, it is obvious that (𝔘, Θ, H) is soft dishyperconnected. In contrast, both parametric topological spaces are hyperconnected.

Example 3.17. Let 𝔘 = {𝜐, 𝜔, 𝜇} be the universal set and ℕ be a set of parameters. The class {𝜙, ̃𝔘, (𝜅 , ℕ) ∶ 𝜅 (𝑛) ≠ 𝔘 for finite 
number 𝑛 ∈ ℕ, where 𝜅 ∈ ℕ} structures an ST over 𝔘 with ℕ. It can be noted that this ST does not contain any disjoint proper 
soft open subsets, so (𝔘, Θ, ℕ) is soft hyperconnected. On the other hand, all parametric topologies are discrete; hence, (𝔘, Θ𝑛) is 
dishyperconnected for all 𝑛 ∈ ℕ.

Theorem 3.18. Let ϝ be the family of soft 𝑝𝑠-open subsets obtained from an 𝑆𝑇 -space (𝔘, Θ, H). Then

1 +∏
𝜂∈H(∣ Θ𝜂 ∣ −1) ≤∣ ϝ ∣≤ 1 + (2|𝔘| − 1)|H|.

Proof. Let ϝ be the family of soft 𝑝𝑠-open subsets obtained from an 𝑆𝑇 -space (𝔘, Θ, H). Since the interior of each component of any 
non-null soft 𝑝𝑠-open subset is a nonempty open set, we select every 𝜂-component as a superset of a nonempty open subset of (𝔘, Θ𝜂). 
This implies that each component is selected by ∣ Θ𝜂 ∣ −1 distinct ways at least. By Definition 3.1 the null soft set is soft 𝑝𝑠-open, so by 
the counting principle we find that 1 +∏

𝜂∈H(∣ Θ𝜂 ∣ −1) ≤∣ ϝ ∣. Moreover, if Θ𝜂 is the discrete topology for all 𝜂 ∈H, then the number of 
nonempty open subsets of (𝔘, Θ𝜂) is 2|𝔘| −1. Again, by the counting principle we find that the family of soft 𝑝𝑠-open subsets obtained 
from (𝔘, Θ, H) is (2|𝔘| − 1)|H|. According to Definition 3.1 the null soft set is soft 𝑝𝑠-open, so ∣ ϝ ∣≤ 1 + (2|𝔘| − 1)|H|. Hence, we obtain 
the desired inequality. □

Proposition 3.19. The surjective soft continuous pre-image of a soft 𝑝𝑠-open set is also a soft 𝑝𝑠-open set.

Proof. Suppose that a soft mapping 𝖬𝓁 ∶ (𝔘, Θ, H) → (𝔙, Λ, E) is soft continuous and let ( , E) be a soft 𝑝𝑠-open subset of (𝔙, Λ, E). 
Now, for all 𝜀 ∈ E 𝑖𝑛𝑟( (𝜀)) ≠ ∅. Let 𝓁(𝜂) = 𝜀. It comes from Theorem 2.22 that the crisp mapping 𝖬 ∶ (𝔘, Θ𝜂) → (𝔙, Λ𝓁(𝜂)=𝜀) is 
continuous; therefore, 𝖬−1[𝑖𝑛𝑟( (𝜀))] ⊆ 𝑖𝑛𝑡[𝖬−1( (𝜀))]. By surjectiveness of 𝖬, we obtain 𝑖𝑛𝑡[𝖬−1( (𝜀))] is a nonempty open subset of 
𝔘. It follows from Definition 2.7 that 𝖬−1

𝓁 ( , E) is a soft 𝑝𝑠-open subset of (𝔘, Θ, H). Hence, the proof is complete. □

Corollary 3.20. A soft 𝑝𝑠-open set is a topological property.

Proposition 3.21. The class of soft 𝑝𝑠-open subsets is closed under finite product.

Proof. It is well-known that ∏𝜅∈𝐼 𝑖𝑛𝑡𝜅 (𝐴𝜅 ) = 𝑖𝑛𝑟(
∏

𝜅∈𝐼 𝐴𝜅 ), where 𝑖𝑛𝑡𝜅 is the interior operator in a parametric 𝑇𝑆 (𝔘𝜅 , Θ𝜅𝜂) and 𝑖𝑛𝑡
is the interior operator in the product of classes of parametric 𝑇𝑆𝑠 {(𝔘𝜅 , Θ𝜅𝜂) ∶ 𝜅 ∈ 𝐼}, so the result is obtained. □

4. Some types of soft compact and Lindelöf space inspired by soft 𝒑𝒔-open sets

In this part, we will investigate novel sorts of soft compactness and Lindelöfness inspired by the class of soft 𝑝𝑠-open sets. We 
characterize them and establish main features. The relationships between them are pointed out with the assistance of interesting ex-

amples. Also, we discuss the necessary conditions to preserve these types of covering property between soft topologies and parametric 
topologies.

Henceforth, ℝ will denote the set of real numbers.

4.1. Soft 𝑝𝑠-compactness and soft 𝑝𝑠-Lindelöfness

Definition 4.1. A class {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} of soft 𝑝𝑠-open sets in (𝔘, Θ, H) is called a soft parametric somewhat-open cover (shortly, 
soft 𝑝𝑠-open cover) of �̃� if �̃� =

⋃̃
𝜅∈𝐼 (𝜅 , H).

Definition 4.2. An 𝑆𝑇 -space (𝔘, Θ, H) is named:

(i) soft parametric somewhat-open compact (briefly, soft 𝑝𝑠-compact) providing that for any soft 𝑝𝑠-open cover {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} of 
(𝔘, Θ, H), there exists a finite set 𝛿 ⊆ 𝐼 in which �̃� =

⋃̃
𝜅∈𝛿(𝜅 , H).

(ii) soft parametric somewhat-open Lindelöf (briefly, soft 𝑝𝑠-Lindelöf) providing that for any soft 𝑝𝑠-open cover {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} of 
(𝔘, Θ, H), there exists a countable set 𝛿 ⊆ 𝐼 in which �̃� =

⋃̃
𝜅∈𝛿(𝜅 , H).

It is clear that any soft 𝑝𝑠-compact space is soft 𝑝𝑠-Lindelöf.
7

The following examples show the existence and uniqueness of soft 𝑝𝑠-compactness and soft 𝑝𝑠-Lindelöfness.
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Example 4.3. Let Θ = {𝜙, ( , H)⊆̃ℝ̃ ∶ ( , H) is finite} be an ST over ℝ, where a set of parameters H is finite. It is obvious that Θ is 
a full ST, so every soft open set is soft 𝑝𝑠-open. Also, it can be noted that every soft 𝑝𝑠-open set is soft open. Hence, (ℝ, Θ, H) is soft 
𝑝𝑠-compact.

