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A B S T R A C T   

The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier sepa-
rating the blood and the tissues in several organs. ECs maintain endothelium integrity by con-
trolling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and 
migration. These actions of ECs are efficiently coordinated via an intricate signaling network 
connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i. 
e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become acti-
vated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, 
cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs 
play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, 
assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has 
been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin 
(NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, anti-
oxidant properties, and cell survival potentials, which improve the health of the vascular endo-
thelium. In this review, we provide a comprehensive summary and present the advances in 
understanding of the mechanisms through which NGN and NAR modulate the biomarkers of 
vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative 
stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies 
that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular 
diseases.   
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Abbreviations 

ACE Angiotensin Converting Enzyme 
AJs Adherent Junctions 
ATH Atherosclerosis 
BBB Blood-brain Barrier 
BDNF Brain-Derived Neurotrophic Factor 
BMP Bone Morphogenesis Protein 
CNS Central Nervous System 
COVID 19 Corona Virus Disease 2019 
CRP C-reactive Proteins 
CVD Cardiovascular disease 
DAMP Danger Associated Molecular Patterns 
ECM Extracellular Matrix 
ECs Endothelial cells 
ERRs Estrogen Related Receptors 
FIK-1 Fetal Liver Kinase-1 
GFAP Glial Fibrillary Acid Protein 
HUVECS Human Umbilical Vein Endothelial Cells 
ICAM-1 Intercellular Adhesion Molecule-1 
ICH Intracerebral Hemorrhage 
IFN Interferons 
IGF Insulin-like Growth Factor 
IJs Intracellular Junctions 
IL-1 Interleukin 1 
iNOS Inducible Nitric oxide Synthase 
IRS-1 Insulin Receptor Substrate-1 
JAK/STAT Janus kinase/signal transducers and activators of transcription 
JAMs Junction Adhesion Molecules 
KDR Kinase insert Domain-containing Receptor 
MAPK Mitogen Activated Kinase 
MCPs Monocyte Chemoattract Proteins 
MMP Matrix Metalloproteinases 
NAR Naringin 
NF-KB Nuclear factor kappa B 
NGN Naringenin 
NLRs Nucleotide-binding Oligomerization Domain-like Receptors 
NO Nitric oxide 
NO-CGMP Nitric Oxide-Cyclic Guanosine Monophosphate 
Nrf2 Nuclear erythroid-related factor 2 
ox-LDL Oxidized low-density lipoprotein 
PARP Poly-ADP ribose polymerase. 
pCAM Promoter Cell Adhesion Molecules 
PI3K Phosphatidylinositol 3-kinases 
PKB Protein Kinase B 
PKC Protein kinase C 
RIG-1 Retinoid acid-inducible Gene 1 
RLRs RIG-1-like Receptors 
ROS Reactive Oxygen Species 
SARS-CoV-2 Severe Acute Respiratory Syndrome - Corona Virus 2 
SMC Smooth Muscle Cell 
TGF-β Transforming Growth Factor-beta 
TJs Tight Junctions 
TLRs Toll-like Receptors 
TMPRSS 2 Transmembrane protease serine 2 
TNF- Tumor Necrosis Factor-alpha 
VCAM-1 Vascular Cell adhesion Molecules-1 
VEGF Vascular Endothelial Growth Factor 
VSMCs Vascular Smooth Muscule Cells 
YAP Yes Associated Protein  
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1. Introduction 

1.1. Endothelial cell biology and function 

The pioneering discovery of endothelial cells (ECs) dates back to the Seventeenth century when Marcello Malpighi demonstrated 
the existence of capillaries in frog lungs. During this period, the advent of microscopy and injection techniques aided the discovery of 
the epithelium in the vessel lumen [1]. The term “epithelium” was introduced by Gustav Jacob Henle in the mid-19th century [2], and 
thereafter, there arose discussions as to capillaries possessing walls with nuclei. Up till the 20th century, the endothelium was thought 
of as a cellophane paper with no specific function other than selective permeability to water and small molecules [3] or a single layer of 
endothelial cells that permits small molecules through the walls of blood vessels [4]. To date, ECs are being used for the in vitro studies 
of metabolism and disease [5,6]. 

The vascular endothelium is a monolayer of ECs that lines the circulatory system i.e., the capillaries and veins with varying volumes 
and surface area. Endothelial cells perform multiple unique functions including the maintenance of vascular homeostasis, fluid 
filtration associated with the renal glomeruli, prevention of thrombosis and its complications, recruitment of immunological mole-
cules, trafficking of hormones, and many others [7]. Of particular importance is the ability of endothelial cells to act as both sensors 
and effectors; properties that enable them to mediate homeostasis [3]. The effector functions of ECs are made possible via 
membrane-spanning proteins such as receptors, cell-cell adhering proteins, cell-matrix, hormones, and other metabolites [8]. Being the 
inner lining of blood vessels, endothelial cells play a significant role in regulating the flow of blood via the presentation of antith-
rombotic surfaces and facilitating the smooth transit of cellular contents. Moreover, under quiescent conditions, ECs regulate the 
uptake of vasoactive substances that mediate vascular permeability, trafficking, and coagulation [9–12]. ECs also maintain the balance 
between vasodilatory and vasoconstricting factors (Nitric oxide (NO), prostacyclin, thromboxane) to maintain vascular smooth muscle 
tone. Further, ECs secrete a number of intracellular growth-enhancing and adhesion proteins and immune molecules such as Bone 
morphogenesis protein (BMP), Interleukins (IL-1 alpha and beta, IL-6, frizzled receptor protein, Insulin-like growth factor (IGF), von 
Willebrand factor and Placenta growth factor [11,13–16]. Inflammatory mediators such as IL-6, Intercellular adhesion molecule 1 
(ICAM-1), Vascular cell adhesion molecule 1 (VCAM-1), and C-reactive proteins (CRP) are conventionally used as endothelial 
dysfunction biomarkers in Diabetes, and Cardiovascular diseases [17]. During periods of infection, inflammation, hyperglycemia, or 
hypertension, ECs become increasingly permeable. This is due to oxidative stress, dysregulated expression of procoagulants, cell 
adhesion molecules, nitric oxide, and the patrolling of monocytes and leukocytes to infection sites (Fig. 1; [18,19]). 

1.1.1. Endothelial cell heterogeneity and phenotypes 
The ECs in the blood or lymphatic vessels primarily control vascular tone and permeability, recruitment of blood and immune cells, 

and migration of smooth muscle cells. To carry out these functions, ECs adopt a heterogeneous phenotype, determined early during the 
cell developmental stages of differentiation into target tissues [20,21]. Under different conditions whether pathological or physio-
logical, ECs can modify the structure of large and small vessels into distinct phenotypes that assume different roles depending on their 
localization [22]. For instance, ECs stimulate tip cells and activate other cell types to modulate signaling, which guides the sprouting of 
developing vessels [23]. Consequently, tip cells initiate the repression of notch signaling and upregulate the vascular endothelial 
growth factor gene (Flk-1) [23]. In tumorigenic cells, ECs express the Vascular Endothelial Growth Factor (VEGF), a pro-angiogenic 
factor that promotes abnormal proliferation of blood vessels, leading to angiogenesis. The structure, function, and mechanisms of ECs 
heterogeneity have been extensively documented [21,24–26], and this knowledge is particularly essential for understanding how 
bioactive compounds modulate site-specific ECs in health and disease. 

