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Abstract
This paper investigates using multi-label deep learning approach to extending the 
understanding of cognitive presence in MOOC discussions. Previous studies dem-
onstrate the challenges of subjectivity in manual categorisation methods. Training 
automatic single-label classifiers may preserve this subjectivity. Using a triangula-
tion approach, we developed a multi-label, fine-tuning BERT classifier to analyse 
cognitive presence to enrich results with state-of-the-art, single-label classifiers. We 
trained the multi-label classifiers on the MOOC discussion messages that were cat-
egorised into the same phase of cognitive presence by the expert coders, and tested 
the best-performing classifiers on the messages that the coders categorised into dif-
ferent phases. The results suggest that multi-label classifiers slightly outperformed 
the single-label classifiers, and the multi-label classifiers predicted the discussion 
messages as either one category or two adjacent categories of cognitive presence. 
No messages were tagged as non-adjacent categories by the multi-label classifier. 
This is an improvement compared to manual categorisation by our expert coders, 
who obtained non-adjacent categories and even three categories of cognitive pres-
ence in one message. In addition to the fully correct prediction, parts of messages 
were partially correctly predicted by the multi-label classifier. We report an in-depth 
quantitative and qualitative analysis of these messages in the paper. The automatic 
categorisation results suggest that the multi-label classifiers have the potential to 
help educators and researchers identify research subjectivity and tolerate the multi-
plicity in cognitive presence categorisation. This study contributes to extending the 
literature on understanding cognitive presence in MOOC discussions.
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Introduction

This paper explores using the multi-label deep learning approach to automati-
cally analyse the phases of cognitive presence, as a triangulation approach to 
enriching the understanding of cognitive presence in the discussion messages in 
Massive Open Online Courses (MOOCs). As a type of open education, MOOCs 
have an absence of barriers to entry and a wider range of learner profiles, diverse 
learning objectives, and motivations. Tracing the first MOOC from 2008 (Sie-
mens, 2013), MOOCs are booming in recent years (Lohr, 2020). The COVID-
19 pandemic brings dramatic growth of learners and traffic to MOOCs (Shah, 
2020a). In 2020, the new learners reached over 60 million in the leading MOOC 
platforms (e.g., Coursera, edX, Udemy combined), and over 2800 courses were 
launched by around 950 universities (Shah, 2020b). Nevertheless, these massive 
learners with various learning objectives lack direct instructions from the limited 
numbers of teachers in MOOCs (Kovanović et al., 2018). Effective and efficient 
feedback from instructors can encourage more learners participation and engage-
ment, guiding learners to achieve their learning goals (Phan et al., 2016). MOOC 
educators also need support to monitor students’ learning progress and moder-
ate instructional designs for engaging the students and promoting their deep and 
meaningful learning (Yousef et al., 2015). Facilitating the educator-learners’ dia-
logue is an ongoing challenge for MOOC designers, educators and stakeholders. 
MOOC educators struggle to provide personalised feedback to the large number 
of learners enrolled, with unique learning goals, without the support of computer 
algorithms.

Asynchronous online discussion forums are a vital component of MOOCs, 
offering a virtual place for learners and instructors to interact and communicate 
together. Previous studies found that learners who actively engaged in discussion 
forums tend to achieve better performance in MOOCs (Tang et  al., 2018; Wise 
& Cui, 2018). Analysing the discussion messages in MOOCs can contribute to 
understanding learners’ critical discourse (i.e., critical thinking, higher-order 
thinking, and cognitive presence), which is beneficial for instructors and course 
designers to adjust the course content and teaching strategies accordingly. Schol-
ars have proposed theoretical frameworks and measurement tools (Gunawardena 
et al., 1997; Newman et al., 1995) to investigate critical discourse in online dis-
cussion messages. Among these, the Community of Inquiry (CoI) framework pro-
posed by Garrison et al. (1999) was the most widely used framework to analyse 
learning in online courses for over two decades. As a core dimension of the CoI, 
cognitive presence reflects learners’ critical discourse, which is closely correlated 
to the progress of knowledge (re)construction during learning. The classification 
rubric of cognitive presence (Garrison et al., 2001) was also adapted for explor-
ing the depths of critical discourse in different educational contexts (Hu et  al., 
2020; Park, 2009).

The manual classification of cognitive presence can be practical for the lim-
ited discussion messages in small-scale online courses, but not feasible to ana-
lyse the myriad messages in MOOCs. Previous studies suggested the coders had 
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difficulty distinguishing adjacent phases of cognitive presence in MOOC discus-
sions (Hu et al., 2020, 2021a; Kaul et al., 2018). The main causes of the disagree-
ments in the manual categorisation process could be the ambiguities of conversa-
tional language used and the vastly increasing data scale in the MOOC discussion 
threads (Hu et  al., 2021a). It tends to be subjective in the process of interpret-
ing other people’s comments into different categories of cognitive presence by a 
person (Park, 2009), since the natural languages (human languages) have ambi-
guities (Jackson, 2020). More coders’ participation can reduce the subjectiv-
ity through training and negotiation. However, it is impossible for us to employ 
unlimited coders for the manual categorisation work. Automatic classifiers can 
be the assistants to the human coders to analyse the cognitive presence in MOOC 
discussions.

Some automated methods for analysing cognitive presence have also been devel-
oped to discover the indicators of the progressive cognitive phases in online dis-
cussion messages (Barbosa et  al., 2020; Corich et  al., 2006; Farrow et  al., 2020; 
Kovanović et  al., 2016; McKlin et  al., 2001; Neto et  al., 2018). These automated 
methods built single-label classifiers, which had the risk to inherit the subjectivity 
from the manual categorisation work in the training data preparation stage. The tra-
ditional machine learning (e.g., random forest) used in the previous studies can only 
classify an instance (e.g., a discussion message) into an exclusive class in the multi-
class categorisation problems. To prepare more training data, the coders addressed 
the ‘problematic’ messages subjectively after negotiations to reach a 100% agree-
ment in the previous studies (Kovanović et al., 2016; Neto et al., 2018). The ‘prob-
lematic’ messages were also trained to have one single category: therefore, the sub-
jectivity of the manual categorisation may have been preserved in the automatic 
single-label classifiers to some extent. Another problem is that the previous studies 
were in the context of the traditional, small-scale, for-credit university courses. The 
discussion messages in the courses can be easily classified into one single phase of 
cognitive presence as the coding rubric of the CoI framework was developed from 
the messages in the similar context (Garrison et al., 2001). However, the messiness, 
informality and disordered in the vast large-scale discussion messages in MOOCs 
are far more complex than in the coherent, more structured messages in the small-
scale discussions (Almatrafi et al., 2018; Hu et al., 2020). The taxonomies with clear 
boundaries between the cognitive presence categories may not be applicable for ana-
lysing the MOOC discussions (Hu et al., 2020). Using a triangulation approach, we 
applied multi-label classification methods to analyse cognitive presence in MOOC 
discussions.

The multi-label classification (prediction) can allow a text associated with more 
than one label simultaneously, which has been used in the semantic scene classifica-
tion (Shen et al., 2004), multimedia classification (Trohidis et al., 2011), and senti-
ment analysis tasks (Liu & Chen, 2015; Tang et al., 2020). By using the multi-label 
classification methods, discussion messages can be labelled more than one category 
with probabilities rather than enforcing them into a consensual label. In this study, 
we trained multi-label classifiers with the MOOC discussion messages that have 
been manually labelled as the same cognitive category by the expert coders with-
out confusion. We are interested in the performance of the multi-label classifiers to 
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predict the discussion messages with one or multiple labels in the test set, shining a 
light on the refinement of the CoI frameworks in MOOCs. Thus, the main research 
question in this study was: What would the prediction performance of using the 
multi-label classifiers to categorise the phases of cognitive presence, and what can 
we learn about cognitive presence in the MOOC discussion messages from the train-
ing and test processes? To answer this main question, we proposed three sub-ques-
tions as below:

•	 Sub-question 1 (SQ1): To what extent can our multi-label classifier accurately 
predict the cognitive presence categories in online discussion messages from a 
target MOOC? Can the multi-label deep learning classifier outperform the state-
of-the-art, single-label classifier in this study?