Example 4.4. Let Θ = {ℝ̃, ( , H)⊆̃ℝ̃ ∶ 1 ̸⋐ ( , H)} be an ST over ℝ with H as a set of parameters. Now, the class {( , H)⊆̃ℝ̃ ∶  (𝜂) = {1, 𝜐}
for each 𝜂 ∈H and 𝜐 ∈ℝ − {1}} is a soft 𝑝𝑠-open cover of (ℝ, Θ, H); hence, it is not soft 𝑝𝑠-Lindelöf.

The ideas of soft compact (resp. soft Lindelöf) and soft 𝑝𝑠-compact (resp. soft 𝑝𝑠-Lindelöf) spaces are independent of each other. 
To point out this independency, see Example 4.4 which is soft compact but not soft 𝑝𝑠-Lindelöf, and the next example which is soft 
𝑝𝑠-compact but not soft Lindelöf.

Example 4.5. Let Θ = {𝜙, ̃𝔘, ( , ℝ)⊆̃�̃� ∶  (𝜂) = ∅ or 𝔘 for each 𝜂 ∈ℝ} be an ST on 𝔘 = {𝜐, 𝜔} with ℝ as a set of parameters. It can be 
checked that (𝔘, Θ, ℝ) is soft 𝑝𝑠-Lindelöf but not soft compact.

Proposition 4.6. If (𝔘, Θ, H) is a full soft 𝑝𝑠-compact (resp., full soft 𝑝𝑠-Lindelöf) space, then it is soft semi-compact (resp., soft semi-

Lindelöf).

Proof. Follows from Corollary 3.10. □

Example 4.5 confirms that a condition of a full ST in Proposition 4.6 is indispensable.

Proposition 4.7. Let (𝔘, Θ1, H) and (𝔘, Θ2, H) be soft 𝑇𝑆𝑠 such that Θ1 ⊆Θ2. If (𝔘, Θ2, H) is soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf), then 
(𝔘, Θ1, H) is soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf).

Proof. Since Θ1 ⊆Θ2, we obtain Θ1𝜂 ⊆Θ2𝜂 for all 𝜂 ∈ H. So all soft 𝑝𝑠-open subsets of Θ1 are also soft 𝑝𝑠-open subsets of Θ2. Hence, 
the wanted result is proved. □

By taking a set of parameters H = {𝜂, 𝜌} in Example 4.4, we note that any indiscrete 𝑆𝑇 -space defined over ℝ with a set of 
parameters H is contained in the space of ST displayed in Example 4.4, which we illustrate it is not a soft 𝑝𝑠-Lindelöf. This elaborates 
that the converse of Proposition 4.7 is generally false.

It is worthily noting that the fact obtained in Proposition 4.7 is not hold true for some types of extensions of soft open sets like 
soft pre-open sets. To elaborate this matter, take an 𝑆𝑇 -space displayed in Example 4.4. It is clear that any proper soft subset ( , H)
with 1 ⋐ ( , H) is not soft pre-open, which means that this 𝑆𝑇 -space is soft pre-compact. In contrast, if we replace this ST by the soft 
indiscrete topology, then we obtain a non soft pre-Lindelöf space.

The following two facts can be proved following similar lines of the proof of their counterparts proved in previous studies.

Proposition 4.8. All soft 𝑝𝑠-closed subsets of a soft 𝑝𝑠-compact 𝑇𝑆 (𝔘, Θ, H) are soft 𝑝𝑠-compact.

Corollary 4.9. The soft intersections of soft 𝑝𝑠-compact and soft 𝑝𝑠-closed sets are soft 𝑝𝑠-compact.

The above two results are still valid if we replace “soft 𝑝𝑠-compact” by “soft 𝑝𝑠-Lindelöf”.

To give a complete description for the spaces of soft 𝑝𝑠-compact and soft 𝑝𝑠-Lindelöf, we furnish the next result.

Theorem 4.10. An 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf) iff ⋂̃𝜅∈𝐼 (𝜅 , H) ≠ 𝜙 for every class  = {(𝜅 , H) ∶ 𝜅 ∈ 𝐼}
of soft 𝑝𝑠-closed sets has a FIP (resp., a CIP).

Proof. ⇒: For a class of soft 𝑝𝑠-closed subsets {(𝜅, H) ∶ 𝜅 ∈ 𝐼} of a soft 𝑝𝑠-compact space (𝔘, Θ, H), let ⋂̃𝜅∈𝐼 (𝜅 , H) = 𝜙. Then, 
�̃� =

⋃̃
𝜅∈𝐼 ( 𝑐

𝜅 , H). By assumption, �̃�=
⋃̃𝑛

𝜅=1(
𝑐
𝜅 , H). This means that 𝜙 = (

⋃̃𝑛

𝜅=1(
𝑐
𝜅 , H))𝑐 =

⋂̃𝑛

𝜅=1(𝜅 , H). Hence, this family has a FIP, as 
required.

⇐: If {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} is a soft 𝑝𝑠-open cover of (𝔘, Θ, H), then 𝜙 = ⋂̃
𝜅∈𝐼 ( 𝑐

𝜅 , H). We get 𝜙 = ⋂̃𝑛

𝜅=1(
𝑐
𝜅 , H) by the FIP of this cover. 

Thus, �̃� =
⋃̃𝑛

𝜅=1(𝜅 , H), which verifies that the soft 𝑝𝑠-compactness of (𝔘, Θ, H).
The case given between the parentheses can be proved in a similar way. □

Proposition 4.11. The soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf) sets are preserved under surjective soft continuous.

Proof. Let a soft mapping 𝖬𝓁 ∶ (𝔘, Θ, H) → (𝔙, Λ, E) be soft continuous and suppose that (, H) is a soft 𝑝𝑠-Lindelöf subset of 
(𝔘, Θ, H). Consider {(𝜅 , E) ∶ 𝜅 ∈ 𝐼} as a soft 𝑝𝑠-cover of 𝖬𝓁(, H). So we obtain (, H)⊆̃⋃̃𝜅∈𝐼𝖬

−1
𝓁 (𝜅 , E). According to Proposi-
8

tion 3.19, 𝖬−1
𝓁 (𝜅 , H) is soft 𝑝𝑠-open for all 𝜅 ∈ 𝐼 . By assumption of soft 𝑝𝑠-Lindelöfness of (, H), there is a countable set 𝛿 such that 
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(, H)⊆̃⋃̃𝜅∈𝛿𝖬
−1
𝓁 (𝜅 , E). Now, we obtain 𝖬𝓁(, H)⊆̃ ⋃̃

𝜅∈𝛿𝖬𝓁(𝖬−1
𝓁 (𝜅 , E))⊆̃

⋃̃
𝜅∈𝛿(𝜅 , E), which means that 𝖬𝓁(, H) is soft 𝑝𝑠-Lindelöf. 