1.1.2. Endothelial barriers, intercellular junctions, and endothelial cell permeability 
Under normal conditions, along the vasculature, ECs align with a tightly arranged functional barrier, made up of intact cell-to-cell 

junctions [27,28]. The integrity of this vascular barrier of ECs is supported by the function of intercellular junction molecules (IJs). IJs 
are transmembrane proteins that activate homophilic interactions, and ultimately form a “zipper-like” structure along the border of the 
cell [29,30]. When disrupted or structurally modified, IJs lead to inflammatory responses and pathological processes which can 
exacerbate ECs, and lead to cellular leakage and permeability. Known mediators of vascular permeability are inflammatory factors 
such as Tumor necrosis factor (TNF), protein kinase C (PKC), and thrombin to mention a few [31]. The IJs are of two subtypes; tight 
junctions (TJs) and adherent junctions (AJs) [32,33]. TJs, located around the intercellular cleft between close cells, act as barriers 
against solutes [34]. Proteins in the TJ include occludins, claudins, and Junction adhesion molecules (JAMs). Claudins are tetraspanins 
that connect directly with cytoskeletons. Claudin isotypes 1 and 5 have been implicated in the regulation of the permeability of TJs in 
human cells [33]. Occludins represent an integral TJ protein that forms complexes end-to-end with claudins and are strategic in 
providing barrier functions to the ECs via the seal from its N-terminal domain [35]. AJs on the other hand are composed of cadherins, 
which are transmembrane proteins that mediate cell-to-cell adhesion via interactions with Vascular Endothelial (VE)-cadherin mol-
ecules present on the surface of an adjacent cell. Gavard, [36] suggested that these VE-cadherin contacts between ECs are necessary for 
the maintenance of ECs integrity and functionality of the ECs barrier. 

1.1.3. Endothelial cells as conditional innate immune cells 
ECs and other structural cells including epithelial cells, stroma cells, and smooth muscle cells among others are involved in innate 

and adaptive immune functions [37–42]. ECs could be considered innate immune cells [11]. By their location, ECs act as sentinel cells, 
being in the first line of exposure to foreign microbial contents in circulation [9]. Asides from this, ECs have (Danger Associated 
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Molecular Patterns (DAMP) sensors expressing Toll-Like Receptors (TLRs) at different levels depending on the severity of infection or 
inflammation [43,44]. ECs also express other receptors such as Nucleotide-binding oligomerization domain-like receptors (NLRs), 
chemokine receptors, Retinoic acid-inducible gene 1 (RIG-1)-like receptors (RLRs), and secrete pro-inflammatory cytokines (IL-8) in 
response to stimulation by foreign microbes [45,46]. These properties of ECs show that ECs respond to infections and inflammation 
and thus enhance or suppress immune functioning depending on their site-specific cytokine profiles [9]. For Instance, ECs use their 
pathogen recognition receptors (PRRs) to detect foreign or inflammatory stimuli and in response, express pathogen recognition 
molecules such as MHC II, which is presented to immune cells [11]. Other responses of ECs may include the expression of adhesion 
molecules which facilitates leukocyte transmigration to underlying tissues or a direct secretion of inflammatory mediators, cytokines, 
and chemokines [9,11,47,48]. 

ECs like toll-like receptors are involved in pathogen detection via interactions between the PRRs and DAMPs [49], ECs specifically 
limit pathogen replication via the transcriptional activation of immune molecules such as type 1 Interferons IFN-gamma [50], and also 
observed in the tryptophan degradation in Toxoplasma gondii infections [51]. Since ECs are conditional immune cells, in many 
physiological and pathological conditions [11], they can be necessary targets for anti-inflammatory and immunomodulatory agents. 

2. Naringenin and naringin as functional polyphenolic compounds 

Bioactive compounds have become an emerging and significant aspect of pharmaceutics and the nutrition-based therapeutic in-
dustry, owing to their nutritional and medicinal aspects. A growing body of evidence indicates the consumption of polyphenolic 
compounds as remedies for several diseases via metabolic regulation, modulation of cell proliferation, and amelioration of chronic 

Fig. 1. Balance between a healthy and a dysfunctional endothelium. Equilibrium shift to the left characterizes a quiescent state and functional 
endothelium while the shift to the right indicates the effectual weight of vasoconstriction (↓NO, PGI2), oxidative stress (↑ROS), proinflammatory 
cytokines (TNF-α, IL-6, MCP-1) and adhesion molecules (↑ICAM, VCAM, E-selectin) as well as procoagulants (↑PAI-1, vWF, P-selectin), which 
characterize endothelial dysfunction. During infection or in a disease state, the balance is tipped downward, and the endothelium is activated and 
dysfunctional. This leads to systemic inflammation, oxidative damage, impaired vasculature, and increased permeability and ultimately accelerates 
disease progression. 
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diseases [52,53]. Structurally, polyphenols vary; from containing multiple phenol moieties to existing in polymerized forms. Poly-
phenols can be simple phenols (some are not), flavonoids, and non-flavonoids. Flavonoids can also be subclassified into flavanols 
(catechins), flavonols (Kaempferol and quercetin), flavones (apigenin, luteolin, tangeritin) and flavanones (naringenin, and hesper-
idin) [54,55]. 

Naringin (NAR; 4′,5,7-trihydroxyflavanone-7-rhamnoglucoside) and Naringenin (NGN; 4′,5,7-trihydroxyflavonone; Fig. 3A and B) 
are naturally occurring flavanones found in different ratios in citrus fruits, grapes, vegetables and tomatoes [56–59]. 

NAR is metabolized by the hydrolytic action of the liver enzyme naringinase to produce NGN and rhamnose [60,61]. Therefore, 
NGN exists naturally as an aglycone without the “7-O-glucoside” moiety present in NAR (glycosylated form). NAR is responsible for the 
sour and bitter taste of citrus fruits and is the pharmacological ingredient responsible for the effects of grapefruit in most clinical 
studies [62–64]. 

