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Abstract: Glucose-sensitive films were prepared through the layer-by-layer (LbL) deposition of
hemin-modified poly(ethyleneimine) (H-PEI) solution and DNA solution (containing glucose oxidase
(GOx)). H-PEI/DNA + GOx multilayer films were constructed using electrostatic interactions.
The (H-PEI/DNA + GOx)5 film was then partially decomposed by hydrogen peroxide (H2O2).
The mechanism for the decomposition of the LbL film was considered to involve more reactive oxygen
species (ROS) that were formed by the reaction of hemin and H2O2, which then caused nonspecific
DNA cleavage. In addition, GOx present in the LbL films reacts with glucose to generate hydrogen
peroxide. Therefore, decomposition of the (H-PEI/DNA + GOx)5 film was observed when the thin
film was immersed in a glucose solution. (H-PEI/DNA + GOx)5 films exposed to a glucose solution
for periods of 24, 48 72, and 96 h indicated that the decomposition of the film increased with the time
to 9.97%, 16.3%, 23.1%, and 30.5%, respectively. The rate of LbL film decomposition increased with
the glucose concentration. At pH and ionic strengths close to physiological conditions, it was possible
to slowly decompose the LbL film at low glucose concentrations of 1–10 mM.

Keywords: hydrogen peroxide response; layer-by-layer; multilayer thin film; glucose sensitive;
stimuli-sensitive

1. Introduction

Layer-by-layer (LbL) films have previously been prepared by the alternate deposition of
polyelectrolytes (polycation and polyanion) on a solid surface, assisted by electrostatic interaction [1–3].
Various other interactions have also been recently employed to construct LbL films, such as hydrogen
bonding [4,5] and sugar-lectin binding [6,7]. The materials employed for this purpose have included
synthetic polymers [8,9], polysaccharides [10–12], protein [13–15], and DNA [16,17]. Such layered
multilayer films have found application in separation and purification [18,19], sensors [20,21], and
drug delivery systems (DDSs) [22–24].

We have recently reported that hydrogen peroxide (H2O2) induced the decomposition of LbL films
composed of hemin-modified poly(ethyleneimine) (H-PEI) and DNA [25]. Hemin is an iron porphyrin
molecule and the iron porphyrin produces more reactive oxygen species (ROS), such as hydroxy
radicals (OH), by reaction with H2O2 [26,27]. The ROS cause non-specific DNA cleavage [28–30],
and H-PEI/DNA LbL film was consequently decomposed by the addition of H2O2. H2O2 is generated
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by the reaction of substrates and oxidases. LbL films composed of oxidases have been applied in
biosensors and stimuli-responsive devices [31–33]. In the present work, we report the preparation of
thin LbL films consisting of H-PEI and DNA with glucose oxidase (GOx), and the glucose-induced
decomposition of these LbL film (Figure 1). Glucose-sensitive materials respond to the blood glucose
level of a diabetic patient; therefore, LbL films composed of GOx can be applied to an insulin DDS [34,35].
The decomposition of LbL films reported in this study is slow due to the stepwise reactions (enzymatic
reaction, generation of ROS by hemin, and nonspecific cleavage of DNA). If decomposition of the
membrane is slow, then the drug encapsulated in a capsule membrane can be released gradually.
The glucose-induced decomposition of the LbL film in this work was achieved by the addition of
glucose and the decomposition’s dependence on the concentration of glucose was investigated.
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Figure 1. Preparation and decomposition of glucose-sensitive layer-by-layer (LbL) films composed of
hemin, DNA, and glucose oxidase (GOx).

2. Materials and Methods

2.1. Materials

Hemin and poly(ethyleneimine) (PEI, molecular weight; 60,000–80,000) were obtained from
Tokyo Chemical Industry Co. (Tokyo, Japan). PEI has a random branched structure with the ratio
of primary, secondary, and tertiary amino groups being nominally ca. 1:2:1. DNA (calf thymus) was
purchased from Nacalai Tesque Inc. (Tokyo, Japan). GOx was obtained from Sigma-Aldrich Chemical
Co. (St. Louis, MO, USA). All other reagents used were of the highest grade and used without
further purification.