It can be proved the case of soft 𝑝𝑠-compact in a similar way. □

In what follows, we discuss the navigation of these types of covering properties between soft topologies and classical (parametric) 
topologies. First of all, we need to specify the analogous notions of soft 𝑝𝑠-compact and 𝑝𝑠-Lindelöf spaces via the classical topological 
spaces. It is convenient to adopt the concepts of compactness and Lindelöfness inspired by somewhat-open sets as the appropriate 
counterparts for soft 𝑝𝑠-compactness and 𝑝𝑠-Lindelöfness. According to this viewpoint, we begin studying the navigation by showing 
that the properties of soft 𝑝𝑠-compactness and 𝑝𝑠-Lindelöfness are transmitted to their parametric topologies without any imposed 
terms, which represents an unparalleled behaviour compared to compactness and Lindelöfness defined by several generalizations of 
soft compactness and Lindelöfness such as soft 𝛼-compact, soft semi-compact, soft pre-compact and soft 𝑏-compact spaces and their 
corresponding Lindelöfness spaces.

Recall that a topological space (𝔘, 𝜏) is said to be somewhat compact (resp. somewhat Lindelöf) if every cover of somewhat-open 
subsets of (𝔘, 𝜏) has a finite (resp. countable) subcover.

Theorem 4.12. A topological space (𝔘, Θ𝜂) produced by a soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf) space (𝔘, Θ, H) is somewhat compact 
(resp., somewhat Lindelöf) for each 𝜂 ∈H.

Proof. Take {𝜅 ∶ 𝜅 ∈ 𝐼} as a somewhat-open cover of a parametric topological space (𝔘, Θ𝜂). Then, for every 𝜅 ∈ 𝐼 there is a 
nonempty open subset 𝜅 of Θ𝜂 in which 𝜅 ⊆ 𝜅 . So that, there is a soft open subset (𝑉𝜅, H) of Θ such that 𝑉𝜅 = 𝜅 for every 
𝜅 ∈ 𝐼 . Now, we build a class of soft 𝑝𝑠-open sets (𝑊𝜅, H) as following 𝑊𝜅 (𝜂) = 𝜅 and 𝑊𝜅 (𝜂′) =𝔘 for 𝜂′ ≠ 𝜂. Then, {(𝑊𝜅, H) ∶ 𝜅 ∈ 𝐼}

represents a soft 𝑝𝑠-open cover of (𝔘, Θ, H). By the soft 𝑝𝑠-compactness of (𝔘, Θ, H), we obtain �̃�=
𝑛⋃

𝜅=1
(𝑊𝜅, H). This directly leads to 

that

𝔘 =
𝑛⋃

𝜅=1
𝑊𝜅 (𝜂) =

𝑛⋃
𝜅=1

𝜅 .

Hence, (𝔘, Θ𝜂) is somewhat compact, as required. Following similar argument, one proves the case mentioned between parenthe-

ses. □

The target of the following example is to show that the converse side of Theorem 4.12 need not be true.

Example 4.13. Let Θ = {𝜙, ( , ℝ)⊆̃ℝ̃ ∶ ( , ℝ) is finite} be an ST over ℝ, where ℝ is also the set of parameters. Now, all topologies 
produced by (ℝ, Θ, ℝ) are the co-finite topology, so they are 𝑝𝑠-compact, but (ℝ, Θ, ℝ) is not soft 𝑝𝑠-Lindelöf.

In the other forgoing kinds of Lindelöfness and compactness initiated by generalizations of soft open sets, Theorem 4.12 need not 
be true as elucidated by the next example.

Example 4.14. We construct an ST Θ over ℝ and H = {𝜂, 𝜌} which respectively represent the set of real numbers and parameters set 
such that the members of Θ are the absolute soft set ℝ̃ and every soft set ( , H) satisfying that 1 ∉  (𝜂). One can note that the families 
of soft pre-open and soft open subset of this 𝑆𝑇 -space (ℝ, Θ, H) are identical. Hence, (ℝ, Θ, H) is soft pre-compact. Whereas, (ℝ, Θ𝜌) is 
not pre-Lindelöf because all parametric topologies Θ𝜌 are the discrete topology.

Next finding investigates the necessary terms to make the converse of Theorem 4.12 is correct.

Theorem 4.15. If a set of parameters H is finite (resp., countable), then, all parametric topological spaces (𝔘, Θ𝜂) inspired by (𝔘, Θ, H) is 
somewhat compact (resp., somewhat Lindelöf) iff (𝔘, Θ, H) is soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf).

Proof. A proof is presented for the case of compactness.

⇒: Assume that {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} is a soft 𝑝𝑠-open cover of (𝔘, Θ, H) and let ∣ H ∣= 𝑚. Then 𝔘 = ⋃
𝜅∈𝐼

𝜅 (𝜂) for each 𝜂 ∈ H. Then 

𝜅 (𝜂) is a somewhat open set for each 𝜂 ∈H. By hypothesis, (𝔘, Θ𝜂) is somewhat compact for each 𝜂 ∈H, so we obtain 𝔘 =
𝑛1⋃
𝜅=1

𝜅 (𝜂1), 

𝔘 =
𝑛2⋃

𝜅=𝑛1+1
𝜅 (𝜂2),. . . , 𝔘 =

𝑛𝑚⋃
𝜅=𝑛𝑚−1+1

𝜅 (𝜂𝑚). This implies that �̃� =
⋃̃𝑛𝑚

𝜅=1(𝜅 , H). Hence, (𝔘, Θ, H) is soft 𝑝𝑠-compact.

⇐: Follows from Theorem 4.12. □

In classical topology, the property says that a topological space defined over a finite (countable) set is somewhat compact is not 
9

valid for soft 𝑝𝑠-compact spaces.
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Example 4.16. Let (𝔘, Θ, ℝ) be an 𝑆𝑇 -space, where 𝔘 = {𝜐, 𝜔} is the universal set, Θ is the discrete ST and a set of parameters ℝ is 
the set of real numbers. Clearly, all parametric topological spaces (𝔘, Θ𝑟) produced by (𝔘, Θ, ℝ) is somewhat compact. In contrast, an 
𝑆𝑇 -space (𝔘, Θ, ℝ) is not soft 𝑝𝑠-Lindelöf.