NAR has been reported to possess anti-atherosclerotic, anti-inflammatory, and anti-oxidant properties ([59,65]; Fig. 2). It has also 
been reported that NGN can protect against cardiovascular disease, particularly in vulnerable patients [66]. NAR also reduces the 
expression of signaling molecules such as IL-6, IL-8, inducible nitric oxide synthase (iNOS), and nuclear erythroid-related factor 2 
(Nrf2) associated with lung injury in LPS-treated mice [67]. NAR similarly improved endothelial function through the production of 
NO via acetylcholine-mediated mechanisms, and the downregulation of gluconeogenesis enzyme expression in diabetic rats [68]. In 
addition to NAR’s activities, NGN possesses antifibrogenic, and anticancer properties (Fig. 2). These properties are mediated via a 
variety of signal transduction cascades including the inhibition of mitogen-activated protein kinase (MAPK), Transforming growth 
factor-beta (TGF-β), and vascular endothelial growth factor (VEGF). Further, NGN has been reported to possess antiviral activity 

Fig. 2. Pharmacological Roles of Naringin and Naringenin. NGN and NAR protect against the onset and severity of many human diseases via their 
antioxidant and anti-inflammatory activities, inhibition of adhesion molecules, and enhancement of vascular smooth muscle relaxation in the 
endothelial cells. In (A), Cardioprotective through NO-signaling effects on the smooth muscle cells (B), antiatherogenic by reducing the feasibility of 
thrombosis and thrombocytopenia (C), neuroprotective by maintaining the integrity of the blood-brain barrier (D), antidiabetic via the attenuation 
of glucose-related inflammation and oxidative damage (E), antiviral by the stimulation of anti-inflammatory molecules, inhibition of spike protein 
interactions (F), anti-cancer through the inhibition of VEGF, and stimulation of apoptosis. 
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against flaviviruses [69], and hepatitis C virus [70], and more recently against the COVID-19 virus [71,72]. NGN & NAR act by 
targeting different proteins in metabolism and signaling [73], and as well as stimulating protective activities against metabolic syn-
dromes and cancer in vitro and in vivo [74]. Although NGN & NAR have a low bioavailability, they are traditionally used in treatment 
therapies against disease states [75]. These activities may be correlated to the action of NGN on endothelial cell function. Since the 
alteration in endothelial cell integrity is a mandatory common denominator in metabolic syndromes, cancer and stroke, this review 
focuses on the biological activities and molecular mechanisms of action of endothelial cell protection by NGN & NAR. 

2.1. Biochemistry of naringenin and naringin: structure-function relationship 

Structurally, like every other flavonoid, NGN contains atoms arranged in three rings: two benzene rings linked by a 3-carbon O- 
heterocycle. At the 5th, 7th, and 4′ positions are hydroxyl groups that can be substituted by other functional groups to produce 
structural analogs of NGN [76]. NGN can exist as NAR, Narirutin, and prunin/floribundoside, ([77]; Fig. 3). NGN also possesses a 
stereogenic chiral center at position C2, which makes it possible to form enantiomers; NGN enantiomers were found present in natural 
sources of NGN [78]. The differences in the biological activities of NGN and NAR may be due to the differences in their structures. The 
hydroxyl substituents and heme oxygenase moieties on NGN and NAR structures help to scavenge free radicals, chelate metal ions, 
induce antioxidant enzyme systems and inhibit ROS generating oxidases [79,80]. However, NAR has less potency caused by the steric 
hindrance of some of its functional scavenging groups [68]. 

NAR when ingested undergoes biotransformation into NGN via the action of α rhamnosidase and β-glucosidase enzymes. NGN has a 
low oral bioavailability; [62] the hydrolysis of NAR to NGN occurs just before absorption, and NGN is less soluble largely due to its 
largely hydrophobic structure [81]. On the other hand, NGN (the aglycone) is highly lipophilic and absorbed via passive diffusion by 
the epithelial cells of the small intestine and then moves into the general circulation and back to the intestinal lumen through 
ATP-mediated multidrug resistance proteins and P-glycoproteins [82]. 

An important factor determining the rate of absorption of these flavonoids is glycosylation. For instance, Naringenin -7- rham-
noglucoside (narirutin) and naringenin-7-O-glucoside (prunin) have sugar moieties that make them hydrophilic (Fig. 3C and D). 
However, they do not diffuse passively across the cell membranes [83]. The sugar moieties at the site of absorption of the glycosides 
may determine the rate of bioavailability. The flavonoid monoglucosides are estimated several folds higher in bioavailability than the 
rutinosides and are readily absorbed in the small intestine. Moreover, rutinosides can be metabolized on reaching the colon when 
exposed to residing bacteria via the action of a-rhamnosidases [84]. Taken together, understanding the differences in structure and 
function of these flavonoids is strategic to unraveling how they may facilitate endothelial cell survival and improve the functioning of 
the endothelium. The protective role of NGN and NAR in several disease states including but not limited to their role in endothelial 
dysfunction are documented [62,68,85,86]. 

Fig. 3. Structure of Naringenin and its analogs. (A) Naringenin indicates free hydroxyl groups at the 5, 7, and 4′positions as well as a chiral center at 
C2. The substitution of OH at position 7 for 2-O-α L-rhamnosyl-D-glucoside gives Naringin (B) and for 6-O-α L-rhamnosyl-D-glucoside forms Narirutin 
(C). Prunin or Floribundoside is produced by substitutions at positions 5 and 7 of the Naringenin structure with glucose (D). 
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3. Naringin and Naringenin prevent endothelial dysfunction in cardiovascular diseases 

Endothelial dysfunction is associated with high expression of adhesion molecules and the promotion of inflammation, which 
modulates integrin receptors, causes platelet degranulation, and allows for growing mass of platelet aggregates [87,88] This 
platelet-endothelium interaction and NO-mediated endothelium-dependent vascular homeostasis has been implicated in atheroscle-
rosis and cardiovascular diseases [17]. Atherosclerosis is characterized by abnormal accumulation and deposition of fibrous tissue and 
lipids or cholesterol in the innermost layer of the arteries [89]. Accumulation of fibrous or lipid materials causes the narrowing and 
partial blockage of arteries and thus restricting blood flow. Irregular blood flow leads to myocardial infarction and ischemic heart 
failure. While atherosclerosis may be caused by various factors such as diabetes, smoking, and hyperlipidemia, a dysfunctional 
endothelium and hypertension increase the risk of atherosclerotic plaques in the cardiovascular system [89]. There is a recent focus on 
developing treatments for atherosclerosis by the administration of statins, blood thinners, and cholesterol reduction medications, 
however, these treatments are associated with toxic side effects when taken long-term. A safe, non-toxic, and efficient therapeutic 
agent is needed to treat atherosclerosis. Natural functional compounds, phytochemicals, and polyphenols have been shown to exhibit 
anti-atherosclerotic properties [90,91]. NGN and NAR are examples of these compounds. They modulate heart endothelial cells and 
smooth muscle cells for vasorelaxation and permissive free blood flow (Fig. 4). 