•	 Sub-question 2 (SQ2): Are there any MOOC discussion messages, which have 
been manually labelled into the same category by coders, be tagged into multiple 
labels by the multi-label classifier? In what proportion? Are there any common 
patterns?

•	 Sub-question3 (SQ3): Are there any MOOC discussion messages, which have 
been manually labelled into different categories by coders, be tagged into one 
single label by the multi-label classifier? In what proportion? Are there any com-
mon patterns?

Background

The Community of Inquiry Framework and Cognitive Presence

In the past two decades, the Community of Inquiry framework proposed by Gar-
rison et al. (1999) has been most broadly used to analyse learning in asynchronous 
online discussion forums. The CoI portrays the educational experience that occurs 
in a virtual learning community, in which ‘a group of individuals who collabora-
tively engage in purposeful critical discourse and reflection to construct personal 
meaning and confirm mutual understanding’ (Garrison & Anderson, 2011, p.2). 
The CoI framework defines three interdependent dimensions, also called presences, 
to analyse learning engagement: 1) Cognitive presence, as a primary dimension of 
the CoI, depicts the critical discourse and reflection of knowledge (re)construction 
and problem-solving processes (Garrison et al., 2001); 2) Social presence represents 
social climate and interpersonal communications between the participants of online 
discussions (Rourke et  al., 1999); 3) Teaching presence analyses the instructional 
activities that direct and moderate the discussions (Anderson et al., 2001).

This study concentrates on analysing the construction and facilitation of learners’ 
cognitive presence in MOOC discussions. The cognitive presence is the paramount evi-
dence that students actually learn about the knowledge concepts in the domain, so it 
needs to be investigated before the other dimensions (Rourke & Kanuka, 2009). As 
shown in Fig. 1, four phases of cognitive presence are defined in a cycle of progres-
sive knowledge construction (Garrison et  al., 2001): 1) Triggering event, in which 
the learners propose their questions or confusions usually as a trigger of a thread; 2) 



1 3

International Journal of Artificial Intelligence in Education	

Exploration, in which the learners exchange information to investigate the answers or 
solutions of the problems proposed in the previous phases but not able to reach a coher-
ent conclusion; 3) Integration, in which the learners synthesise coherent conclusions 
to the problems proposed in the previous phases with sufficient support; 4) Resolution, 
in which the learners apply, test or argue the solutions or conclusions suggested in the 
previous phase, shaping the new meaning or construct. We acknowledge the richness 
and complexity of message content in the MOOC discussion data. Since this study 
focuses on the cognitive presence, messages that were not fitted into any of the above 
phases were classified as the Other category. For example, messages that only indicate 
social presence (i.e., emotional communication to enrich interpersonal relationships 
in the online community) were classified into Other. The other two presences of the 
CoI (social and teaching presences) will be explored in our future work. We applied an 
adapted coding rubric of cognitive presence (Hu et al., 2020) to classify the discussion 
messages in the target MOOC. Following the coding-up rule recommended by Gar-
rison et al. (2001), a message that reflected the indicators of more than one cognitive 
category was classified into the highest one. Table 1 provides examples of the messages 
that were classified into the five categories of cognitive presence in a thread.

Machine Learning Classifiers of Cognitive Presence in Online Discussion Messages

Several studies have developed automated classifiers using different algorithms 
to analyse cognitive presence in online discussion messages. However, the 

Fig. 1   The Practical Inquiry Model (PIM) demonstrating the Four Phases of Cognitive Presence in a 
Learning Community. The diagram was adapted from Garrison et al. (2001)
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majority of the discussion messages were from the traditional, small-scale, for-
credit online courses rather than MOOCs, and they were tagged into a unique 
category by the automatic classifiers.

Initially, McKlin (2004) and Corich et al. (2006) developed a simple artificial 
neural network and a Bayesian network to classify cognitive presence, respec-
tively, using dictionary-based words as classification features. McKlin’s (2004) 
classifier reached the Holsti’s coefficient of reliability (CR) of 0.68 and Cohen’s 
κ of 0.31, whereas Corich et  al.’s (2006) classifier achieved the CR of 0.71 
without any report of Cohen’s κ. To improve the classification performance, 
Kovanović et  al. (2014) developed a Support-Vector-Machine (SVM) classifier 
using n-gram and structural features as classification indicators. The SVM clas-
sifier performed the best accuracy of 58.4% and Cohen’s κ of 0.41. To empha-
sise the importance of the structural features for identifying cognitive presence 
phases, Waters et  al. (2015) built a Conditional Random Field classifier based 
on Kovanović et  al.’s (2014) methods. The best accuracy and Cohen’s κ were 
increased to 64.2% and 0.482.

However, using the n-grams or dictionary-based words as classification fea-
tures revealed two weaknesses: 1) a large number of features constructed a high-
dimensional space that could easily raise over-fitting problems; 2) the resulting 
classifiers were domain-specific; thus, the classifiers were difficult to generalise 
to other domains. To address these issues, Kovanović et al. (2016) developed a 
Random Forest (RF) classifier by using the features mainly extracted from two 
computational linguistics tools, Coh-Metrix (McNamara & Graesser, 2013) and 
Linguistic Inquiry Word Count (LIWC, Tausczik & Pennebaker, 2010). This RF 
classifier also applied over-sampling methods to improve the class imbalance 
problem caused by the skewed distribution of cognitive presence categories in 
the sample data. The RF classifier performed the best accuracy of 70.3% and 
Cohen’s κ of 0.63, which is state of the art. Nonetheless, a replication study by 
Farrow et  al. (2019) pinpoints that Kovanović et  al.’ (2016) method obtained 
over-optimistic results as it applied the over-sampling method before the train-
ing-test data split. After Farrow et  al. (2019) employed the over-sampling 
method merely for the training process; the best accuracy decreased to 61.7% 
and Cohen’s κ to 0.46. The random forest approach was also applied to build 
automated classifiers for analysing cognitive presence in cross-language dis-
cussion messages. Neto et  al.’s (2018) study reached the accuracy of 83% and 
Cohen’s κ of 0.72 in the Portuguese discussion data, and Barbosa et al.’ (2020) 
study achieved the accuracy of 67% and Cohen’s κ of 0.32 in cross-language 
(English & Portuguese) discussion data. Barbosa et  al. (2021) then extended 
the RF classifier using automatic text translation method to analyse both cogni-
tive and social presence in the cross-language discussion messages and obtained 
similar performance results to the previous studies. Neto et  al. (2021) also 
applied the RF classifiers to classify the discussion messages from two disci-
pline courses (biology & technology), reaching Cohen’s κ of 0.55 in the experi-
ments of using combined data sets and the Cohen’s κ of below 0.4 in the cross-
discipline tests.
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Deep Learning and Multi‑Label Classifiers for MOOC Discussions

Deep learning algorithms have been shown outstanding performance in many fields, 
especially in computer vision fields (Voulodimos et al., 2018). Its applications have also 
exploded in the Natural Language Processing (NLP) field over the last years (Otter et al., 
2021). Deep learning algorithms investigate intricate patterns in large data sets using the 
backpropagation methods to optimise the internal parameters of the neural networks that 
aim for high and robust performance (LeCun et al., 2015). A deep learning approach was 
adopted to categorise phases of cognitive presence in online discussions including both 
for-credit and MOOC data, reaching the results up to Cohen’s κ of 0.528, a similar perfor-
mance to the application studies of the RF classifiers (Hu et al., 2021b).