In what follows, we present some characteristics of compactness, 𝛼-compactness and semi-compactness and their Lindelöfness 
counterparts that are evaporated for the spaces of soft 𝑝𝑠-compact and 𝑝𝑠-Lindelöf spaces; see Example 4.5.

Let (𝔘, Θ, H) be an extended 𝑆𝑇 -space. Then,

• if all topological spaces (𝔘, Θ𝑎) produced by (𝔘, Θ, H) are compact (resp., 𝜎-compact), then (𝔘, Θ, H) is soft compact (resp., soft 
𝜎-compact), where 𝜎 ∈ {𝛼, 𝑝𝑟𝑒, 𝑠𝑒𝑚𝑖, 𝑏}.

• if all topological spaces (𝔘, Θ𝑎) produced by (𝔘, Θ, H) are Lindelöf (resp., 𝜎-Lindelöf), then (𝔘, Θ, H) is soft Lindelöf (resp., soft 
𝜎-Lindelöf), where 𝜎 ∈ {𝛼, 𝑝𝑟𝑒, 𝑠𝑒𝑚𝑖, 𝑏}.

The property says that “An extended 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑗-compact (resp., soft 𝑗-Lindelöf) iff 𝔘 and H are finite (resp., 
countable)” is true for all celebrated generalizations of soft compact and Lindelöf spaces. But it does not hold true for the current 
types of covering properties as the next example demonstrates.

Example 4.17. Let (ℝ, Θ, ℝ) be an 𝑆𝑇 -space, where the set of real numbers ℝ is the universal and parameters sets and Θ consists 
of all pseudo constant soft sets. It is obvious that the only soft 𝑝𝑠-open subsets are the absolute and null soft sets, so (ℝ, Θ, ℝ) is soft 
𝑝𝑠-compact. But an 𝑆𝑇 -space (ℝ, Θ, ℝ) is not soft Lindelöf, which means that it is not soft 𝑏-Lindelöf and soft 𝑠𝑤-Lindelöf. So it is not 
soft 𝛼-Lindelöf, soft pre-Lindelöf, soft semi-Lindelöf.

4.2. Almost soft 𝑝𝑠-compactness and almost soft 𝑝𝑠-Lindelöfness

We first introduce the next definition which will be the basis to define the main concepts of this subsection.

Definition 4.18. The soft 𝑝𝑠-closure of a soft subset ( , H) of an 𝑆𝑇 -space (𝔘, Θ, H), denoted by 𝑠𝑝𝑐𝑙𝑟( , H), is the intersections of all 
soft 𝑝𝑠-closed sets containing ( , H).

Definition 4.19. An 𝑆𝑇 -space (𝔘, Θ, H) is named:

(i) almost soft parametric somewhat-open compact (briefly, almost soft 𝑝𝑠-compact) if any soft 𝑝𝑠-open cover has a finite subfamily 
in which the soft 𝑝𝑠-closure of whose elements is a cover of �̃�.

(ii) almost soft parametric somewhat-open Lindelöf (briefly, almost soft 𝑝𝑠-Lindelöf) if any soft 𝑝𝑠-open cover has a countable 
subfamily in which the soft 𝑝𝑠-closure of whose elements is a cover of �̃�.

It can be easily remarked that all almost soft 𝑝𝑠-compact spaces are almost soft 𝑝𝑠-Lindelöf.

The examples below show the existence and uniqueness of almost soft 𝑝𝑠-compactness and almost soft 𝑝𝑠-Lindelöfness.

Example 4.20. Let Θ = {𝜙, ̃ℝ, ( , H)⊆̃�̃� ∶ 1 ∈  (𝜂)} be an ST on ℝ where H = {𝜂, 𝜌}. Similar to particular point topology, we get that 
(ℝ, Θ, H) is almost soft 𝑝𝑠-compact.

Example 4.21. An 𝑆𝑇 -space (ℝ, Θ, H) mentioned in Example 4.4 is not almost soft 𝑝𝑠-Lindelöf.

Proposition 4.22. Any soft 𝑝𝑠-compact (resp., soft 𝑝𝑠-Lindelöf) space is almost soft 𝑝𝑠-compact (resp., almost soft 𝑝𝑠-Lindelöf).

It can be seen from Example 4.20 that the converse of Proposition 4.22 need not be true in general.

The following two facts can be proved following similar lines of the proof of their counterparts given in the foregoing studies.

Proposition 4.23. All soft 𝑝𝑠-clopen subsets of an almost soft 𝑝𝑠-compact space (𝔘, Θ, H) are almost soft 𝑝𝑠-compact.

Corollary 4.24. The intersection of almost soft 𝑝𝑠-compact and soft 𝑝𝑠-clopen subsetsis almost soft 𝑝𝑠-compact.

The above two results are still valid if we replace the word “compact” by “Lindelöf”.

Definition 4.25. A class of soft sets {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} is said to have the 1st 𝑝𝑠-CIP (resp., 1st 𝑝𝑠-FIP) provided that ⋂̃𝜅∈𝛿𝑠𝑝𝑖𝑛𝑟(𝜅 , H) ≠
𝜙 for any countable (resp., finite) set 𝛿 ⊆ 𝐼 .
10

The next theorem characterizes the spaces of almost soft 𝑝𝑠-Lindelöf and almost soft 𝑝𝑠-compact.
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Theorem 4.26. An 𝑆𝑇 -space (𝔘, Θ, H) is an almost soft 𝑝𝑠-compact (resp., almost soft 𝑝𝑠-Lindelöf) iff every family {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} of soft 
𝑝𝑠-closed subsets with a non-null soft intersection has the 1st 𝑝𝑠-FIP (resp., 1st 𝑝𝑠-CIP).

Proof. A proof is provided for compactness.

⇒: Take {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} as an arbitrary class of soft 𝑝𝑠-closed subsets of an almost soft 𝑝𝑠-compact (𝔘, Θ, H). If ⋂̃𝜅∈𝐼 (𝜅 , H) = 𝜙, 
then �̃� =

⋃̃
𝜅∈𝐼 ( 𝑐

𝜅 , H). So, �̃�=
⋃̃𝑛

𝜅=1𝑠𝑝𝑐𝑙𝑟(
𝑐
𝜅 , H). Thus, 𝜙 = (

⋃̃𝑛

𝜅=1𝑠𝑝𝑐𝑙𝑟(
𝑐
𝜅 , H))𝑐 =

⋂̃𝑛

𝜅=1𝑠𝑝𝑖𝑛𝑟(𝜅 , H), as required.

