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Immune cell infiltration characteristics and
related core genes in lupus nephritis:
results from bioinformatic analysis

Yiling Cao1, Weihao Tang2 and Wanxin Tang1*
Abstract

Background: Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high
risk of end-stage renal disease. In the present study, we used CIBERSORT and gene set enrichment analysis (GSEA)
of gene expression profiles to identify immune cell infiltration characteristics and related core genes in LN.

Results: Datasets from the Gene Expression Omnibus, GSE32591 and GSE113342, were downloaded for further
analysis. The GSE32591 dataset, which included 32 LN glomerular biopsy tissues and 14 glomerular tissues from
living donors, was analyzed by CIBERSORT. Different immune cell types in LN were analyzed by the Limma software.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis based on GSEA were
performed by clusterProfiler software. Lists of core genes were derived from Spearman correlation between the
most significant GO term and differentially expressed immune cell gene from CIBERSORT. GSE113342 was employed
to validate the association between selected core genes and clinical manifestation. Five types of immune cells
revealed important associations with LN, and monocytes emerged as having the most prominent differences. GO
and KEGG analyses indicated that immune response pathways are significantly enriched in LN. The Spearman
correlation indicated that 15 genes, including FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9, and PSMB8, were closely
related to clinical features.

Conclusions: This study is the first to identify immune cell infiltration with microarray data of glomeruli in LN by using
CIBERSORT analysis and provides novel evidence and clues for further research of the molecular mechanisms of LN.

Keywords: Systemic lupus erythematosus, Lupus nephritis, CIBERSORT, GSEA, Immune infiltration
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Background
Systemic lupus erythematosus (SLE), one of the most
complicated autoimmune diseases in the world, is
caused by various endogenous antigens [1]. Lupus neph-
ritis (LN), a common and serious complication of SLE, is
characterized by hematuria, proteinuria, and impaired
glomerular filtration rate [2]. The lack of understanding
regarding the molecular mechanisms of LN hinders the
development of specific targeted therapy for this pro-
gressive disease [3]. Tracking the biological changes in
LN at the genomic level is a worthwhile strategy [4]. In
recent years, gene sequencing technology combined with
bioinformatic analysis has been conducted to identify
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genes relevant to diseases that might serve as prognostic
biomarkers and be developed as therapeutic targets in
the future [5]. Bioinformatic analysis can process large
amounts of samples within an extremely short time and
provide valuable information about diseases, and several
genes closely associated with SLE have been identified
and driven research innovations in recent years [6–8].
However, few studies utilized bioinformatic analysis to
characterize kidney tissue in the context of LN.
Many previous works found that immune cell infiltra-

tion is associated with treatment and clinical outcome in
different types of cancer [9, 10]. Immune cells consisting
of innate and adaptive immune populations, including
dendritic cells, macrophages, neutrophils, T cells, and B
cells, are associated with active and suppressive immune
functions [11]. However, given the functionally distinct
cell types that comprise the immune response, assessing
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immune infiltration and determining whether differences
in the composition of the immune infiltration can im-
prove the development of novel immunotherapeutic
drugs to target these cells is important. The CIBER-
SORT algorithm is an analytical tool whereby RNA-seq
data can be used to assess the expression changes of im-
mune cells and obtain the proportion of various types of
immune cells from the samples. CIBERSORT offers 22
cell types encompassing monocytes, natural killer cells,
B cells, T cells, eosinophils, macrophages, neutrophils,
plasma cells, dendritic cells, and mast cells [12]. It has
been prevalently used to determine the immune cell
landscapes in many malignant tumors such as breast
cancer, hepatocellular carcinoma, and colorectal cancer
[13–15]. In SLE pathogenesis, various immune cells have
been widely evaluated and demonstrated to be harmful
[16]. Immune cell infiltration is also a hallmark of LN.
Immune cells, such as monocytes, B cells, and T cells,
are recruited to kidney tissue and produce cytokines and
chemokines to cause tissue damage [17]. However, the
landscape of immune infiltration in LN has not been
entirely revealed.
Although LN can affect all components of the kidney,

the glomerulus is the most suitable tissue and is closely
related to the pathogenesis and treatment of the disease
[18]. In our present study, the microarray data were
downloaded from the Gene Expression Omnibus (GEO)
database. By using CIBERSORT, we first investigated the
difference in immune infiltration between LN kidney
tissue and normal tissue in 22 subpopulations of im-
mune cells. Gene set enrichment analysis (GSEA) was
employed for functional enrichment analyses and to deter-
mine the most significant functional terms. A list of genes
closely related to immune infiltration was screened out and
validated against another dataset with clinical information
from the GEO database. This study aimed to describe the
characteristics of LN glomerular immune infiltration for
the first time and to identify some key genes related to
immune infiltration that affect clinical manifestation, so as
to provide data resources for future research.