NAR has been reported to play a significant role in the modulation of endothelial cells in animal studies. For instance, reduced 
vascular fatty streak arrangement and macrophage infiltration were observed in cholesterol-fed rabbits, that had a daily intake of 500 
mg/kg NAR supplements. NAR exhibited anti-atherogenic activity via the reduction of ICAM-1 expression in high cholesterol-fed 
rabbits [92]. When combined, NGN and NAR reduced the expression of aortic VCAM-1 and prevented atherosclerosis in 
diet-induced hypercholesterolemia in mice [93]. Further, NGN inhibited left ventricular hypertrophy via the downregulation of the 
Angiotensin-converting enzyme in hypertensive rats [94]. YAP-Yes associated protein is important in endothelial cell activation and 
vascular inflammation [95]; NAR prevented ox-LDL-induced endothelial apoptosis and injury in human umbilical vein endothelial 
cells (HUVECs) via the downregulation of the Hippo-YAP pathway [96]. Naringin reduced dysfunctional endothelium in a rat model 

Fig. 4. Naringenin and Naringin improve Cardiac Endothelial Cell functioning. NGN and NAR promote the scavenging of ROS and free radicals 
generated from NADPH oxidase and the respiratory activity of the mitochondria. They also inhibit inflammatory cytokine action and attenuate 
inflammation via the inhibition of NFκB and regulation of leukocyte adhesion. NGN and NAR prevent the formation of toxic peroxynitrite from NO 
and facilitate endothelial cell vasodilation and smooth blood flow through the heart vessels. 
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fed 100 mg/kg per day of fructose. Increased aortic expression of and phosphorylated levels of eNOS were similar features of this 
treatment [97]. More recently, NAR has been shown to preserve the endothelium by ameliorating pulmonary endothelial permeability 
and attenuating inflammation in a LPS/cigarette smoke-induced mice [98]. NGN acts via the AMPK/Sirt1 pathway to reduce ROS 
levels and increase NO bioavailability against homocysteine induced endothelial dysfunction in HUVECs [99]. NGN suppresses the 
action of inflammatory cytokines and improves endothelial dysfunction via the modulation of the NO-cGMP pathway in a rat model of 
hypertensive oculopathy [100]. While many researchers have investigated the protective effects of NGN and NAR on CVDs or 
CVD-related conditions [93,101,102], only a few studies have evaluated direct effects on the Vascular Smooth Muscle Cells (VSMCs) 
and the ECs. In vivo studies are warranted. 

4. Naringenin and naringin protect brain vascular endothelium and prevent cerebral damage 

Dysfunctional endothelium in the brain is tightly linked to the disruption and permeability of the blood-brain barrier (BBB), a 
common dysfunction found in neurodegenerative diseases [103], including cerebral small vessel diseases [104] The brain endothelial 
cells, form the tight BBB property and are linked together by a complex of transmembrane and inter-endothelial proteins. This barrier 
selectively regulates in identity and amounts, the proteins that reach the brain parenchyma [105]. TJs and JAMs, that seal up 
inter-endothelial cell spaces and maintain the polarization of brain endothelial cells via regulated exchange of transporters [106], also 
make up the brain endothelium defense. The ability of NGN and NAR to modulate these proteins would demonstrate a possible 
protective or detrimental effect on neurological diseases. Many studies show the effects of Naringin and Naringenin on Alzheimer’s 
disease, Parkinson’s disease, Multiple Sclerosis, neurotoxicity, neurobehavioural manifestation, and neuroinflammation [57, 
107–110]. However, not many have used in vitro endothelial cell systems and there is little evidence of in vivo studies. There is evidence 
for the involvement of NGN & NAR on endothelial cells of the Blood-brain barrier [111,112], intracerebral hemorrhage [113], Stroke 
[114,115], and cerebral infarction [116,117]. 

Youdim et al. [111] demonstrated the uptake of NGN and Hesperetin in vitro using different mouse brain endothelial cells compared 
to other flavonoids that were exposed to the cells. The uptake of NGN at a peak concentration of 30 μM indicated the ability of NGN to 
cross the blood-brain barrier and interact with the protein contents of the BBB, leading to the activation of signaling and 
anti-inflammatory processes. Intracerebral hemorrhage (ICH), the rupture of blood vessels in the brain parenchyma leads to the 
formation of blood clots (hematoma). The consequent release of thrombin stimulates the permeability of inflammatory cells, cytokines, 
and chemokines, to damage the brain tissue [118]. NAR attenuated TNF-α and MMPs compared to control groups in a study carried out 
by Singh and colleagues on collagenase-induced intracerebral hemorrhage in rat brains [113]. Similarly, NAR was found to confer 
Cerebro-protective activity against cerebral infarction in ischemia-reperfusion injured rats. Reduced leukocyte infiltration and 
attenuated inflammation were observed in the same experimental animals [116]. NGN & NAR have neurotherapeutic potential in the 
treatment of neurological complications arising from a stroke. NGN & NAR have been shown to improve recovery via enhancing the 
expression of Brain-Derived Neurotrophic Factor (BDNF) and VEGF following spinal cord injury in rats [119]. NAR inhibited the 
activation of MAPK signaling pathway to reduce oxidative stress, apoptosis and ameliorate BBB damage in a rat model of subarachnoid 
hemorrhage [120]. NAR also alleviated locomotor impairments and protected against BBB disruption by downregulating MMPs and 
inducing Glial Fibrillary Acid Protein (GFAP) in 3-nitropropionic acid-induced neurodegeneration in rats [121]. Of particular 
importance is the fact that NGN and NAR reduce pro-inflammatory activities in and around the brain [122–124]. This does not 
necessarily indicate neuromodulation to the microvessel endothelial cells, since other cell types and neurons also secret 
pro-inflammatory mediators and cytokines [125]. There is need for more conclusive evidences using brain endothelial cell cultures and 
in vivo studies in mice, to elucidate the neuropharmacological mechanisms by which NGN and NAR protect the brain. 

5. Naringenin and naringin preserve the vascular endothelium in diabetes 

Dysfunctional endothelium results from the inability of the endothelial cells to regulate events in the vascular wall, leading to a 
shift in homeostatic balance towards pro-inflammatory, prothrombotic, vasoconstrictive, and atherogenic activities [126,127]. Dia-
betes is a metabolic disease as well as a disease of vascular homeostasis due to its effects on several vascular beds and alteration of the 
vascular tone. The vascular complications associated with diabetes link it with the pathogenesis of cardiovascular diseases [128,129]. 
The intercellular milieu in diabetes triggers a cycle of activities that take place within the vascular wall, including oxidative stress, 
inflammation, and impaired fibrinolytic functions. These events lead to thrombosis, vasoconstriction, and impaired endothelial cell 
functioning in both the early and late stages of the disease [130,131]. It is not yet clear how there might be a differential impact of type 
1 and type 2 diabetes on endothelial cell dysfunction; some lines of evidence and reports believe that impaired endothelial-dependent 
vasodilation links both type 1 and type 2 diabetes [132,133], however, a later study showed that endothelial dysfunction pathogenesis 
differs between type 1 and type 2 diabetes [134]. Since there are multifactorial causes of endothelial dysfunction in diabetic patients, 
the manifestation of multiple homeostatic imbalances makes it challenging to delineate the above relationship. Hyperglycemia, 
oxidative stress, proinflammatory activity, and insulin resistance are specific systems that impact the endothelial cell functioning in 
diabetes [128]. In this section, we highlight studies that report the beneficial effects and possible mechanisms of NAR and NGN on 
vascular diabetic disease. 