⇐: Let {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} be a soft 𝑝𝑠-open cover of (𝔘, Θ, H). Then 𝜙 = ⋂̃
𝜅∈𝐼 ( 𝑐

𝜅 , H). According to the 1st 𝑝𝑠-FIP, we get 𝜙 =⋂̃𝑛

𝜅=1𝑠𝑝𝑖𝑛𝑟(
𝑐
𝜅 , H), which equivalently means that �̃� =

⋃̃𝑛

𝜅=1𝑠𝑝𝑐𝑙𝑟(𝜅 , H). Hence, (𝔘, Θ, H) is almost soft 𝑝𝑠-compact. □

Theorem 4.27. The surjective soft continuous image of an almost soft 𝑝𝑠-compact (resp., almost soft 𝑝𝑠-Lindelöf) set is almost soft compact 
(resp., almost soft Lindelöf) provided that the ST in the domain is full.

Proof. Let a soft mapping 𝖬𝓁 ∶ (𝔘, Θ, H) → (𝔙, Λ, E) be soft continuous and suppose that (, H) is an almost soft 𝑝𝑠-Lindelöf subset of 
(𝔘, Θ, H). Consider {(𝜅 , E) ∶ 𝜅 ∈ 𝐼} as a soft 𝑝𝑠-open cover of 𝖬𝓁(, H). So we obtain (, H)⊆̃⋃̃𝜅∈𝐼𝖬

−1
𝓁 (𝜅 , E). According to Proposi-

tion 3.19, 𝖬−1
𝓁 (𝜅 , H) is soft 𝑝𝑠-open for all 𝜅 ∈ 𝐼 . By assumption of almost soft 𝑝𝑠-Lindelöfness of (, H), there is a countable set 𝛿 such 

that (, H)⊆̃⋃̃𝜅∈𝛿𝑠𝑝𝑐𝑙𝑟(𝖬−1
𝓁 (𝜅 , E)). Since Θ is full, it follows from Corollary 3.10 that ⋃̃𝜅∈𝛿𝑠𝑝𝑐𝑙𝑟(𝖬−1

𝓁 (𝜅 , E))⊆̃
⋃̃

𝜅∈𝛿𝑠𝑐𝑙𝑟(𝖬−1
𝓁 (𝜅 , E)). 

Now, we obtain 𝖬𝓁(, H)⊆̃⋃̃𝜅∈𝛿𝖬𝓁(𝑠𝑐𝑙𝑟(𝖬−1
𝓁 (𝜅 , E))). By soft continuity, ⋃̃

𝜅∈𝛿𝖬𝓁(𝑠𝑐𝑙𝑟(𝖬−1
𝓁 (𝜅 , E)))⊆̃

⋃̃
𝜅∈𝛿𝑠𝑐𝑙𝑟(𝖬𝓁(𝖬−1

𝓁 (𝜅 , E)))
⊆̃
⋃̃

𝜅∈𝛿𝑠𝑐𝑙𝑟(𝜅 , E), which means that 𝖬𝓁(, H) is almost soft Lindelöf. It can be proved the case of soft 𝑝𝑠-compact in a similar 
way. □

We complete this subsection by studying the transmission of the introduced covering properties between soft topologies and 
classical topologies. First, we recall that a topological space (𝔘, 𝜏) is said to be almost somewhat compact (resp. almost somewhat 
Lindelöf) if every cover of somewhat-open subsets of (𝔘, 𝜏) has a finite (resp. countable) subcover such that the somewhat closure of 
whose members covers 𝔘.

Lemma 4.28. (𝑠𝑝𝑐𝑙𝑟( ), H)⊆̃𝑠𝑝𝑐𝑙𝑟( , H) for any soft set ( , H) in a full 𝑆𝑇 -space (𝔘, Θ, H).

Proof. Let 𝜐𝜂 ∉ 𝑠𝑝𝑐𝑙𝑟( , H). Then, it can be found a soft 𝑝𝑠-open set (, H) satisfying 𝜐𝜂 ∈ (, H) and (, H)⋂̃( , H) = 𝜙. Automatically, 
it follows that (𝜂) ∩  (𝜂) = ∅ for each 𝜂 ∈ H. The characteristic of full of Θ implies that (𝜂) is a nonempty 𝑝𝑠-open subset of Θ𝜂 . 
Obviously, we obtain (𝜂) ∩ 𝑠𝑝𝑐𝑙𝑟( (𝜂)) = ∅. Therefore, 𝜐𝜂 ∉ (𝑠𝑝𝑐𝑙𝑟( ), H). Hence, (𝑠𝑝𝑐𝑙𝑟( ), H)⊆̃𝑠𝑝𝑐𝑙𝑟( , H), as required. □

By taking a soft subset ( , H) = {(𝜂, {𝜐}), (𝜌, {𝜐})} of full 𝑆𝑇 -space displayed in Example 3.2, we find that 𝑠𝑝𝑐𝑙𝑟( , H) = �̃� whereas 
(𝑠𝑝𝑐𝑙𝑟(𝐻), H) = {(𝜂, 𝔘), (𝜌, {𝜐})}. This confirms that the converse of lemma mentioned above is wrong in general.

Theorem 4.29. For a full 𝑆𝑇 -space (𝔘, Θ, H) with a finite (resp., countable) parameter set, every topological space (𝔘, Θ𝜂) produced by 
almost soft 𝑝𝑠-compact (resp., almost soft 𝑝𝑠-Lindelöf) (𝔘, Θ, H) is almost somewhat compact (resp., almost somewhat Lindelöf).

Proof. This proof investigates the case of compactness.