Results
Bioinformatic analysis workflows and data description
Our workflows are shown in Fig. 1. We first investigated
the difference of immune cell infiltration between nor-
mal glomerular tissues and LN glomerular tissues. Next,
we discovered the most significant GO and KEGG func-
tional term by GSEA. We screened out a list of genes
closely related to immune infiltration and validated these
genes against the clinical data. A total of 46 samples
from GSE32591 were used in this study, including 32
LN glomerular biopsy tissues and 14 glomerular tissues
from living donors. After data processing, the expression
matrix of 30 LN glomerular samples and 6 normal
control glomerular samples was obtained by screening
the immune cell infiltration. GSE113342 contained 14
biopsy kidney tissues and 6 normal tissues.

Performance of CIBERSORT
Figure 2a shows the proportions of immune cells in 36
kidney tissues. Obviously, monocytes accounted for the
majority of all infiltrating cells, especially in LN tissue. The
differential expressional proportion of immune infiltration
cells in the LN and control groups is shown in Fig. 2b. Five
types of immune cells, namely, memory B cells, M0 macro-
phages, monocytes, activated NK cells, and follicular helper
T (Tfh) cells, were differentially expressed. Monocytes, M0
macrophages, and activated NK cells were upregulated in
LN tissue. The adjusted P-values of the five types of
immune cells were 0.30, 0.74, 0.003, 0.71, and 0.44, re-
spectively. Among them, the increase in monocytes was
the most significant. Memory B cells and Tfh cells were
downregulated. Figure 2c indicates the correlation between
these differentially expressed types of immune cells. The
five types of immune cells were weakly to moderately
correlated. Monocytes were negatively correlated with
memory B cells and Tfh cells (r = − 0.42 and r = − 0.42, re-
spectively), which indicated that the function of monocytes,
Tfh cells, and memory B cells in LN may be antagonistic.
However, the relationship between memory B cells and
Tfh cells was synergistic.

GSEA-based GO analysis
On the basis of the GO biological process, the top 10 most
significantly enriched GO terms are presented in Fig. 3a.
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Genes in GO terms were primarily associated with “activa-
tion of immune response (GO:0002253),” “chemotaxis
(GO:0006935),” and “taxis (GO:0042330).” A total of 478
genes were involved in “activation of immune response.”
These results confirmed that immune response is very
important in LN. Our GO analysis presented numerous
important genes associated with this function. The details
of GO analysis are shown in Additional file 1: Table S1.
The connection between the most prominent GO

terms is shown in Fig. 3b. The network-presented nu-
merous genes, such as RSAD2, C1QA, C1QB, CX3CR1,
ITGB2, FCER1G, and CCR1, that were significantly dif-
ferentially expressed in LN. Moreover, ITGB2, FCER1G,
C5AR1, LYN, CD36, and PTPRC were important bridge
genes between different biological processes. We used
all of the “activation of immune response” gene sets for
GSEA, and the gene set enrichment result is presented
in Fig. 3c. The enrichment showed that the gene set was
enriched at the front of the sequence (ES = 0.61). Over
100 genes were core genes that increased during this
process. We obtained the list of all core genes, such as
C1QA, RSAD2, C1QB, ITGB2, HCK, C3AR1, FCN1 and
FCER1G, for subsequent analysis.

GSEA-based KEGG analysis
A total of 24 prominent KEGG pathways including acti-
vated and suppressed pathways were selected (Fig. 4a). Ac-
tivated pathways, such as “Epstein–Barr virus infection,”
“Herpes simplex virus 1 infection,” “Influenza A,” “Human
cytomegalovirus infection,” and “Kaposi sarcoma-associated
herpesvirus infection,” were related to cellular immunity
against viral infection. The result indicated that the activa-
tion of signaling pathways in LN is similar to that of viral
infection. However, suppressed pathways were mainly
concentrated on metabolic process, such as “Biosyn-
thesis of amino acids,” “Valine, leucine and isoleucine
degradation,” “Steroid hormone biosynthesis,” and
“Oxidative phosphorylation.”
GSEA enrichment plots of representative gene sets