As a type of deep Recurrent Neural Network (RNN), the Transformer aims to solve 
the problems where the sequential input information is required to pass to the output 
sequences, such as speech recognition and machine translation tasks (Vaswani et al., 
2017). It fulfils the drawbacks of the traditional RNNs that are prone to forgetting or 
mixing the content of distant-position information in sequence. It is gaining popular-
ity in NLP fields. Bidirectional Encoder Representation from Transformers (BERT), 
as a language model built on the Transformer, has dramatically improved the state of 
the art in a wide range of NLP tasks (Devlin et al., 2019; Liu et al., 2019). Google has 
provided the BERT models pre-trained by the large corpora (Wikipedia and Book Cor-
pus) for developers and researchers to fine-tune and apply in their personalised tasks. In 
learning analytics fields, the BERT model shows great potential to analyse teacher dis-
course in online classrooms automatically (Jensen et al., 2021). The fine-tuning BERT 
model was applied to analyse cognitive presence in discussion messages from a com-
puter science MOOC and for-credit course, which reported the promising F1 scores of 
0.95 (Hosmer & Lee, 2021; Lee et al., 2022).

The BERT model can also be applied to construct multi-label classifiers for text 
classification tasks. A fine-tuned BERT model for multi-label tweets classification 
demonstrates promising performance (Zahera et  al., 2019). In learning analytics 
fields, a fine-tuned BERT model for multi-label sentiment analysis in multilingual 
texts also reveals higher performance than the previous machine learning models 
(Tang et al., 2020). We thus wonder, how well can the fine-tuned BERT model per-
form on the multi-label classification of cognitive presence in the target MOOC dis-
cussion data.

Methods

Data Description

The data set used in this study came from an archived offering of the Logical and 
Critical Thinking (LCT) MOOC on the FutureLearn platform.1 This MOOC was 
taught and designed by a team from a New Zealand university. The course was an 

1  https://​www.​futur​elearn.​com/​cours​es/​logic​al-​and-​criti​cal-​think​ing

https://www.futurelearn.com/courses/logical-and-critical-thinking
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introductory Philosophy MOOC, which focused on the basic concepts of effective 
thinking, how to build valid arguments, and how to link the arguments with daily 
life. Each course offering served eight weekly topics with several learning tasks in 
different formats, such as lecture videos, articles, quizzes, and discussion boards. 
Registered learners can leave their comments under all the learning tasks, exclud-
ing quizzes. Each course offering had approximately 11,000 registered learners and 
12,000 discussion messages (e.g., an individual message refers to a starting post or 
its replies in each discussion thread). To reduce the impacts from different content 
of learning tasks, we randomly selected 16 tasks (two from each week). Then, a 
sample of around 100 messages was randomly selected from each of the 16 tasks. 
An entire thread with all its sequential replies was maintained in the selection pro-
cess rather than detached to achieve an exact number of samples. For example, we 
selected 103 messages randomly from the third task, and the 103 messages consisted 
of 41 threads that contained 41 posts and all the replies underneath, such as the post 
and its four replies displayed in Table 1. In this way, our sample data were composed 
of 1,917 discussion messages from the learners in the target MOOC.

Three expert coders classified the sample data into four phases of cognitive pres-
ence and the Other (the fifth category), according to an adapted coding rubric for 
the MOOC discussions (Hu et al., 2020). The coders were trained round by round 
(50 new messages per round) before independently achieving an over 80% agree-
ment without negotiations. A percentage agreement of 81% was reached between 
them in the third round, and then they were allocated the 1,917 messages to clas-
sify. Finally, they reached an overall percentage agreement of 77.15% and Fleiss’ κ 
of 0.763. Table 2 displays the distribution of the five cognitive presence categories 
in the sample data. This distribution is consistent with the findings in most of the 
previous studies on the classification of cognitive presence in online discussions (Hu 
et al., 2020, 2021a; Kaul et al., 2018; Kovanović et al., 2014; Park, 2009; Rourke & 
Kanuka, 2009), where the bulk of messages were in Exploration, and small fractions 
in Resolution and the Other.

In this study, we regard the manually classified messages as ordinal data, as 
it obtains the ordering of classes from the lowest to highest (Hildebrand et  al., 
1977, p.5). A conceptual diagram (Fig. 2) aligned to Table 2, depicts the relation 
of the messages within the five cognitive presence categories (i.e., their place-
ment vertically depicts their strength relative to the respective categories). As 
only the agreement messages were used, the markers were seated within the exact 

Table 2   Agreements between 
the three coders by cognitive 
presence phases in the sample 
data (1,479 discussion messages 
as the AgreementSet)

Cognitive phase Messages

n %

Other 85 5.75
Triggering event 279 18.86
Exploration 835 56.46
Integration 244 16.50
Resolution 36 2.43
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area of each category, without any overlaps with adjacent categories. To simplify 
the number of markers in Fig. 2, each plus marker represents approximately ten 
messages. Five colours differentiate the cognitive presence categories in Fig. 2. 
We call this part of data AgreementSet for short in the rest of the article.

Table 3 shows the distribution of cognitive presence categories in the coders’ disa-
greements (i.e., messages that were manually labelled differently). Most of the disa-
greements had two labels, with more than half labelled between Exploration and Inte-
gration by the coders. A conceptual diagram Fig. 3 aligned to Table 3 depicts how the 

Fig. 2   A conceptual diagram rep-
resenting the relative positions of 
the sample messages in the five 
cognitive presence categories

Table 3   Disagreements between 
the three coders by the cognitive 
presence phases (438 messages 
as the DisagreementSet)

Cognitive phases Messages

n %

Other & Trigger 66 15.07
Trigger & Exploration 78 17.81
Exploration & Integration 227 51.83
Integration & Resolution 50 11.42
Exploration & Resolution 4 0.91
Other & Exploration 7 1.60
Three phases 6 1.37
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disagreements were situated in the overlapping areas between adjacent categories of 
cognitive presence. Similarly, each cross marker represents around ten messages so that 
the groups with less than ten messages were not shown in Fig. 3. Each cross has two 
lines of different colours, representing the two labels of cognitive presence categories 
within the disagreements. We name this part of data DisagreementSet for short.

In this study, the multi-label classifiers were first trained and tested on the Agree-
mentSet (Table 2) to answer our SQ1 and SQ2. We used the majority of the Agree-
mentSet data as the training data because the coders could easily classify them without 
confusion. The DisagreementSet data, in which the coders disagreed about which cat-
egories the messages belonged to, would confuse the computer algorithm more if we 
included them in the training process. The DisagreementSet data were used to validate 
the best-performing multi-label classifiers to answer the SQ3 and to enrich our under-
standing of cognitive presence in MOOC discussions.

Multi‑Label Classifier Architecture and Procedures

The multi-label classification in this study denotes that more than one category 
can be tagged to a discussion message. The output of the multi-label classifier is 
an array of five scores between 0 and 1, which indicates the probability of a mes-
sage being each cognitive presence category. A common solution for the multi-
label classification tasks is the problem transformation method (Alazaidah et al., 
2015). It transforms the multi-label classification problem into the single-label 

Fig. 3   A conceptual diagram 
representing how the messages 
about which coders disagreed 
were situated between adjacent 
categories of cognitive presence
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classification problem, which can employ single-label classifiers. Thus, we 
revised the standard BERT model from a class-independent model to five binary 
BERT classifiers for each category. A similar architecture was employed in a pre-
vious study on multi-label sentiment analysis in online monolingual discussion 
texts, which presented a higher prediction performance than the machine learning 
models (Tang et al., 2020).