Let {(𝜅 , H) ∶ 𝜅 ∈ 𝐼} be a soft 𝑝𝑠-open cover of (𝔘, Θ, H) such that ∣ H ∣= 𝑚. Then 𝔘 = ⋃
𝜅∈𝐼

𝜅 (𝜂) for each 𝜂 ∈ H. Now, 𝜅 (𝜂) is 

a nonempty somewhat-open subset for each 𝜂 ∈ H. By hypothesis, (𝔘, Θ𝜂) is almost somewhat compact for each 𝜂 ∈ H, we obtain 

𝔘 =
𝑛1⋃
𝜅=1

𝑠𝑝𝑐𝑙𝑟(𝜅 (𝜂1)), 𝔘 =
𝑛2⋃

𝜅=𝑛1+1
𝑠𝑝𝑐𝑙𝑟(𝜅 (𝜂2)),. . . , 𝔘 =

𝑛𝑚⋃
𝜅=𝑛𝑚−1+1

𝑠𝑝𝑐𝑙𝑟(𝜅 (𝜂𝑚)). This implies that �̃� =
⋃̃𝑛𝑚

𝜅=1(𝑠𝑝𝑐𝑙𝑟(𝜅 ), H). According to 

Lemma 4.28, we obtain (𝑠𝑝𝑐𝑙𝑟(𝐻), H)⊆̃𝑠𝑝𝑐𝑙𝑟( , H), so �̃�=
⋃̃𝑛𝑚

𝜅=1𝑠𝑝𝑐𝑙𝑟(𝜅 , H). Hence, (𝔘, Θ, H) is almost soft 𝑝𝑠-compact. □

The above theorem collapses if the terms of finite or countable of a set of parameters are absent.

Example 4.30. Let (𝔘, Θ, ℝ) be an 𝑆𝑇 -space given in Example 4.16. Then, all parametric topological space (𝔘, Θ𝑟) inspired by 
(𝔘, Θ, ℝ) are almost somewhat compact. But an 𝑆𝑇 -space (𝔘, Θ, ℝ) is not almost soft 𝑝𝑠-Lindelöf.

5. Soft 𝒑𝒔-connected spaces

We allocated this section to study a novel kind of soft connectedness inspired by soft 𝑝𝑠-open sets. We explore its master char-

acterizations and elucidate that every soft 𝑝𝑠-connected is almost soft 𝑝𝑠-compact. Moreover, we proved two interesting properties 
under a full ST, first, soft 𝑝𝑠-connectedness is a proper generalization of soft connectedness. Second, the correspondence between soft 
𝑝𝑠-connected and soft hyperconnected spaces. Ultimately, we describe how this type of soft connectedness behaves between soft and 
11

classical topologies.
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Definition 5.1. The soft subsets ( , H) and (, H) of an 𝑆𝑇 -space (𝔘, Θ, H) are named 𝑝𝑠-separated if ( , H)⋂̃𝑠𝑝𝑐𝑙𝑟(, H) = 𝜙 and 
𝑠𝑝𝑐𝑙𝑟( , H)⋂̃(, H) = 𝜙.

It is easily to note that the stipulation of disjoint is proper weaker than stipulation of 𝑝𝑠-separated.

Definition 5.2. If an 𝑆𝑇 -space (𝔘, Θ, H) contains non-null 𝑝𝑠-separated soft subsets ( , H) and (, H) such that their union is �̃�, then 
we call (𝔘, Θ, H) soft 𝑝𝑠-disconnected and call ( , H) and (, H) a soft 𝑝𝑠-disconnection of �̃�. Otherwise, (𝔘, Θ, H) is named a soft 
𝑝𝑠-connected space.

By the next examples, it is shown there is no relationship between soft disconnected and soft 𝑝𝑠-disconnected spaces.

Example 5.3. An 𝑆𝑇 -space (𝔘, Θ, H) presented in Example 4.4 is soft 𝑝𝑠-disconnected space which is soft connected.

Example 5.4. An 𝑆𝑇 -space (𝔘, Θ, H) presented in Example 4.5 is soft disconnected which is soft 𝑝𝑠-connected.

Proposition 5.5. A full soft disconnected space (𝔘, Θ, H) is soft 𝑝𝑠-disconnected.

Proof. According to Corollary 3.10, we find that 𝑠𝑝𝑐𝑙𝑟( , H)⊆̃𝑐𝑙𝑟( , H) for each ( , H)⊆̃�̃�. □

The above proposition is not conversely in general; the example below elaborates this point.

Example 5.6. Let Θ = {𝜙, ̃𝔘, ( , H), (, H), (, H)} be an ST over 𝔘 = {𝜐, 𝜔, 𝜇} with H = {𝜂, 𝜌}, where

( , H) = {(𝜂, {𝜐}), (𝜌, {𝜐})};

(, H) = {(𝜂, {𝜔}), (𝜌, {𝜔})} and

(, H) = {(𝜂, {𝜐, 𝜔}), (𝜌, {𝜐, 𝜔})}.

Now, it can be checked that (𝔘, Θ, H) is full soft connected. On the other hand, {(𝜂, {𝜐, 𝜇}), (𝜌, {𝜔})} and {(𝜂, {𝜔}), (𝜌, {𝜐, 𝜇})} are 
non-null 𝑝𝑠-separated soft sets with soft union equals the absolute soft set; so it is soft 𝑝𝑠-disconnected. In contrast, (𝔘, Θ, H) is soft 
connected.

We furnish some descriptions for soft 𝑝𝑠-connected spaces in the next finding.

Proposition 5.7. The three characterizations below are corresponding.

(i) (𝔘, Θ, H) is soft 𝑝𝑠-connected.

(ii) if ( , H) and (, H) are disjoint soft 𝑝𝑠-closed (or soft 𝑝𝑠-open) subsets with soft union equals �̃�, then ( , H) = �̃� or (, H) = �̃�.

(iii) The null and absolute soft sets are the only soft 𝑝𝑠-open and soft 𝑝𝑠-closed.

Proof. Following similar arguments given for proof of its counterpart result in general topology, the proof follows. □

The theorem below replaces soft 𝑝𝑠-open sets with soft open sets to describe soft 𝑝𝑠-disconnectedness when the ST is full.

Theorem 5.8. A full 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-disconnected iff it is soft dishyperconnected.

Proof. ⇒: Let (𝔘, Θ, H) be full soft 𝑝𝑠-disconnected. Then Θ contains proper non-null disjoint soft 𝑝𝑠-open subsets; say, ( , H) and 
(, H). By taking specific parameter; say 𝜂⋆, we obtain 𝑖𝑛𝑟( (𝜂⋆)) ≠ ∅ and 𝑖𝑛𝑟((𝜂⋆)) ≠ ∅. This implies that there are soft open subsets 
(, H) and (, H) such that (𝜂⋆) = 𝑖𝑛𝑟( (𝜂⋆)) and (𝜂⋆) = 𝑖𝑛𝑟((𝜂⋆)). Now, (, H)⋂̃(, H) is a member of Θ with an empty component; 
so it follows from the condition of full that (, H) and (, H) are disjoint. Hence, (𝔘, Θ, H) is soft dishyperconnected.