on “Epstein–Barr virus infection” and “Biosynthesis of
amino acids” are shown in Fig. 4b and c, respectively.
In the activated pathway, 182 genes participated in
the EB virus infection pathway and were concentrated
at the front of the sequence. The core genes such as
ISG15, OAS1, OAS2, OAS3, LYN, HLA-DQB1, and
TLR2 were upregulated. In the suppressed pathway,
only 62 functional genes were involved and were
enriched at the back of the sequence.
Discovery of core genes
The correlation between core genes came from the GSEA
GO term “activation of immune response” and five types of
immune infiltrating cells are shown in Fig. 5a. A total of 44
genes showed close connection with immune infiltrat-
ing cells. Genes such as RSAD2, PSMB8, PSMA6, and
MARCO were negatively correlated with Tfh cells.
PLSCR1, ITGB2, HCK, and GBP1 were negatively re-
lated to memory B cells. FCN1, PSMB9, PRKCH, and
A2M were positively correlated with monocytes. SYK,
PYCARD, LPXN, and BTK were positively related to
M0 macrophages. However, our analysis only found
four genes correlated with activated NK cells.

Validation of core genes
Figure 5b shows the clinical information of GSE113342.
The LN grade was mainly concentrated on 3–5 classes.
The core gene list was validated in the clinical dataset.
Grade, age, and 12-month response were chosen as clin-
ical indicators (Fig. 4c). Through Spearman correlation
analysis between core gene list and clinical information,
GBP1, CD36, ITGB2, FCER1G, CLEC7A, LILRB4, HLA-
DRA, BTK, PYCARD, CFP, CFD, PSMB9, MARCO,
CD3D, and PSMB8 were found to be active in both net-
works, which indicated that these core genes were as-
sociated with immune infiltration and affected clinical
manifestation. Among them, CLEC7A was positively
correlated with age (r = 0.5) but negatively correlated
with grade and 12-month response (r = − 0.56 and r =
− 0.66, respectively). FCER1G was positively correlated
with response (r = 0.58). MARCO, PSMB8, and PSMB9
were positively correlated with treatment response
(r = 0.53, r = − 0.58, and r = − 0.54, respectively).

Discussion
With the development of bioinformatics, increasing at-
tention has been focused on finding hub genes in various
diseases, and the collected information on these genes
can provide new means for exploring diseases. Multiple
susceptibility genes may determine disease occurrence.
In this study, we uncovered different expressional cell

patterns of immune infiltration in LN and association with
clinical features. Monocytes were the prominent differen-
tially expressed cells. These are important components of
the innate immune system; they have an antigen presenta-
tion capacity and produce several inflammatory cytokines
in SLE [19]. Monocytes accounted for approximately 4%
of blood leukocytes in healthy mice and over 50% in
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lupus-prone mice [20]. Our result also showed that mono-
cytes constituted 30–50% of immune cells in human LN
glomeruli. Activated NK cells were also increased in glom-
eruli. However, reports from other studies showed lower
proportions of NK cells in SLE patient blood, especially in
patients with LN [21, 22]. However, in rheumatoid arth-
ritis tissue, NK cells were reported to contradict the func-
tion of circulating NK cells, which indicated that tissue
NK cells may have different effects as compared with
blood NK cells in autoimmune disease [23]. Clinical and
experimental evidence indicated that aberrant memory B
cells and Tfh cells played an important role in the patho-
genesis of human SLE [24–26]. Resting M0 macrophages
can polarize into M1 and M2 macrophages in the presence
of the appropriate cytokines [27]. However, no research has
explained the function of increased M0 macrophages in
LN. The specific role of these immune cells in functional
immune responses still remains to be elucidated.
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“Activation of immune response” was the top associated
pathway under GSEA-based GO analysis. The activation of
innate and adaptive immune system triggering immune
complex deposition, complement activation, and self-
antigen production displayed a toxic effect on renal
glomerular and tubular cells, thereby promoting the de-
velopment of nephritis in patients with SLE [28, 29].
Through KEGG pathway analysis, several kinds of virus
infection pathways were associated with LN. The im-
munoreaction of LN and response to virus may share
several common features.
By combining CIBERSORT results and “activation of

immune response” GO term, we found many novel com-
monly expressed genes, some of which were important in
autoimmune diseases. For example, FCN1 was proven to
be associated with monocytes in patients with microscopic
polyangiitis [30]. Another study involving weighted correl-
ation network analysis showed that RSAD2 related to
CD4+ T cells may be the most highly ranked hub gene in
SLE [7]. BTK mediates TLR signaling in macrophages and
may be a promising treatment approach for LN [31–33].
These genes were observed to be highly or mildly associ-
ated with immune cells in kidney tissues.
Through a review of documents about lupus and related