5.1. Hyperglycemia 

Hyperglycemia, known to be the hallmark of diabetes mellitus, has been shown to impair endothelial cell function and disruption of 
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vascular beds in human subjects and animal studies especially when prolonged [135–137]. Hyperglycemia causes vascular dysfunction 
via the following mechanisms (Fig. 5) – the activation of Protein Kinase C (PKC) pathway, the increased affinity and shunting of 
glucose through the activation of hexosamine and polyol pathways, the increased expression of advanced glycation end products 
(AGEs) and their receptors (RAGE-Receptors for Advanced Glycation End Products), leading to intracellular and extracellular modi-
fication of proteins of the extracellular matrix [133,138]. The results of these mechanisms are alterations in gene expression, gen-
eration of oxidative stress, increased apoptosis, and permeability of the vascular endothelium ([135,139]; Fig. 5). NGN and NAR have 
been shown to modulate the homeostatic shift of hyperglycemia in diabetes in animal models. Among many studies, NGN alleviated 
vascular dysfunction in Streptozotocin-induced diabetic rats as well as in palmitic acid HUVECs [77,140]. NGN also reduced blood 
glucose levels, insulin levels and regulates the cell adhesion molecule (ICAM) and oxidative stress associated with hyperglycemia in 
type 2 diabetic rats [141,142]. NGN was reported to reduce serum glucose levels, oxidative stress markers, production of NO, and 
proinflammatory cytokines in STZ-induced diabetic rats [143]. Similarly, NGN exerted antihyperglycemic and antioxidant effects in 
STZ-nicotinamide-induced diabetic rats [144]. Further, NGN reduced PKC activity and reduced the expression of the pro-inflammatory 
transcription factor, nuclear factor κB (NF-κB) p65 expression in the kidney of diabetic mice [145]. NAR protected against hyper-
glycemia induced myocardial fibrotic lesions via the upregulation of PKC and P38 in male spraque-dawley rats [146]; Similarly, NAR 
improved endothelial cell damage caused by high glucose through the activation of antioxidant status and downregulation of CX3Cl 
[147]. Through the modulation of the leptin-JAK2/STAT3 pathway, NAR ameliorates hyperglycemia-induced injuries in H9C2 car-
diomyocytes [148]. There is not much evidence for the role of NAR in hyperglycemia, but NGN possesses signaling modulating roles 
that make it potentially useful in the management of diabetes. 

Fig. 5. Hyperglycemia-induced Endothelial Dysfunction. High levels of glucose and fatty acids activate the polyol pathway, hexosamine, and 
glucose autooxidation pathway, PKC activation, and increase the levels of advanced glycation end products, stimulating the RAGE and its down-
stream pathways. Hyperglycemia activates PKC via DAG, leading to the upregulation of cell adhesion molecules (VCAMs and ICAMs), generation of 
ROS by NADPH oxidase, activation of the pro-inflammatory transcription factor NFkB and the uncoupling of endothelial nitric oxide synthase. The 
RAGE mediated pathway, glucose oxidation, hexosamine pathway, and polyol pathway all generate oxidative stress, leading to excessive ROS levels 
in the cell. NO reacts with superoxide anion, to form deleterious molecule peroxynitrite which is largely indicated in endothelial cell dysfunction. 
ROS also stimulates NFkB to express pro-inflammatory genes leading to systemic inflammation. These events lead to activated endothelium and 
vascular dysfunction in diabetes. 
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5.2. Oxidative stress 

Oxidative stress is a unifying mechanism involved in endothelial dysfunction. That is, most other mechanisms that cause endo-
thelial cell dysfunction are directly or indirectly related to ROS generation and oxidative stress-related damages. Nitric oxide meta-
bolism and signaling are central hallmarks of endothelium dysfunction. Oxidative stress diminishes the availability of NO via the 
alteration of eNOS enzyme activity or the formation of peroxy radicals with superoxide anion. The peroxyl radical (ONOO-) is capable 
of binding cellular macromolecules and causing alteration in cellular functioning [149]. ROS generating systems in the vasculature 
include the xanthine oxidases (XOs), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cytochrome P450, and lip-
oxygenase systems as well as the mitochondria [128,138]. These ROS sources have been characterized in type 2 diabetes and 
implicated in impaired endothelium-dependent vasodilation associated with diabetes mellitus [150]. 

Indeed, several studies have reported the antioxidative role of NGN & NAR in various treatment models. In diabetes-related 
oxidative stress conditions, NGN and NAR suppress oxidative damage via their free radical scavenging property, reducing the pos-
sibility of lipid peroxidation and endothelial cell damage. NAR supplementation to diabetic rats elevated antioxidant enzymes levels, 
inhibited xanthine oxidases – partial sources of superoxide anions and scavenged ROS including hydroxyl radicals [68]. 

5.3. Chronic inflammation 

Chronic inflammation also contributes to the compromised integrity of the vascular walls in diabetes mellitus. Following the 
discovery of elevated levels of pro-inflammatory cytokines in diabetic and obese patients, a compromised EC phenotype that leads to 
vascular leakage and damage was observed [140,151]. Many of the inflammatory cytokines and chemokines (TNF-α, ILs, CCL2, CCL5), 
transcription factors (NFκB), and cell adhesion molecules (ICAM, VCAM) found in the diabetic milieu are presented in Table 1. These 
classes of molecules act via oxidative stress-related activation and increased expression of one another, which eventually leads to 
increased cell permeability and impaired vascular homeostasis. NGN ameliorated renal impairments in streptozotocin-induced dia-
betes in rats via the downregulation of IL-1 and proinflammatory TGF-beta 1 [140]. Also, in a dose-dependent manner, NGN reduced 
the expression and protein levels of TNF-alpha, (IL)-1β, and MCP-1 in diabetic mice [145]. NAR reduced the expression of the CX3CL1 
and ROS, and additionally reduced NO levels in HUVECs treated with high glucose [147]. More recent evidences of NGN on atten-
uating chronic inflammation include; its suppression of oxidative stress, apoptosis and neuropathic inflammation in STZ-induced 
diabetic mice and rats via the modulation of Nrf2 and NFkB pathways [152,153], and the improval of renal damage by the induc-
tion of cell proliferation and hypertrophy in cloned rat kidney (NRK-52E) cells [154]. NGN activates the eicosatetraenoic acid pathway 
to reduce inflammation in diabetic nephropathy [154]. Further, NGN suppressed NFkB activation, improved glucose tolerance, and 
increased the expression of antioxidant enzymes mRNA in gestational diabetes mellitus ([155]; Fig. 5). Lastly, NGN suppresses the 
infiltration of immune cells, neutrophils and macrophages in obese mice [156]. 