⇐: Follows from Corollary 3.10. □

Corollary 5.9. The next properties are equivalent provided that (𝔘, Θ, H) is full.

(i) (𝔘, Θ, H) is soft 𝑝𝑠-connected.

(ii) if ( , H) and (, H) are non-null soft 𝑝𝑠-open subsets, then ( , H)∩̃(, H) ≠ 𝜙.

(iii) if ( , H) and (, H) are proper soft 𝑝𝑠-closed subsets, then ( , H)∪̃(, H) ≠ �̃�.

(iv) all non-null soft open sets are soft dense.

(v) if ( , H) is a proper soft closed subset, then 𝑖𝑛𝑟( , H) = 𝜙.

(vi) 𝑐𝑙𝑟( , H) = �̃� or 𝑖𝑛𝑟(𝑐𝑙𝑟( , H)) = 𝜙 for any soft subset ( , H).
12

(vii) No disjoint soft neighbourhoods separate two soft-points.
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Definition 5.10. A soft subset (, H) of (𝔘, Θ, H) which cannot be represented as a soft union of two non-null 𝑝𝑠-separated soft sets 
(, H) and ( , H) is named a soft 𝑝𝑠-connected set. Otherwise we call (, H) a soft 𝑝𝑠-disconnected set.

Lemma 5.11. Let soft sets ( , H) and (, H) be soft 𝑝𝑠-disconnection of (𝔘, Θ, H) with the property that (, H) is soft 𝑝𝑠-connected. Then 
(, H)⊆̃( , H) or (, H)⊆̃(, H).

Proof. Since ( , H) and (, H) are soft 𝑝𝑠-disconnection sets of (𝔘, Θ, H), we obtain ( , H)⋃̃(, H) = �̃� and [( , H)⋂̃𝑠𝑝𝑐𝑙𝑟(, H)]⋃̃
[𝑠𝑝𝑐𝑙𝑟( , H)⋂̃(, H)] = 𝜙. Now, (, H) = [(, H)⋂̃( , H)]⋃̃[(, H)⋂̃(, H)]. It is clear that

[((,H)
⋂̃

( ,H))
⋂̃

𝑠𝑝𝑐𝑙𝑟((,H)
⋂̃

( ,H))]
⋃̃

[((,H)
⋂̃

(,H))
⋂̃

𝑠𝑝𝑐𝑙𝑟((,H)
⋂̃

(,H))]

⊆̃[(,H)
⋂̃

𝑠𝑝𝑐𝑙𝑟( ,H)]
⋃̃

[(,H)
⋂̃

𝑠𝑝𝑐𝑙𝑟(,H)] = 𝜙.

So, we infer that (, H) has the following soft 𝑝𝑠-disconnection sets (, H)⋂̃( , H) and (, H)⋂̃(, H), which contradicts that (, H)
is soft 𝑝𝑠-connected. Hence, (, H)⋂̃( , H) = 𝜙 or (, H)⋂̃(, H) = 𝜙, which means that (, H)⊆̃( , H) or (, H)⊆̃(, H). □

Theorem 5.12. Let (, H) be a soft subset of (𝔘, Θ, H) such that for each 𝜐𝜂, 𝜔𝜌 ∈ (, H) there is a soft 𝑝𝑠-connected subset (, H) of (, H)
containing 𝜐𝜂, 𝜔𝜌. Then (, H) is soft 𝑝𝑠-connected.

Proof. Take (, H) as a soft 𝑝𝑠-disconnected set. This means that (, H) has soft 𝑝𝑠-disconnection sets, say, ( , H) and (, H). Directly, 
we find soft-points 𝜐𝜂, 𝜔𝜌 in which 𝜐𝜂 ∈ ( , H) and 𝜔𝜌 ∈ (, H). According to the given, we find a soft 𝑝𝑠-connected set (, H) containing 
𝜐𝜂, 𝜔𝜌 and (, H)⊆̃(, H) = ( , H)⋃̃(, H). By Lemma 5.11, we get (, H)⊆̃( , H) or (, H)⊆̃(, H). Consequentially, ( , H)⋂̃(, H) ≠ 𝜙, 
which contradicts that ( , H) and (, H) are soft 𝑝𝑠-disconnection of (, H). This means that (, H) is soft 𝑝𝑠-connected. □

Corollary 5.13. (, H) is a soft 𝑝𝑠-connected set provided that (, H) is a soft union of soft 𝑝𝑠-connected sets (𝜅 , H) which their soft 
intersections are non-null.

Proposition 5.14. Let 𝖬𝓁 be a soft continuous mapping of a soft 𝑝𝑠-connected space (𝔘, Θ, H) onto an 𝑆𝑇 -space (𝔙, Λ, E). Then 𝖬𝓁(�̃�) soft 
𝑝𝑠-connected.

Proof. Take 𝖬𝓁(�̃�) = �̃� as a soft 𝑝𝑠-disconnected set. Theorem 5.7 tells us that there are non-null disjoint soft 𝑝𝑠-open subsets (, H)
and ( , H). By Proposition 3.19 we obtain 𝖬−1

𝓁 (, H) and 𝖬−1
𝓁 ( , H) are disjoint soft 𝑝𝑠-open sets in Θ. Surjectiveness of 𝖬𝓁 implies 

that these soft 𝑝𝑠-open subsets are non-null and their soft union is the absolute soft set �̃�. We obtain (𝔘, Θ, H) is soft 𝑝𝑠-disconnected 
which is a contradiction. This proves that (𝔙, Λ, E) is soft 𝑝𝑠-connected. □

Proposition 5.15. Every soft 𝑝𝑠-connected is almost soft 𝑝𝑠-compact.

With respect to the converse side of the above proposition, note that Example 5.6 provides a soft 𝑝𝑠-disconnected space which is 
also almost soft 𝑝𝑠-compact.

We close this part of work by discussing this type of connectedness between soft topologies and the general topologies inspired 
by it.

As we previously mentioned that the classical counterparts of the concepts introduced herein are those defined by somewhat-open 
sets. So we recall the definition of somewhat connectedness in the following

Definition 5.16. A topological space (𝔘, Θ) is called somewhat disconnected if there are two nonempty somewhat-open sets which 
their union is 𝔘. Otherwise, we call (𝔘, Θ) a somewhat connected.

Theorem 5.17. An 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-connected iff (𝔘, Θ𝜂) is somewhat connected for some 𝜂 ∈H.