Figure 4 displays the architecture of the multi-label, fine-tuned BERT model in 
this study. In the pre-processing stage, we replaced all the emojis or URLs into a 
word ‘EMOJI’ or ‘URL’, expanded abbreviations (e.g., I’d to I would), and removed 
repeated characters, redundant spaces and stop words for every message. After data 
cleaning, the tenfold Cross-Validation (CV) method was applied to randomly divide 
the entire sample data into ten non-overlapping folds of approximately equal size 
using the stratified sampling method. The nine-fold data was the training set in every 
CV loop, and the remainder was the testing set. We then repeated the entire train-
ing and testing process ten times to reduce the risk of overfittings. In each training 
loop, we split the nine-fold data into training and validation partitions in a 9:1 ratio 
to fine-tune the best model. We also found that the classes of the sample data were 
unbalanced, which may impact the classification performance. To address this prob-
lem, we applied the data augmentation method to over-sample the smaller classes in 
the training set before feeding them into the multi-label classifier. The data augmen-
tation and the over-sampling procedures proceeded after the initial dataset splits in 
each training loop to avoid over-optimistic results caused by the data contamination 
risk as recommended in Farrow et al. (2019). More details of the data augmentation 
and the over-sampling method are provided in Data augmentation and over-sam-
pling method Section.

Figure 4 also shows the structure of the binary BERT classifier for each cognitive 
presence category. After the augmentation process, the messages were converted 

Fig. 4   The architecture of the multi-label classifier for analysing the cognitive presence phases
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into tokens by BertTokenizer. Then, the tokens of messages were fitted into a pre-
trained BERT model. We used the bert-base-uncased model constructed by 12 
transformer layers with 768 dimensions (Devlin et  al., 2019). We added a linear 
classifier layer that transferred the BERT representations into classification tasks 
after the BERT model. Finally, a sigmoid function was performed to output the pre-
dicted scores of five cognitive phases ranging from 0 to 1. The sigmoid layer can 
allow more than one phase to reach a score of over 0.5 so that multiple labels may 
appear at a message simultaneously. The parameters of our best-performing model 
were using a batch size of 8, epochs number of 10, and a learning rate of 2 × 10

−5 . 
We used Binary Cross-Entropy to calculate the error rate of each label.

Data Augmentation and Over‑Sampling Method

The data augmentation method aims to increase the data size of the smaller catego-
ries for better model performance (Dyk & Meng, 2012). Compared to creating aug-
mented images in computer vision fields, text augmentation in NLP tasks is much 
more difficult due to the complexity of human language (Fadaee et al., 2017). We 
adopted the nlpaug (Ma, 2019) approaches to generate synthetic data for the minor-
ity categories in the training data set. We applied multiple augmentation methods, 
including character-level and word-level augmenters from the nlpaug library, and 
combined them as sequential pipelines to generate a diversity of over-sampling 
data set. The character-level augmenters can add spelling errors into one or more 
words in a text; for example, changing ‘dog’ to ‘d0g’ or ‘eat’ to ‘eta’ in a sentence. 
The word-level augmenters can find semantically similar words by different word 
embeddings models (e.g., Word2Vec (Mikolov et al., 2013) and GloVe (Pennington 
et al., 2014)) to replace the original words in the text for generating new instances.

We found increasing the minority categories by a certain ratio can achieve bet-
ter prediction performance than reaching the same number of messages in the larg-
est category (i.e., Exploration) by the different trials of oversampling ratios in the 
training process. In the best case, we created 400 synthetic messages for the fewest 
categories (i.e., the Other and Resolution), and 250 for the second-fewest categories 
(i.e., Triggering event and Integration), and maintained the original size of the larg-
est category (i.e., Exploration) as shown in Fig. 5.

Evaluation Metrics

Accuracy, precision, recall and F1 scores are common evaluation metrics for sin-
gle-label classification tasks (Tharwat, 2020). However, the predicted labels of 
each instance are a set rather than a single item in multi-label predictions. The 
metrics extended from the single-label measures were used to validly distinguish 
the notions of fully correct, partially correct and fully incorrect (Sorower, 2010). 
In this study, we adopted the exact match ratio (MR) (Sorower, 2010) and exam-
ple-based F1 score (Herrera et  al., 2016, p.56) as two common metrics used in 
the multi-label classification problems (Ceylan & Pekel, 2017; Du et  al., 2019; 
Pereira et al., 2018). The example-based measures aim to capture the differences 
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between actual labels (i.e., the manual labels) and the predicted labels for each 
test instance (i.e., the test message) separately, and then average over all test 
instances in the test set (Sorower, 2010). The MR focuses on fully correct pre-
diction ratios regardless of the partial correctness, whereas the example-based 
F1 score accounts for the partial correctness of the prediction sets (Godbole & 
Sarawagi, 2004). By comparison, the same calculations were used to measure the 
baseline single-label classifiers as the two metrics are extended from the accuracy 
score and F1 scores in single-label classification problems (Sorower, 2010).

Apart from the fully correct predictions, the partially correct predictions are 
also worth taking into consideration. A test message is defined as a partially cor-
rect prediction if the number of the predicted labels is more than one and one of 
them is equal to the manual label in this study. According to the definition of the 
MR (Sorower, 2010), we defined the partially correct ratio (PR) as

where a multi-label data set contains n instances ( 1 ≤ i ≤ n ) and then each instance 
is x

i
 ( x

i
∈ � ), and the manual labels set for i th instance is Y

i
 (Y

i
∈ Y = {0, 1}

k , k is 
the number of labels), and a prediction-label set Ŷ

i
(Ŷ

i
= {0, 1}

k
) . Similarly, a test 

message is a fully incorrect prediction if neither of the two predicted labels is equiv-
alent to the manual label; thus, we defined the fully incorrect ratio (IR) as

PR =
1

n

∑n

i=1
(I(Y

i
∩ Ŷ

i
) − I(Y

i
== Ŷ

i
))

IR =
1

n

∑n

i=1
(I(Y

i
≠ Ŷ
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Fig. 5   Number of messages before and after oversampling across five cognitive phases
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The computation of IR is equivalent to the error rate in the single-label classifica-
tions as defined in Tharwat’s (2020) work.

We also evaluate the prediction performance of the classifiers on each individual 
category. For each cognitive presence category, we compared the macro-averaged 
F1 scores (Tharwat, 2020) of the multi-label classifiers to the baseline single-label 
classifiers. Similar metrics were adopted in previous multi-label classification 
of sentiment analysis studies (Liu & Chen, 2015; Tang et al., 2020). We used the 
macro-averaged F1 rather than the micro-averaged score since we regarded every 
category as equally important.

Random Forest Classifiers as a Baseline

We also performed a Random Forest (RF) approach as a baseline compared to the 
multi-label classifiers. Only the single-label classification approaches have been 
attempted in the literature of automatic classification of cognitive presence in online 
discussions. The RF approach and its extensive use was regarded as the state-of-
the-art single-label classifier for analysing cognitive presence in online discussions 
(Barbosa et al., 2021; Farrow et al., 2019; Kovanović et al., 2016; Neto et al., 2018).