genes [34–48], 15 core genes related to clinical manifest-
ation were found to be associated in autoimmune disease
(Table 1). FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9,
and PSMB8 showed apparent correlation with clinical
manifestation. FCER1G, which is associated with multiple
leukocyte receptor complexes and mediates signal trans-
duction, plays a negative regulatory role in the B cell re-
sponses [36]. CLEC7A, also known as dectin-1, is a type II
membrane receptor expressed in the membrane of some
leukocytes and likely contributes to the synthesis of pro-
inflammatory cytokines in autoimmune conditions [37].
MARCO, a scavenger receptor family, plays important
roles in the clearance of apoptotic cells. The presence of
anti-MARCO antibodies in SLE patients might contribute
to the breakdown of self-tolerance and the pathogenesis of
SLE [46]. PSMB8 is involved in antigen processing and
presentation in naïve CD4+ T cells, and PSMB9 is induced
by interferon stimulation in SLE [41, 48]. All these core
genes require additional studies to elucidate the complex
interaction with clinical features.
The current work is the first to use CIBERSORT to

analyze immune cell infiltration of glomerular tissue in
LN. All data were derived from GEO and were therefore
reliable. The correlation results of CIBERSORT and
GSEA to obtain core genes were validated in clinical
data, leading to many new information for our future re-
search. The analytical methods were scientific and novel.
However, our study has some limitations. Only a few
datasets of LN were available on the GEO database;
therefore, the number of samples included in this study
was relatively small. However, despite the small sample
sizes, we still found some significant differences among
groups. In addition, clinical tests need to be conducted
to support our results.

Conclusions
Our study provided a new insight into the immune fil-
tration of LN. Five types of immune cells revealed im-
portant associations with LN, and monocytes showed
the largest differences in the cellular composition of im-
mune infiltration. Fifteen core genes that were related to
clinical manifestation were analyzed. These genes may
perform crucial functions, and further analysis of these
genes in LN may identify targets for immunotherapy.

Methods
Microarray data processing
The data in our study came from a public domain. The
normalized expression matrix and sample information were
downloaded from the GEO database (www.ncbi.nlm.nih.
gov/geo). We used “lupus nephritis” as a keyword for
searching. The data selection criteria were as follows: (1)
the study type was expression profiling by array; (2) the or-
ganisms must be Homo sapiens; (3) the samples of each
dataset must include glomerular tissue. In accordance with
the above criteria, the GSE32591 microarray dataset based
on the Affymetrix Human GeneChip U133A (affy) platform
was hit and adopted for CIBERSORT. The GSE113342
microarray dataset based on nCounter Nanostring Human
Immunology v2 was used to demonstrate the association
between selected genes and clinical feature later. Only 500
immune-related genes were detected in this dataset.

Evaluation of immune cell infiltration
Gene expression datasets of GSE32591 were processed to
remove the null values. The missing values were supple-
mented by KNN method in “impute” package [49], the
format was prepared in accordance with the accepted for-
mat of CIBERSORT, and then data were uploaded to the
CIBERSORT web portal (http://cibersort.stanford.edu/).
We used the original CIBERSORT gene signature file
LM22, which defines 22 immune cell subtypes, to analyze
datasets from human glomerular tissues and normal tis-
sues. CIBERSORT p-value < 0.05 was included.

Differential analysis of immune cell infiltration types
To analyze the significant differential expression of dif-
ferent cell types of immune cells, we used the difference
analysis between the disease group and the control
group. Limma package and Bayesian method were used
to construct a linear model [50]. Adjusted p-value < 0.05
was the cut-off standard. To further understand the rela-
tionship between these different types of immune cell
infiltration, Pearson correlation coefficient was used to

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://cibersort.stanford.edu/


t1:1 Table 1 The previous studies about core genes in autoimmune disease

t1:2 Gene Tissue Function Author DOI

t1:3 GPB1 Blood Promotes antimicrobial immunity and
cell death. Key mediator of angiostatic
effects of inflammation and is induced
by interferon (IFN)-α and IFN-γ.

Liu, et al. [34] https://doi.org/10.1007/s10067-018-4138-7

t1:4 CD36 Blood Expresses on the cell surface of
monocyte/macrophages and involved
in the recognition and uptake of
pro-atherogenic oxidized low-density
lipoprotein (LDL).

Reiss, et al. [35] https://doi.org/10.3181/0806-BC-194

t1:5 FCER1G Spleen Associated with multiple leukocyte
receptor complexes and mediates
signal transduction.

Sweet, et al. [36] https://doi.org/10.4049/jimmunol.1600861

t1:6 CLEC7A Blood Involved in the clearance of apoptotic
cells, uptake and presentation of cellular
antigens and triggers different cytokines
and chemokines.