Proof. ⇒: Let (𝔘, Θ, H) be soft 𝑝𝑠-connected. Suppose, to the contrary, all parametric topological spaces (𝔘, Θ𝜂) are somewhat 
disconnected. Then there exist disjoint nonempty 𝑠𝑤-open subsets 𝑉𝜂, 𝑊𝜂 of (𝔘, Θ𝜂) with union equals 𝔘 for each 𝜂 ∈H. This implies 
that ( , H) = {(𝜂,  (𝜂)) ∶  (𝜂) = 𝑉𝜂} and (, H) = {(𝜂, (𝜂)) ∶ (𝜂) =𝑊𝜂} are disjoint non-null soft 𝑝𝑠-open subsets with soft union equals 
�̃�, which means that (𝔘, Θ, H) is soft 𝑝𝑠-disconnected. But this contradicts the given. Hence, (𝔘, Θ𝜂) is somewhat connected for some 
𝜂 ∈H.

⇐: Suppose, to the contrary, (𝔘, Θ, H) is soft 𝑝𝑠-disconnected. Then there exist disjoint non-null soft 𝑝𝑠-open subsets ( , H) and (, H)
with soft union equals �̃�. By the definition of a soft 𝑝𝑠-open subset, we find that  (𝜂) and (𝜂) are disjoint non-null 𝑠𝑤-open subsets 
of (𝔘, Θ𝜂) with union equals 𝔘 for each 𝜂 ∈ H. Therefore, all (𝔘, Θ𝜂) are somewhat disconnected. But this contradicts the given. 
13

Hence, (𝔘, Θ, H) is soft 𝑝𝑠-connected. □
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Corollary 5.18. If all parametric topological spaces (𝔘, Θ𝜂) produced by an 𝑆𝑇 -space (𝔘, Θ, H) are somewhat connected, then (𝔘, Θ, H) is 
soft 𝑝𝑠-connected.

An 𝑆𝑇 -space (𝔘, Θ, H) introduced in Example 3.8 is soft 𝑝𝑠-connected; however, its parametric topological space (𝔘, Θ𝜌) is some-

what disconnected. This confirms that the converse of Corollary 5.18 fails.

Theorem 5.19. A full 𝑆𝑇 -space (𝔘, Θ, H) is soft 𝑝𝑠-connected iff (𝔘, Θ𝜂) is somewhat connected for all 𝜂 ∈H.

Proof. ⇒: Let (𝔘, Θ, H) be soft 𝑝𝑠-connected. Suppose, to the contrary, there is a parametric topological space (𝔘, Θ𝜂) is somewhat 
disconnected. Then there exist disjoint nonempty 𝑠𝑤-open subsets 𝑉𝜂, 𝑊𝜂 of (𝔘, Θ𝜂) with union equals 𝔘. It is obvious that 𝑖𝑛𝑟(𝑉𝜂)
and 𝑖𝑛𝑟(𝑊𝜂) are nonempty open subsets of (𝔘, Θ𝜂). This implies there exist non-null soft open subsets ( , H) and (, H) such that 
 (𝜂) = 𝑖𝑛𝑟(𝑉𝜂) and (𝜂) = 𝑖𝑛𝑟(𝑊𝜂). Now, ( , H)∩̃(, H) is soft open with an empty component. By a condition of full, ( , H)∩̃(, H) = 𝜙. 
Thus, (𝔘, Θ, H) is soft hyperconnected. It follows from Theorem 5.8 that (𝔘, Θ, H) is soft 𝑝𝑠-disconnected, which contradicts the given. 
This contradiction finishes the proof that (𝔘, Θ, H) is soft 𝑝𝑠-connected.

⇐: It is proved in Theorem 5.17. □

6. Conclusion remarks and future works

Since it was introduced the frame of ST, many authors endeavored to convey the classical topological principles to this soft frame. 
As it clearly appeared from the published literature, ST provides a fruitful environment to expand soft topological concepts; for 
example, each 𝑇𝑖-space corresponds to four types of soft 𝑇𝑖-spaces. Also, it was successfully applied some abstract soft topological 
concepts to handle some practical problems as introduced in [5,8,2].

In this article, we have provided a new technique to initiate the well-known generalizations of soft open sets. This technique 
is based on these corresponding generalizations that are obtained from the classical topologies produced by an ST. We first have 
presented the notion of “soft 𝑝𝑠-open sets” and demonstrated this class of soft 𝑝𝑠-open subsets of full soft hyperconnected space 
constructs an ST. Then, we have displayed the concepts of soft 𝑝𝑠-compact, soft 𝑝𝑠-Lindelöf, almost soft 𝑝𝑠-compact, almost soft 
𝑝𝑠-Lindelöf, and soft 𝑝𝑠-connected spaces. The basic properties of these spaces have been established and some interesting examples 
have been provided to show the relationships between them. We have investigated their main characterizations and demonstrated 
their unique properties such as 1) transmission of soft 𝑝𝑠-compactness and soft 𝑝𝑠-Lindelöfness to all classical topologies without any 
imposed condition; 2) The equivalent between soft 𝑝𝑠-connected and soft hyperconnected spaces. We also have obtained and illus-

trated with some counterexamples some exciting results which describe the behaviours of these spaces via an ST and its parametric 
topologies.

In closing, we give four possible directions for future work.

(i) It would be interesting to replace the concept of somewhat-open sets restriction on parametric topologies by considering the 
other celebrated extensions of open sets like 𝛼-open and 𝛽-open subsets.

(ii) One can redefine the previous notions of soft continuity and soft separation axioms by making use of the class of soft 𝑝𝑠-open 
sets

(iii) Also, it can be investigated the application given in [2] by replacing the concept of soft somewhat-open sets with soft 𝑝𝑠-open 
sets.

(iv) It would be of interest to research the concepts introduced herein in the frames of supra-soft and infra-soft topologies.
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[20] A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl. 21 (2012) 113–119.

[21] T.M. Al-shami, M.E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci. 12 (2018) 620–630.

[22] T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform. 8 (2014) 511–524.

[23] H. Al-jarrah, A. Rawshdeh, T.M. Al-shami, On soft compact and soft Lindelöf spaces via soft regular closed sets, Afr. Math. 33 (2022).

[24] T.M. Al-shami, A. Mhemdi, A. Rawshdeh, H. Al-jarrah, Soft version of compact and Lindelöf spaces using soft somewhere dense set, AIMS Math. 6 (2021) 
8064–8077.

[25] T.M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M.E. El-Shafei, Compactness and connectedness via the class of soft somewhat-open sets, AIMS Math. 8 (1) (2023) 
815–840.
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