Followed the previous studies, we adopted 199 classification features extracted 
from the sample data by two computational linguistics tools, Coh-Metrix (McNa-
mara & Graesser, 2013) and LIWC (Tausczik & Pennebaker, 2009). Some contex-
tual features, such as message depth and the number of replies, were excluded for 
consistency with the multi-label classifiers. Also, we applied the SMOTE (Synthetic 
Minority Over-sampling Technique) exact method (Farrow et al., 2019) to address 
the class imbalance. The sample data was pre-processed with the same approach as 
described in Sect. 3.2. After the pre-processing and feature extraction steps, a ten-
fold CV method was used in the entire sample data to select an optimal RF model 
through fine-tuning the two vital parameters, mtry (i.e., the number of classifica-
tion features chose by each decision tree) and ntree (i.e., the number of decision 
trees). After fine-tuning, mtry of 118 and ntree of 700 were reported as the optimal 
parameters in the baselines. A final tenfold CV method was performed to repeat the 
training-test loop ten times with the optimal RF classifier to maintain consistency 
with the multi-label classifiers. We compared the classifier performance with and 
without the SMOTE exact method to the multi-label classifiers with and without the 
data augmentation methods, respectively, in Sect. 4.1.

Results and Discussion

Evaluation of the Multi‑Label Classifiers for Identifying Cognitive Presence—SQ1

We report the prediction performance of the multi-label classifiers compared to the 
single-label baselines in this section. The initial output of the multi-label classifi-
ers for each message instance was a vector of prediction scores between 0 and 1 in 
the five categories. To compute the evaluation metrics, the prediction scores were 
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converted into labels of 0 or 1 with a threshold. In this study, a threshold of 0.33 was 
selected since the weight that a human coder tagged a cognitive presence label over 
the three coders’ decisions was equivalent to around 0.33.

Training and Testing on the AgreementSet

Table 4 demonstrates the example-based metrics (the best case and the SDs) of the 
multi-label classifiers with and without the Data Augmentation (DA) method to 
compare with the single-label baselines (RF classifiers). The multi-label classifiers 
achieved the lower fully incorrect ratios but slightly higher example-based F1 scores 
than the single-label baselines. Instead of fully correct or incorrect, several mes-
sages fell into the partially correct group by the multi-label classifiers. Also, the 
use of the DA method enlarged the proportion of the partially correct group from 
12.16% to 39.86%.

Table 5 illustrates the best macro-averaged F1 scores with the SDs of the multi-
label and single-label classifiers by every category of cognitive presence. The multi-
label classifiers reached better F1 scores in most of the categories. In Exploration, all 
the classifiers performed the highest F1 scores, in which the multi-label classifiers 
were almost the same as the baselines (i.e., the differences ≤ 0.01 ). In Triggering 
event, the same F1 scores were obtained in the multi-label classifier with the DA and 
the baseline classifier without the SMOTE as the second-best score. Noticeably, the 
multi-label classifiers with the DA method largely outperformed other classifiers in 
the categories with the minority instances (i.e., the Other and Resolution); however, 

Table 4   The overall example-based performance of the classifiers (the best case and the SDs on the test-
ing AgreementSet)

Note. The bold values denote the best metrics obtained by the classifiers

Classifiers Exact match 
ratio % (SD)

Partially correct 
ratio % (SD)

Fully incorrect 
ratio % (SD)

Example-based F1 
score (SD)

Multi-label BERT without DA 68.24 (0.04) 12.16 (0.03) 19.59 (0.03) 0.77 (0.04)
Multi-label BERT with DA 45.95 (0.03) 39.86 (0.03) 14.19 (0.02) 0.75 (0.04)
Single-label RF without SMOTE 73.60 (0.03) - 26.35 (0.03) 0.73 (0.04)
Single-label RF with SMOTE 73.00 (0.05) - 27.00 (0.04) 0.73 (0.05)

Table 5   The macro-averaged F1 scores (the best case and SDs on the testing AgreementSet) by the cognitive 
presence phases

Note. The bold values denote the highest F1 scores obtained by the classifiers

Classifiers Other Trigger Exploration Integration Resolution

Multi-label BERT without DA 0.00 (0.00) 0.65 (0.02) 0.85 (0.03) 0.60 (0.02) 0.00 (0.00)
Multi-label BERT with DA 0.40 (0.05) 0.68 (0.03) 0.85 (0.02) 0.39 (0.03) 0.57 (0.14)
Single-label RF without SMOTE 0.29 (0.06) 0.68 (0.06) 0.86 (0.06) 0.53 (0.04) 0.00 (0.00)
Single-label RF with SMOTE 0.32 (0.06) 0.61 (0.05) 0.84 (0.04) 0.51 (0.05) 0.00 (0.00)
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the F1 score decreased in Integration after using the DA method in the multi-label 
classifier.

Training on the AgreementSet and Testing on the DisagreementSet

We tested the best-performing classifiers trained by the AgreementSet on the Disa-
greementSet in the study. Table 6 displays the example-based metrics of the multi-
label classifiers with and without the DA method. The exact match ratio and the 
F1 score were improved by using the DA method. Compared to the results of the 
AgreementSet in Table 4, we found the F1 score reached the similar value in the test 
with the DA method, but the exact match ratio and the fully incorrect ratio largely 
declined. Interestingly, the messages that were labelled partially correct accounted 
for beyond half of the entire DisagreementSet. This outcome was opposite to the 
results in the testing AgreementSet (Table 4).

Table 7 displays the macro-average F1 scores by each cognitive phase in the Dis-
agreementSet with and without the DA method. Using DA method improved the F1 
scores in the Other, Exploration, and Integration phase. The multi-label classifiers 
reached very similar performance in the Triggering event phase. Compared to the 
outcomes of the AgreementSet in Table 5, the classifiers obtained overall higher F1 
scores in the DisagreementSet except the Resolution messages. Similarly, the classi-
fiers performed the best in the Exploration phase, followed by the Triggering event. 
Also, the F1 scores were near to zero regardless of using the DA method.

Figure  6 depicts the confusion matrix of the prediction tests on the Disagree-
mentSet using a heat map. The columns denote all the outcomes of the predicted 
labels including the combinations of multiple labels (the left of the dashed vertical 
line) and the one unique label (the right of the line). The rows represent the man-
ual labels of the DisagreementSet messages, which aligned with the distribution in 
Table 3. The blue cells display the number of the messages with manual labels in 

Table 6   The example-based performance of the classifiers (testing on the DisagreementSet)

Note. The bold values denote the better metrics obtained by the classifiers

Classifiers Exact match 
ratio %

Partially correct 
ratio %

Fully incorrect 
ratio %

Example-based 
F1 score

Multi-label BERT without DA 20.10 76.00 3.90 0.71
Multi-label BERT with DA 36.30 61.60 2.10 0.77

Table 7   The macro-averaged F1 scores (testing on the DisagreementSet) by the cognitive presence 
phases

Note. The bold values denote the better F1 scores obtained by the classifiers

Classifiers Other Trigger Exploration Integration Resolution

Multi-label BERT without DA 0.28 0.77 0.88 0.59 0.03
Multi-label BERT with DA 0.57 0.76 0.90 0.73 0.00
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the target row that were labelled as the target phases in the columns, together with 
their percentage in the rows. The darker the blue cells, the larger the number of the 
messages. The prediction results suggest that the multi-label classifiers labelled the 
DisagreementSet messages into either one unique phase of cognitive presence or 
two adjacent phases.