5.4. Insulin resistance 

Insulin resistance is described as the inability or reduced sensitivity of insulin to facilitate the uptake of glucose into the body organs 
including the liver, adipose tissue, and the skeletal muscle [157]. Insulin resistance impacts the endothelium in the diabetic milieu via 
notable pathways related to insulin signaling. Insulin signaling involves the PI3–K pathway and MAPK pathway, which regulate gene 
expression, cell proliferation, and differentiation [138,158]. Insulin generally promotes the production of NO via the PI3–K pathway 
and the production of endothelin-1 via the MAPK pathway. However, in conditions of diabetes or insulin resistance, this pathway is 
halted and impaired, leading to endothelial dysfunction [159]. 

In the condition of insulin resistance, there is excess production of FFAs as well as the increased generation of ROS and the 
consequent activation of PKC. In addition, increased inflammatory cytokines have also been associated with insulin resistance [160]. 
All these events foster inflammatory processes, vascular permeability, and endothelial dysfunction. NAR has been shown to ameliorate 

Table 1 
Inflammatory mediators of endothelium-derived microvascular complications in diabetes.  

S/ 
N 

Mediator Key Players Cellular Role References 

1. Inflammatory Cytokines Interleukins; IL-1, IL-6, IL-8, 
TNF-α, CRP, IL-22 

Secreted by immune cells and upregulate inflammatory reactions by synthesis of secondary 
mediators, more [234,235] pro-inflammatory cytokines, and the attraction of immune cells. 

2. Adhesion Molecules Selectins, Integrins, 
Immunoglobulins 
ICAM-1, VCAM-1 

Enhance leukocyte adhesion and [236] recruitment of inflammatory cells via chemokines. 

3. Local Inflammation iNOS forming NO 
COX forming 
prostaglandins 

Prostaglandins lead to acute inflammatory [237,238] responses in inflamed tissue. 

4. Transcription factors Nuclear Factor kappa B 
(NFκB) 

Redox-sensitive transcription factor, which [239] translocates to the nucleus upon 
inflammatory insult to induce the expression of more inflammatory cytokines. 

5. Chemokines/ 
Chemoattractants 

CCL-2 (MCP-1), CX3CL1, 
CCL5, CCL7 

Attracts immune cells to the sites of [240–242] inflammation and facilitates the formation of 
atherosclerotic plaques. 

6. Toll-like Receptors TLR2 and TLR4 Mediates immune response during [243,244] infection or injury to the ECs.  
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hyperinsulinemia, insulin resistance, and hyperglycemia-mediated cytokine levels in streptozotocin-induced diabetic rats [161]. NAR 
also suppressed glycolytic enzymes, glucokinase, and phosphoenolpyruvate carboxykinase in diabetic mice [162]. 200 mg/kg of NAR 
mediated the phosphorylation and activation of insulin receptor substrate-1 (IRS-1) and blocking of Insulin-MAPK signaling pathways 
[163,164]. NGN has been shown to improve insulin sensitivity, attenuate inflammation and reduce the oxidative stress burdens in 
human in vitro models including high glucose HepG2 cells and human models of gestational diabetes mellitus [155,165,166]. The 
mechanisms for this is believed to be via the activation and phosphorylation of AMPK [165,166]. 

Taken together, NGN & NAR preserve the vascular endothelium in diabetes by controlling the mentioned signaling and inflam-
matory molecules and therefore represent an important class of compounds to be considered in the treatment and management of 
diabetes mellitus. 

6. Naringenin and naringin protect endothelial cell in cancer 

An activated endothelium indicates the morphological changes in endothelial cells that lead to the modulation of cell surface 
molecules. Many of the endothelial cell vasoconstriction, and vasodilation factors including cell adhesion molecules, and cytokines, all 
conspire to cause local inflammation [167]. For instance, Angiopoietin-2, one of the growth factors involved in angiogenic signaling 
promotes apoptosis, inflammation, disruption of vascularization, and barrier function [168]. This protein is released upon endothelial 
cell activation [169]. EC dysfunction is intricately linked to cancer, and while activation of ECs presents a good motive, it can increase 
the susceptibility of ECs to dysfunctional processes implicated in cancer [170,171]. Dysfunctional ECs involved in cancer progression 
are activated by growth factors, cytokines, hormones, oxidative stress, estrogen-related receptors (ERRs), and PI3K/Akt pathway 
amongst others. In understanding the molecular basis of endothelial dysfunction in cancer, much attention has been drawn to the 
signaling of cellular protein players, vascular endothelial growth factor (VEGF), JAK/STAT, ERRs, and NF-κB [172–175]. The signaling 
pathways of these protein players are target points for cancer chemoprevention, immunotherapy, and nutrition-based therapy. 

NGN has been shown to possess anti-cancer properties, inhibiting inflammation, tumor migration, and progression in B16F10 
mouse and SK-MEL-28 human melanoma cells [176]. Similarly, NAR was reported to significantly inhibit tumor growth and reduce 
TNF-α, and IL-6 in a rat model of carcinosarcoma [177]. Over the years, VEGF signaling necessary for angiogenesis has been explored 
as a target for a novel therapeutic agent [175,178]; an increase in VEGF mRNA expression occurs as a result of hypoxia, cytokines 
induction, the action of tumor suppressor genes, and the Estrogen Related Receptor (ERR) [179,180]. In vitro studies reveal that NGN 
induces apoptosis in estrogen-dependent breast cancer cell lines, human hepatoma, and colon adenocarcinoma [181,182]. In 
glioma-induced rats, NGN administration reduces the expression of PI3–K and PKB which ultimately contributes to cell proliferation 
and migration [183]. NAR suppressed VEGF and the activation of VEGFR, inhibited tumor growth and angiogenesis in a xenograft 
mouse model of glioblastoma and human umbilical vascular endothelial cells [184]. NGN blocks voltage-gated sodium channels to 
inhibit metastasis in malignant rat prostate tumor (MAT-Lylu) cells [185], strengthen immunity against tumorigenesis by induction 
and activation of cytotoxic T cells and macrophages in primary tumor specimens from human patients and other murine models [186]. 
NGN similarly promotes anti-angiogenesis and evokes a positive immune response in human breast cancer and endothelial cells via the 
modulation of JAK2/STAT3, and ERRalpha/VEGF/KDR signaling pathways [187,188] Further, NGN causes significant changes in the 
cell cycle by reducing the expression of cyclin-dependent kinase 4 and cyclin D1 found in the G0/G1 phase of the cell cycle [189]. This 
was concomitant with the activation of caspase 3 via the intrinsic pathway of apoptosis in human hepatocellular carcinoma HepG2 and 
epidermoid carcinoma A431 cell lines [189,190]. Recently, the use of nanoparticle phytotherapy: Curcumin-Naringenin magnetic 
nanoparticles induces apoptosis and inhibits cell proliferation in MCF-7 human breast cancer cell lines [191]. With the evidences 
presented above, NGN stimulates apoptosis in oncogenic phenotypes of ECs and this highlights the potential role of the citrus flavonoid 
in the prevention or treatment of cancer. The effect of the racemic mixture, R, and the S enantiomers, of NGN, was also studied in caco2 
cells. At 10 μg/mL, both S and R enantiomers of NGN reduce the expression of miR-17-3p and miR-25-5p thus impeding human 
colorectal adenocarcinoma cells, but at a high concentration of 100 μg/mL a lower activity was recorded [192]. Many of the broad 
anticancer effects of NGN and NAR have been recently reviewed [193]. However, not many studies outline the effects of these fla-
vanones on the endothelium integrity and angiogenesis in Cancer. More studies are warranted. 