Salazar-Aldrete, et al. [37] https://doi.org/10.1007/s10875-012-9821-x

t1:7 ITGB2 Bone Marrow Encodes integrin β2 protein (CD18). Plays
important roles in leukocyte adhesion,
immune and inflammatory reactions,
immigration through endothelial and
chemotaxis.

Zimmer, et al. [38] https://doi.org/10.1371/journal.pone.0013351

t1:8 LILRB4 Blood Associated with increased inflammatory
cytokine levels in SLE and is expressed by
many leukocytes.

Jensen, et al. [39] https://doi.org/10.1136/annrheumdis-2012-202,024

t1:9 HLA − DRA Blood SLE susceptibility genes and plays a
central role in the immune system
by presenting peptides derived from
extracellular proteins.

Liu, et al. [40] https://doi.org/10.2174/1566524019666190424130809

t1:10 PSMB9 Skin Upregulates in the pathophysiology of
cutaneous lesions of dermatomyositis
and SLE.

Nakamura, et al. [41] https://doi.org/10.1111/bjd.14385

t1:11 BTK Blood Plays an important role in both B cell
and FcgammaR mediated myeloid
cell activation. BTK inhibition may be
a promising treatment approach for
lupus nephritis.

Kong, et al. [42] https://doi.org/10.1007/s10067-017-3717-3

t1:12 PYCARD Blood Forms inflammasome complexes
mediate the inflammatory and
apoptotic signaling pathways.

Shin, et al. [43] https://doi.org/10.1002/art.40672

t1:13 CFP Blood The only positive regulator of the
complement system. Recognized
apoptotic and necrotic cells.

Cohen, et al. [44] https://doi.org/10.1002/path.2893

t1:14 CFD Blood Encodes a protein functioned as an
adipokine that involved in regulation
of immune system and inflammatory
responses.

Chougule, et al. [45] https://doi.org/10.1016/j.cyto.2018.08.002

t1:15 MARCO Blood Binds to apoptotic cells and
contribute to the clearance of
apoptotic cells.

Chen, et al. [46] https://doi.org/10.1186/ar3230

t1:16 CD3D Blood Single nucleotide polymorphism
in the immune compartment
and B cells also involved in T cell
signaling.

Lindén, et al. [47] https://doi.org/10.1186/s13293-017-0153-7

t1:17 PSMB8 Blood Involved in antigen-processing and
presentation in naïve CD4 + T cells
and hypomethylated in SLE.

Renauer, et al. [48] https://doi.org/10.1136/lupus-2015-000101
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find the correlation between these differentially
expressed types of immune cells.

GSEA preparation
GSEA is an analytical method for genome-wide expression
profile microarray data. It can identify functional enrich-
ment by comparing genes with predefined gene sets. A
gene set is a group of genes that shares localization, path-
ways, functions, or other features. GSEA was conducted
using clusterProfiler package (version 3.5) [51]. The fold
change of gene expression between LN group and control
group was calculated, and the gene list was generated ac-
cording to the change of |log2FC|. Then, we utilized
GSEA-based enriched Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses.

GSEA-based enriched GO analysis
GO analysis includes three categories: molecular function,
biological process, and cellular component. In the present
study, we only selected biological process to perform GO
analysis. GO analysis was performed through gseGO func-
tion in clusterProfiler package. The adjusted p-value < 0.05
was set as the cut-off criteria. The connections between the
most significant GO terms and participating genes were
visualized by GOenrich package with a network diagram.

GSEA-based KEGG pathway analysis
KEGG pathway enrichment analyses were also conducted
by gseKEGG function in clusterProfiler package. The
adjusted p-value < 0.05 was set as the cut-off criteria.

Core gene list and correlation analysis
The core gene list obtained in the most significant GO
term was analyzed by Spearman correlation with the
differentially expressed immune cells from CIBERSORT
results. Five groups of correlation analysis data were ob-
tained. P-value < 0.05 was used as the cut-off standard,
and genes with the top 10 highest absolute values of cor-
relation coefficients were visualized in each group.

Validation of core genes and association with clinical
manifestations
In dataset GSE113342 with clinical information, patient
part B was excluded because it was data after treatment,
and only first renal biopsy data (patient part A),
which had approximately 500 immune gene expres-
sion values that coincided with the genes obtained in
the most significant GO term associated with immune
response, were chosen for analysis. Gene intersection
was calculated first, and the Spearman correlation
analysis between these intersecting genes and clinical
information, such as age, grade, and 12-month treat-
ment response, was further applied.
Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12865-019-0316-x.
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