According to the above results, we answer the first sub-question that in the exam-
ple-based measures, the multi-label deep learning classifiers outperformed the sin-
gle-label baselines with the slightly higher example-based F1 scores but under-per-
formed with lower exact match ratios. Also, the multi-label classifiers outperformed 
the single-label baselines with the higher macro-averaged F1 scores by most of the 
cognitive presence categories. These results may be because the multi-label classi-
fiers allow messages to be tagged with more than one label, increasing the chance of 
correctness in each category. In this regard, the exact match ratio would decrease, 
and the partially correct ratio would grow if the boundaries between the categories 
were blurry. We also found that the maximum number of predicted labels was not 
more than two in the multi-label classification experiments including the tests on the 
AgreementSet and DisagreementSet, and all the two-label predictions were adjacent 
phases of cognitive presence. In contrast, almost 4% of the messages in the catego-
risation results by the expert coders (Table 3) were labelled into two non-adjacent 
phases or even three phases, which could be subjectively incorrect categorisation. 
We assume the multi-label classifiers have the potential to identify and reduce the 
subjectivity in manual categorisation.

Fig. 6   The confusion matrix using a heat map when we tested the best-performing multi-label classifiers 
on the DisagreementSet. The darker the blue cells, the larger the number of the predicted messages
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Some relevance between the classification decisions of expert coders and the 
multi-label classifiers was reflected in the outcomes of the tests on the Disagree-
mentSet. Compared to the results of the tests on the AgreementSet (Table 4), the 
partially correct ratios of the DisagreementSet messages (Table 6) largely increased 
and the exact match ratios decreased. The multi-label classifiers predicted more 
than half of the testing AgreementSet messages as one unique phase, which was 
the same with the decisions of the expert coders. In contrast, they labelled most of 
the DisagreementSet messages into two adjacent phases, amongst which one of the 
predicted labels was the same with the manual labels. We think that the multi-label 
classifiers can support the categorisation work of the expert coders. The classifiers 
found the exists of confusion between adjacent phases in the online discussions as 
the human coders have found, and may also help correct the coders’ categorisation 
decisions when they have very large distinctions (e.g., non-adjacent phases of cogni-
tive presence).

The results also suggest that the DA methods have the potential to improve the 
class imbalance problem. The DA methods had a better effect of identifying the 
messages in the Resolution category than the SMOTE method. However, we found 
that many messages with a manual label of Exploration were tagged as both Explo-
ration and Integration labels after applying the DA method, which could affect the 
F1 scores. Using the DA method might increase the risk of deepening the confusion 
(i.e., blur area) between Exploration and Integration since most of the disagreements 
between the expert coders appeared between these two categories (see Table 3 and 
Fig. 3). We still need more instances of the very skewed category (e.g., Resolution) 
to improve the automatic classification performance.

Partially Correct Predictions of Cognitive Presence on the AgreementSet 
by the Multi‑Label Classifiers—SQ2

In this study, the partially correct prediction means that one of the two predicted 
labels was the same as the manual label, but the other was not. The partially cor-
rect ratio was 39.86% (Table 4) when we used the multi-label classifier with the DA 
method. To answer the second sub-question, we investigated the 39.86% messages 
since the experiment achieved the best performance amongst the other classifiers.

The partially correct predictions consisted of eight groups that had different 
combinations of manual and predicted labels. The messages that had the same 
manual label were displayed in one figure (Figs. 7, 8, 9, 10, and 11). In each 
figure, two types of scatter plots were used to demonstrate the manual and pre-
dicted labels of the messages, and a marker represents a message. The left plot 
simulates that the predicted labels of the messages located in the overlapping 
areas between the adjacent categories of cognitive presence, which is similar to 
the conceptual diagram in Fig. 3. The right X–Y graph demonstrates the exact 
probability scores (ranged from 0.33 to 1) of the two adjacent predicted labels. 
Five-coloured markers denote the different manual labels of the messages. The 
same shape of the markers was used in the plots when the combinations of 
the two predicted labels were the same. The dotted lines are boundaries that 
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Fig. 7   The conceptual diagram on the left simulates the predicted labels of two messages located in the 
overlapping area between the Other & Triggering event but their manual labels were the Other. The X–Y 
graph on the right shows that the probability scores of Triggering events were higher than Other with the 
multi-label classifier

Fig. 8   Twelve messages with the manual label of Triggering event were predicted as Other & Triggering 
event (3 messages), and Triggering event & Exploration (9 messages) separately

Fig. 9   Thirty-seven messages with the manual label of Exploration were predicted as Triggering event & 
Exploration (6 messages), and Exploration & Integration (31 messages) separately. When the alternative 
label was Integration (the second X–Y graph), the messages obtained higher prediction scores in Explo-
ration than Integration
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separate the upper and lower regions. The two predicted labels obtained the 
equivalent scores if the messages were exactly on the dotted line. In the X–Y 
graphs, the messages in the lower region were predicted to have higher scores 
in the x-axis categories, which were the same as the manual labelling.

Most of the partially correct predictions had the manual label of Exploration (Fig. 9). 
They had more of the alternatively predicted label of Integration than Triggering event.

The messages with the manual label of Triggering event had more alternative 
labels of Exploration than Other (Fig. 8). The messages with the manual label 
of Integration obtained more alternative labels of Exploration than Resolution 
(Fig. 10). Both messages that had the alternative label of Resolution achieved 
the higher probability scores in Integration than Exploration.

We also analysed the partially correct predictions qualitatively by the groups 
that had different combinations of manual and predicted labels. Due to the page 
limitation, we can only offer some typical representations in Table 7 to analyse 
why the multi-label classifiers predicted such labels of cognitive presence cat-
egories, particularly the higher ones.

Fig. 10   Seven messages with the manual label of Integration were predicted as Exploration & Integration 
(5 messages), and Integration & Resolution (2 messages) separately

Fig. 11   Only a message with the manual label of Resolution was predicted as a higher score in Integra-
tion and a lower score in Resolution
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Predicted Labels of Both Triggering Event and Exploration

The first message in Table 8 delivered an agreement statement with a short sentence 
after it, which should be a “simple agreement” in Triggering event according to the 
adapted coding rubric (Hu et al., 2020). The classifier scored it a 0.61 probability 
in the Exploration apart from a 0.44 in Triggering event. This prediction might be 
because the second sentence can be “insufficient support for the agreement” (Hu 
et al., 2020), which should be in the Exploration. The second message started with 
a question and then intended to provide an outside resource in the thread, which 
should be an “information exchange” in the Exploration. The classifier also scored a 
0.66 probability in the Exploration might be because the author planned to provide 
the external information but not yet, so it can still fit in the scope of the Trigger-
ing event. The third message stated a disagreement with a personal opinion, which 
should be in the Exploration. However, the second sentence also delivered a `feeling 
of difficulty, which was a key indicator of Triggering event. This indicator might be 
a possible reason that our classifier scored a 0.61 probability in Triggering event.

Predicted Labels of Both Exploration and Integration

The fourth message in Table 8 made a personal clarification about two course related 
concepts and provided examples, which should be an “information exchange” in 
the Exploration. Our classifier also scored a similar 0.53 probability in Integration 
might be because it contained the typical language structures of conclusions with 
supporting ideas (e.g., “Premise1…Premise2…(Probably) Therefore…”). The fifth 
message used the same structure to explain an example as the fourth message, but 
it provided further elaborations to support the main conclusion and solution in the 
last two sentences. According to the adapted rubric (Hu et al., 2020), it was manu-
ally labelled into Integration. However, the multi-label classifier also scored it a 0.50 
probability in the Exploration. We assume that the classifier algorithm might ‘think’ 
these two messages had similar language structures.