7. Naringenin and naringin mechanisms of endothelium protection via cellular targets 

Aside from the antioxidant and anti-inflammatory roles of NAR & NGN on endothelial cell function, they act on biological targets 
such as the sarcolemma and mitochondrial potassium channels, SIRT1 enzyme, and transcription factors. In cardiomyocytes, the 
mitochondria are the main source of ATP and the loss of mitochondria membrane homeostasis is a major cause of cell death in CVDs. 
Therefore, during ischemia/reperfusion injury, the regulation of potassium channels is important to preserving the function of cardiac 
cells [194]. Many studies have elucidated the role of important large-conductance calcium and voltage-activated potassium channels 
(BKca) in cardiovascular diseases and have presented the channels as therapeutic targets for cardioprotection [194–198]. More 
recently, BKca channels have been discovered as targets of flavonoids such as naringenin, quercetin, luteolin, and others [199], 
enhancing cardioprotection. This implies that natural plant flavonoids possess ionic mechanisms for modulating the potassium 
channels. For instance, Micromolar concentrations of NGN, activated mitoBKca channel, increased the consumption of oxygen and 
decreased membrane potential in both human endothelial cell line EA.hy926 and dermal fibroblasts [200,201]. This activity was 
dependent on calcium levels. NGN also mediated the activation of ATP-sensitive potassium channels in both cell and mitochondrial 
membranes following ischemic reperfusion injury [85]. In another study, NGN significantly inhibited Ca2+ overload and contractility 
in isolated cardiomyocytes [202]. NAR attenuated cardiac injury and increased cell viability in the cardiomyocytes of type 2 diabetic 
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rats [203], through its activity on calcium and potassium channels. NAR also promotes mild depolarization of the membrane potential 
and reduces calcium overload by inhibiting L-type calcium channels and activating the expression of mitochondria potassium chan-
nels, thus reducing apoptosis and promoting cell viability [202,204]. 

Sirtuin 1 (SIRT1), a member of the family of sirtuins, expressed ubiquitously in endothelial cells has been shown to play protective 
roles on the vasculature via its interaction with endothelial nitric oxide synthase [205]. As a result, sirtuins have been molecular 
targets for therapeutics in endothelial cell functioning, arterial wall modeling, and vascular aging [206]. Testai et al. demonstrated the 
effect of naringenin on SIRT1 activation. Naringenin, which has certain structural similarities with a known SIRT1 activator enhanced 
the expression of SIRT1 enzyme at 100 mg/kg/day in mice of 6 months old. Although the treatment was chronic, spanning a duration 
of 6 months, the resultant effect was a reduction in ROS levels and inflammatory cytokines in the myocardium [207]. 

A challenge associated with the therapeutic potential of NAR and NGN is its ADMET properties. Sequel to oral consumption, only 
about 15% of NGN is bioavailable in the gut, and this impacts the efficacy of these flavonoids in vivo [208]. NAR has a bioavailability 
score of 0.17 with three and four violations of Lipinski and Ghose’s rule of drug-likeness respectively. However, lead optimization can 
be performed on these flavonoids to make them druggable and optimize their potential in pharmacotherapy. NGN passes the Lipinski 
and Ghose rule for drug-likeness and had a bioavailability score of 0.55 [209]. 

8. Pre-clinical data and clinical trials for naringenin and naringin 

For some time, the consumption of citrus fruits like orange juice, grape juice and lemons has been connected to cardioprotective 
and neuroprotective events. In some instances, the intake of grapefruit or one glass of orange juice demonstrated lower risks of stroke, 
cardiovascular disease and obesity [210–214]. However, there are very few studies using purified flavonoids such as naringenin and 
naringin. The most recent and accessible clinical study was a single ascending dose randomized controlled trial carried out within 
2018–2020 (NCT03582553). 

The study involved 18 subjects including White, Black or African Americans, and Asians with a mean age of 38 years. Four doses of 
a citrus sinensis extract of naringenin (150 mg, 300 mg, 600 mg, and 900 mg) were administered and the serum concentrations of 
naringenin were measured before and over 24 h after ingestion [215]. The results indicated that there were no serious adverse effects 
and no cases of mortality. However, mild adverse effects such as headache, sinus congestion, drowsiness, abdominal pain, itching, 
acne, and a cyst on the foot were recorded. While the study was focused on the safety and pharmacokinetic properties of Naringenin, it 
still demonstrated the need for more pharmacokinetic studies using the purified flavonoids, and not naringenin as a little percentage of 
a whole citrus juice. Moreover, there exist other clinical studies seeking to evaluate the effect of using whole orange juices or citrus fruit 
juice on metabolic and cardiovascular diseases (NCT03527277-still recruiting; NCT01963416 – completed). 

A recent study by Bai et al. investigated the pharmacokinetics and metabolism of NAR and NGN in rats, dogs, and humans upon 
naringin administration. According to this group, NGN demonstrated linear pharmacokinetics in humans as opposed to the nonlinear 
trend observed in rats and dogs when NAR was administered. NAR also had a reduced “area under the curve” and a prolonged 
pharmacological profile in humans compared to the other non-clinical species [216]. 

Also, following a single oral dose of NAR (42 mg/kg), Zeng and his colleagues used a rapid-resolution liquid chromatography 
tandem triple quadrupole mass spectrometry method to determine the amounts of NAR and NGN in the plasma, urine, feces, and tissue 
homogenate of aged rats (20 months old) [217]. They observed a marked distribution of NAR and NGN in the gastrointestinal tract and 
other organs; however, absorption and distribution of the flavonoids were affected likely due to the age of the rats. There were no 
traces of unaltered NAR, but abundant traces of NGN in the GIT and the liver, indicating metabolism by phase II enzymes in these 
organs. O-disulphate and glucuronide conjugates were identified in urine and fecal samples [217]. 

In the bid to enhance the solubility and bioavailability of NGN, Xu, and colleagues [218], prepared naringenin-nicotinamide 
cocrystals NAR-NCT (50 mg of NAR and 45 mg of NCT; 1:2) and administered the combination orally to 18 rats. Samples were 
collected from the rats at 0.05,0.083,0.167,0.333,0.5,1,2,4,8,10,12, and 24 h following administration. The results demonstrated 
increased bioavailability, increased half-life, quick absorption, and slow elimination of NAR, suggesting that the cocrystal complexes 
could improve NAR activity and protective effects. 