Predicted Labels of Both Integration and Resolution Phases

The sixth message constructed a new understanding of a concept in the course (e.g., 
authority) by building on the conclusion of other group members, which should be 
a “convergence with supporting ideas” in Integration. The classifier also predicted a 
slight probability of 0.39 in Resolution. The seventh message proposed a divergent 
opinion from another learner’s conclusion with a concrete example. Also, it offered 
deeper thoughts based on the previous conclusion, which should be in Resolution. The 
classifier tagged it a low probability of 0.34 in Resolution but a higher probability of 
0.67 in Integration. The classifier tends to regard these two messages as similar pat-
terns. Objectively, these two messages might not have clear boundaries if we rethink the 
definition of ‘new’ or deeper constructions as the paramount indicators of Resolution 
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in the Garrison et al. (2001) and Hu et al. (2020) coding rubrics of cognitive presence. 
The NLP and deep learning algorithm might consider them as a ‘wider conclusion’.

To summarise, we answer the second sub-question (SQ2) that the best-performing 
multi-label classifier tagged almost 40% messages of the testing set into two adjacent 
labels in the cognitive presence categories, in which one of them was the same as their 
manual labels. We also found that the messages with the manual label of the start (the 
Other) or the end (Resolution) of a cognitive presence cycle had only one alternatively 
predicted label other than the manual label. The message with the manual label that 
occurred at the middle of the cycle (i.e., Triggering event, Exploration, and Integra-
tion) had two alternatively predicted labels, either before or after the manual one. This 
distribution was similar to the disagreements between the three coders (Table 3 and 
Fig. 3). Notably, the multi-label classifier did not tag any messages into non-adjacent 
labels. In contrast, the three coders classified a small fraction of the messages into 
non-adjacent or three labels (Table 3). The non-adjacent labels can be triggered by the 
coders’ subjectivity as the ‘outliers’. The prediction results imply that the multi-label 
classifier could identify the subjectivity in the manual categorisation.

Most of the two-label predictions appeared between Exploration and Integration, 
which was also aligned with the coders’ disagreements (Table 3 and Fig. 3). From the 
qualitative analysis, we found that these messages often contained the condition-and-
conclusion structures that express learners’ opinions using sentences such as “Prem-
ise1… Premise2… (Probably) Therefore…”. The structure can be closely associated 
with the definitions and indicators of Exploration and Integration in the coding rubric 
(Hu et al., 2020). During both the cognitive phases, learners proposed their solutions 
or conclusions. In the former phase, the conclusion was not coherent, whilst in the 
latter, it was coherent with sufficient support. The coders differentiated the two cat-
egories through their subjective understanding of whether the logical reasoning was 
sound. However, the NLP and deep learning algorithms identify the categories through 
analysing the language patterns as indications. In other words, the algorithms label a 
message according to the computational probability that similar language patterns of 
a label appear in the message. From the qualitative analysis of the sample messages, 
we assume that the multi-label classifiers granted a probability score of the cognitive 
presence category to a message when the indicators (i.e., common language patterns) 
of the category appeared to some extent. Hence, we think the “multiplicity” way of the 
multi-label identification could be less subjective than the “dualist” way (e.g., the con-
clusion is coherent or not) of the manual categorisation (Perry, 1999).

Partially Correct Predictions of Cognitive Presence on the DisagreementSet 
by the Multi‑Label Classifiers – SQ3

We also investigated the messages of the partially correct predictions when we 
tested the best-performing classifiers on the DisagreementSet, especially the 
messages that had adjacent manual labels but were predicted as one unique cat-
egory. We wonder if any patterns can be found in these messages. We draw a 
comparison between these messages and the messages that were predicted as 
exact correct in the DisagreementSet. Table 9 tabulates the mean and SD values 
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of some textual and contextual features extracted in the messages. The textual 
features contain the number of words, the number of sentences, and the meas-
ure of textual lexical diversity (MTLD). The MTLD was calculated as the mean 
length of word strings that maintained a criterion level of lexical variation in 
each message (McCarthy & Jarvis, 2010). The contextual features include the 
depth (conversation level) of a message in its thread, and the number of replies 
after the current message. We exclude the messages that had less than ten pre-
dictions in the DisagreementSet tests (details in Fig.  6) as the numbers were 
too few for the statistical calculation. We then discussed the statistical results 
(Table 9) and analysed the example messages qualitatively in the order of their 
manual labels.

Manual Categories of Both the Other and Triggering Event

The multi-label classifiers predicted 40.9% of the messages that had the man-
ual labels of both the Other and Triggering event (the first row in Fig.  6) as 
the same two labels. Another close percentage (39.4%) of the messages were 
predicted partially correct, as the Triggering event only. We read the messages 
in the two groups and found two common patterns: 1) most of them consisted 
of one or two sentences, which can also be revealed in the first two rows in 
Table  9; 2) many of them contained compliment expressions to the course or 
other users’ comments, such as “I enjoyed this course”. We also found two dis-
tinctions: 1) the numbers of words and the lexical diversity used in the for-
mer group were averagely fewer than those in the latter group (Table 9), which 
means the messages predicted only one category, the triggering event, used 
more complex words than the messages predicted two categories; 2) the com-
pliment sentence in the majority of the messages from the former group was 
delivered in a general way, such as “I really like your comments”, whereas in 
the latter group the compliment often contained a specific subject, such as “I 
really like the gender-sensitivity of the article in the last paragraph”.

Manual Categories of Both the Triggering Event and Exploration

We found that 33.3% of the messages that contained the manual labels of both Triggering 
event and Exploration (the second row in Fig. 6) was predicted as the same two labels. 
A percentage of 53.8% messages was predicted into the single Exploration category. In 
Table  9, the average number of sentences and lexical diversity measures shown were 
similar between the two groups, but the messages in the former group used fewer words 
and had smaller differences in the message depth and number of replies than in the latter 
group. We also found that most of the messages in the two groups contained (dis)agree-
ment statements on other users’ messages by reading the messages carefully. Interestingly, 
the messages in the former group often used concise messages or incomplete sentences 
as the supports behind the (dis)agreement opinions. Conversely, the messages in the latter 
group often contained longer and complete supporting ideas.
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Manual Categories of Both the Exploration and Integration

The group of messages that contained the two predicted labels (Exploration and 
Integration) accounted for 62% in the messages that had the same two manual labels 
in the third row in Fig. 6. Another group of messages that were predicted as one 
label, Exploration, reached a similar ratio of 47.1%. We found the former group 
of messages used the words of averagely larger numbers but lower lexical diver-
sity than the latter one in Table 9. After reviewing these messages, we found that a 
common structure to claim users’ opinions frequently appeared at the messages in 
the former group; that was, “Premise 1…Premise 2…(Probably) Therefore…”. How-
ever, this expression seldom occurred in the messages from the latter group.

Manual Categories of Both the Integration and Resolution

The multi-label classifiers predicted 62% of the messages that had the manual label 
of both Integration and Resolution (the fourth row in Fig.  6) as other two labels, 
Exploration and Integration, and another 30% of the messages as the single Integra-
tion category. No messages were predicted as the exactly correct two labels. The 
messages in these two groups obtained very close values of the number of sentences, 
the message depth, and the number of the replies, which can be found in Table 9. 
The former group of messages contained fewer tokens and sentences, but higher lex-
ical diversity values than those in the latter group. We also found many messages in 
the two group had the premise-and-conclusion structure as the two-label prediction 
messages in the previous group (the third row in Fig. 6).

According to the above results, we answer the third sub-question (SQ3) that 
the best-performing multi-label classifier predicted 51.1% of the Disagreement-
Set messages as one single category of cognitive presence, and 96% of these 
single-label predictions was the same as one of the expert coders’ decisions. 
Meanwhile, all the predictions of the DisagreementSet messages were either 
one single phase or two adjacent phases of cognitive presence, even the mes-
sages that were categorised to two non-adjacent phases or three phases (the 
last three rows in Table 3). The prediction results of the DisagreementSet were 
consistent with the tests in the AgreementSet. Also, the multi-label classifiers 
predicted almost half of the DisagreementSet messages as two labels of Explo-
ration and Integration, and approximately another half as the single Explora-
tion category. This distribution was aligned with the expert coders’ main disa-
greements, amongst which the highest proportion also fell between Exploration 
and Integration categories, the middle processes of cognitive presence. These 
results suggest that the multi-label classifiers encountered the same challenge 
as the expert coders had faced to differ the Exploration from Integration mes-
sages in MOOCs (Hu et al., 2021a). It might because that these confused mes-
sages applied very similar linguistic and contextual features. We found that the 
premise-and-conclusion expressions in the messages could be a strong indicator 
for the multi-label classifiers to identify Integration category. Also, the num-
ber and the lexical diversity of the words used in the messages could be strong 
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indicators for the multi-label classifiers to make a decision between the lower 
phases; for example, to identify Triggering event from the Other phase, and 
Exploration from Triggering event. This finding was in line with the previous 
studies using the single-label classification models (Barbosa et al., 2020; Far-
row et  al., 2020; Kovanović et  al., 2016; Neto et  al., 2018). Nevertheless, the 
two features tended to be very weak indicators to identify the adjacent higher 
phases, such as Integration and Resolution.

Summary of Discussion

All the above results suggest that although learners’ cognitive presence develop 
from shallow to deep phases, the defined boundaries between the phases could 
be blurry in the MOOC discussion messages. If the boundaries between the 
adjacent categories were clear, the multi-label classifiers would not tag many 
messages into two labels. Some MOOC discussion messages were difficult 
for both human coders and computer algorithms to differentiate, especially 
between Exploration and Integration. Some discussion messages were clearer 
for both humans and computers to accurately allocate one unique category of 
cognitive presence. These phenomena may be due to the messy and chaotic 
reality of online discussions, especially in MOOCs, which consists of conver-
sational flows that do not fit into the ordered patterns in the CoI (Xin, 2012). 
It is nearly impossible for the limited number of researchers to read the myriad 
of MOOC discussions qualitatively and objectively without computer support. 
In this regard, computer algorithms are required to support researchers to dis-
cover the general trend in massive data and make wiser decisions. The coders 
and researchers can rethink their disagreements and make less subjective deci-
sions on the cognitive presence categorisation according to the results of multi-
label classifiers. Also, the generative machine learning models that focus on the 
likelihood estimation of data distribution (e.g., unsupervised learning methods) 
can be recommendable for the cognitive presence categorisation rather than the 
discriminative models, which aim to seek the decision boundaries of the classes 
(e.g., the random forests). Finally, our findings can inform the ongoing refine-
ment of the CoI framework to accommodate the MOOC context. Additional 
categories can be included between the adjacent categories of cognitive pres-
ence to accommodate the predominant disagreements between coders and the 
confusion of the automatic classifiers. The cognitive presence scheme could 
learn from Perry’s scheme of intellectual and ethical development (Finster, 
1989; Perry, 1999), where the stages are developmental including several posi-
tions and tolerate the overlaps existing between adjacent stages. We suggest 
that in the manual categorisation process, the coders can tag multiple labels 
of cognitive presence phases with their confidence degrees on each discussion 
message rather than an absolute, unique label in the previous studies. For exam-
ple, a message can be tagged both Exploration and Integration with the confi-
dence degree of either 1 (i.e., ‘not sure’), 2 (i.e., ‘half sure’), or 3 (i.e., ‘sure’), 
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respectively. Training the automatic classifiers can also benefit from the mul-
tiple labels with their degree values to help reduce subjectivity and tolerate the 
multiplicity in the manual classification tasks in future studies.

The outcomes of the experiments in the paper also indicate that the perfor-
mance of the automatic classifiers might have some relevance to the distribu-
tion of the cognitive presence phases. The classifiers in the study reached the 
similar level of prediction performance to the classifiers in most of the previous 
studies in the literature (Barbosa et  al., 2021; Farrow et  al., 2019; Hu et  al., 
2021b; Kovanović et  al., 2016; Waters et  al., 2015). We found the cognitive 
presence phases in the training set (AgreementSet) of this study obtained very 
similar distribution to the data sets in the previous studies, where the highest 
proportion located in Exploration and Integration, and the lowest in the Other 
and Resolution. In contrast, distinct distributions of cognitive phases in Lee 
et  al.’s (2022) work, where bulk of messages located in the Other and small 
fractions in Triggering event and Exploration, performed a very high perfor-
mance of F1 scores. We acknowledge that the different course domain and ped-
agogical decision could affect the distribution of learners’ cognitive presence 
(Lee et  al., 2022). We suggest future work can apply the discussion messages 
from the MOOCs of different designs and domains, which contain diverse dis-
tributions of cognitive presence, to improve the automatic classifiers.

To summary, in response to the main research question (What would the pre-
diction performance of using the multi-label classifiers to categorise the phases 
of cognitive presence, and what can we learn about cognitive presence in the 
MOOC discussion messages from the training and test processes?), we con-
clude that the multi-label classifiers slightly outperformed the state-of-the-art 
single-label classifiers, and they predicted the messages that had been catego-
rised differently by the expert coders into one single category or two adjacent 
categories of cognitive presence. We envisage that overlaps exist between the 
definitions the adjacent phases of cognitive presence, and the multi-label deep 
learning method has the potential to identify the subjectivity of cognitive pres-
ence categorisation in the discussion messages from the target MOOC.

Limitations

We acknowledge the limitations of the discussion data used in this study. The 
automatic classifiers developed for a specific MOOC might not be generalisa-
ble to other courses. There are disciplinary and pedagogical-design differences 
in the utterances that reflect learners’ cognitive presence (Lee et  al., 2022). 
Also, the limited size of the sample data and the unbalanced classes could 
affect the prediction performance of the automatic classifiers. We are aware 
that the research findings might only be valid for the cognitive presence cat-
egorisation in the target MOOC. A larger sample data size and more data from 
other domains will advance the performance of the automatic classifiers and its 
generalisability in more diverse contexts in our future work.
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Concluding Remarks

This study makes two contributions. First, we developed a multi-label, fine-tun-
ing BERT model as a triangulation process to classify cognitive presence in the 
discussion messages from a philosophy MOOC. The classifier achieved slightly 
better performance in the F1 scores than the state-of-the-art, single-label clas-
sifier. Second, we analysed the partially correct predictions quantitatively and 
qualitatively in both the AgreementSet and DisagreementSet to interpret how 
the multi-label classifiers made the decisions. Although the improvement of 
the classification performance is marginal, the main contributions of the study 
inform that the blur boundaries exist between the adjacent categories of cogni-
tive presence in the MOOC discussion messages, and the multi-label classifiers 
have the potential to help researchers identify research subjectivity and make 
better descions in the manual categorisation of cognitive presence.

We recommend that to improve the prediction performance of the multi-label 
classifiers, and to inform the ongoing refinement of the CoI framework in MOOCs, 
future research could 1) address the class imbalance problem before the model 
training process by investigating effective methods (e.g., active machine learning 
(Rubens et  al., 2015)) to automatically and adaptively generate pre-labelled data, 
which can reduce the time and labour of the manual categorisation; 2) adapt the cat-
egorisation instruments of cognitive presence that enable coders to tag the messages 
into multiple labels with confidence degrees as a significant foundation for develop-
ing automatic classifiers, which can support educators and researchers to get a richer 
and better understanding of cognitive presence in MOOC discussions. They can also 
be applied to support educators in monitoring learners’ progress and help learners 
self-assess in real-time, as well as implementing these tools on learning platforms at 
a large scale.
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