While most of the studies were performed in rats and animals, the results may not necessarily be concordant in humans. There still 
exist obvious pharmacokinetic limits on NAR and NGN effects on chronic diseases including the dysfunctions of the vasculature. 

9. Perspectives and conclusion 

In this review, we summarized the possible mechanisms of endothelial cell function, activation, and dysfunction in various diseases. 
As the vascular endothelium is the major connecting bridge between the blood circulation and tissues, mechanisms exploring the 
impact of a dysfunctional endothelium in neurological diseases, diabetes, and cardiovascular diseases open therapeutic windows. ECs 
in various cell types more commonly have a central mechanism in disease especially as it relates to vascular permeability. From all 
indications, inflammatory processes impact the physiological functions of ECs and modulate several signaling pathways in the 
endothelial cells leading to activation or dysfunctional endothelium. As reported by many studies cited in this review, more careful 
control of endothelial inflammation, including the regulation of leukocyte-mediated infiltration and the production of pro- 
inflammatory cytokines can attenuate the pathological effects present in several vascular diseases. Targeting the multiple signaling 
pathways activated in disease states either directly or indirectly could substantially improve EC functioning by mobilizing the ECs to a 
quiescent state. NGN & NAR, major citrus flavonoids discussed in this review have been well documented for various beneficial effects 
on the vascular endothelium, including antioxidant, anti-inflammatory, anticancer, antidiabetic, neuroprotective, and 
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cardioprotective effects. They also have wide availability and a history of use. As a result, they are promising candidates for the 
treatment of many diseases. We have summarized the modulation of NGN & NAR, showing its multi-therapeutic modulation of 
intracellular signaling molecules necessary for the preservation and survival of ECs. (Fig. 6). However, the low yield and high puri-
fication costs still request alternative methods for NGN production. Bacteria E. coli and yeast (S. cerevisiae) have now been shown to 
produce pure NGN [219,220], yet, more strategies are warranted. A major challenge in clinical trials of citrus flavonoids generally has 
been their bioavailability, with an estimated peak plasma concentration of 6 h after consumption; concentrations being in the 
micromolar range [221]. The reasons presented for this are the differences in flavonoid types found in various citrus fruits, the relative 
solubility of the flavanones in the fruit juice considering the various techniques of preparation, and inter-individual variability of the 
gut flora metabolism [222]. A more productive approach to enhancing the bioavailability of citrus flavonoids will be to evaluate the 
role of the human intestinal microbiota on its metabolism [223]. Alternatively, increasing the amount of NGN at 1 μM per 7 mL of 
orange juice can as well improve the bioavailability of NGN; about 22% of phenolic acids and phase II metabolism products were 
detected in a clinical trial study [221]. In another clinical trial study examining the role of NAR on endothelial function, 480 μM/340 
mL of grapefruit per day provided beneficial effects on arterial stiffness in menopausal women [224]. Seeing the effects of NGN and 
NAR on EC and smooth muscle cell functioning aiding the prevention of atherogenesis and improving cardiovascular health, a rising 
concern is whether the effects of the supplementation of these flavonoids will lead to persistent productive effects even after the 
supplementation is stopped or citrus fruits are not taken [93]. It will be important to establish a correlation between the daily 
withdrawal of NGN/NAR and the integrity of the healthy or diseased vascular endothelium. Although NGN/NAR may possess sig-
nificant disease alleviating properties alone, their combination with other citrus flavonoids such as hesperetin, hesperidin, and 
quercetin or with essential trace elements such as Cu [225], may present more effective therapeutic candidates. This will allow for the 
improvement of endothelial cell function via a synergistic multi-mechanistic modulation of altered signaling pathways in ECs during 

Fig. 6. Chemo-modulative properties of Naringin and Naringenin; signaling mechanisms on the vascular endothelium. The activation of the 
vascular endothelium in disease states entails ROS generation, the binding of cytokines, immune cells, growth factors, and disease-causing agents 
(such as viruses and bacteria), to the membrane of endothelial cells. These agents bind upon transmembrane receptors which activate the down-
stream signaling pathways as shown above. NAR and NGN when administered or ingested are metabolized and inhibit the activity of ILRs, TNFRs, 
RTKs, TLRs, and other intracellular kinases and transcription factors (denoted by the circular green inhibition sign). This regulates the expression of 
proinflammatory genes and pro-oxidant genes. Importantly, NAR and NGN modulate redox-sensitive kinases ERKs, PKC, and Akt/PKB, which 
activate transcription factor Nrf2. Nrf2 translocates to the nucleus where it binds the Nrf2-ARE and expresses anti-inflammatory proteins and 
antioxidant enzymes necessary for cell survival. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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infection or disease. 
Endothelial cell inflammation seems more like the “double-crosser” in most diseases associated with the vascular endothelium. For 

instance, severe forms of COVID-19 are characterized by unresolved inflammation associated with the epithelial and endothelial cells 
of the lungs. Non-specific targeting (excluding the endothelial cells) of inflammation may be less effective in the therapeutics of 
Diabetes, CVDs, and COVID-19. Therefore, as Jin et al. [226] opined, there may be much more to the role of endothelial cell 
inflammation in the pathology of neurological and infectious diseases. Further studies are needed to potentially show a causal rela-
tionship between NGN & NAR and the attenuation of unresolved inflammation in the endothelial cells and not merely speculative 
correlations. 

An emerging aspect of EC dysfunction is the involvement of extracellular vesicles (EVs) in disease pathologies. EVs, emerging from 
different cell types are a means of communication and transfer of contents between cells. EVs have been shown to play a role in EC 
activation via the stimulation of vascular inflammation and upregulation of cell adhesion molecules [227]. EVs derived from 
monocytes, leukocytes and platelets increase proangiogenic, proinflammatory, and atherothrombotic stimuli, in the ECs and activate 
them. This is due to the ability of the EVs to bind the endothelium via the interaction with membrane-bound integrins [227], and 
possibly tetraspanins. Interestingly, plant polyphenols interfere with the biogenesis pathways of EVs and can modify EV content and 
release [228]. Studies on how citrus flavonoids impact EV release from ECs would improve our knowledge of the effects of NGN and 
NAR, especially in vascular endothelial dysfunctions. This approach may also unravel the flavonoid-mediated transmission of infec-
tious particles by EVs from cell to cell. Indeed, both polyphenols and EVs can be used as therapeutic tools in the management and 
treatment of several diseases. Yet, it is plausible that the packaging and release of EVs may be modulated by NGN which would likely 
have beneficial implications on the potency of EVs in activating ECs. 

Finally, NGN and NAR have additional protective effects on the vascular endothelium in degenerative eye diseases [229], ulcer and 
ulcerative lesions [230,231], and viral diseases, including COVID-19 [72], hepatitis [232], and HIV [233]. Research areas left to be 
explored for the role of NGN and NAR include genetic diseases such as Lesch Nyhan syndrome, sickle cell anemia, fragile x mental 
retardation, and others. Altogether, NGN & NAR have the potential to be involved in the management and treatment of human severe 
diseases associated with vasculature. 
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