H-PEI was synthesized as follows. PEI (100 mg) and hemin (37.9 mg) were dissolved in
dimethyl sulfoxide, to which N-hydroxysuccinimide (8.02 mg) and 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (13.4 mg) were added at 4 ◦C. After 24 h, the reaction mixture was purified
by dialyzing with water for 3 days (dialysis tubing, nominal MWCO: 3500, Hampton, NH, USA)
and then freeze-dried. The content of hemin residues was 2.2–2.6% (molar ratio of hemin to amine),
as determined from hemin-derived absorbance (at 390 nm) using UV-vis absorption spectroscopy.
Figure 2 shows the chemical structures of hemin, PEI, and H-PEI.
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Figure 2. Chemical structures of hemin, poly(ethyleneimine) (PEI), and hemin-modified
poly(ethyleneimine) (H-PEI).

2.2. Apparatus

A quartz crystal microbalance (QCM; eQCM 10M Garmry, Warminster, UK) was employed for
the gravimetric analysis of LbL films consisting of H-PEI and DNA. An 8 MHz AT-cut quartz resonator
coated with a gold (Au) layer (surface area 0.2 cm2) was used as a probe. The Au surface layer of
the quartz resonator was cleaned using piranha solution (a mixture of H2O2 and H2SO4, 1:3 v/v) and
thoroughly rinsed in pure water before use (CAUTION: piranha solution should be handled with
extreme care). All QCM operations used flow QCM cells (cell volume ca. 120 µL; EQCM flow cell
kit, BAS, Tokyo, Japan). Atomic force microscopy (AFM; AFM5200S, Hitachi High-Technologies Co.,
Tokyo, Japan) images were acquired in contact mode at room temperature in air. UV-vis spectroscopy
measurements were conducted using a V-560 (Jasco, Tokyo, Japan) spectrometer.

2.3. Preparation of LbL Films

H-PEI/DNA films were prepared on the cleaned quartz resonator for QCM analysis. The quartz
resonator was immersed in 0.1 mg/mL H-PEI solution in 10 mM HEPES buffer containing 150 mM NaCl
(pH 7.4) for 15 min to deposit the first H-PEI layer by the hydrophobic force of attraction. After being
rinsed in buffer for 5 min to remove any weakly adsorbed H-PEI, the quartz resonator was immersed
in 0.1 mg/mL DNA solution for 15 min to deposit DNA by electrostatic interaction. At that time,
0.1 mg/mL GOx was mixed in the DNA solution. A second H-PEI layer was deposited similarly on the
surface of the quartz resonator. The deposition steps were repeated to build up LbL films. Circular
glass slides (18 mm diameter) and quartz slides (50 × 9 × 1 mm) with LbL films were prepared in
the same manner. UV-vis absorption spectra of the LbL films in the working buffer were recorded
on a UV-vis spectrometer. For dry AFM observations, the circular glass slides used to prepare each
of the (H-PEI/DNA + GOx)5 films were rinsed with milli-Q water and dried for 24 h in a desiccator.
AFM images were acquired in AC mode using an Arrow-NCR probe (Toyo Corporation, Tokyo, Japan)
at room temperature in air.

2.4. Decomposition of LbL Films

The H2O2-induced decomposition of the (H-PEI/DNA + GOx)5 films was studied using UV-vis
absorption spectroscopy. The LbL films prepared on quartz slides were exposed to 1, 10, and 100 mM
H2O2 solution (pH 7.4) for 30, 60, 90, 120, 180, and 240 min, and then rinsed with the working buffer for
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5 min. The films were measured for absorption at a particular time and then subsequently immersed
in the H2O2 solution for the next exposure step.

The glucose-induced decomposition of the (H-PEI/DNA + GOx)5 films was monitored in the same
manner. The LbL films prepared on quartz slides were exposed to 1, 10, and 100 mM glucose solution
(pH 7.4) for 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 24, 30, 35, and 48 h. The glucose-induced decomposition of the
LbL films was studied by monitoring the resonance frequency change (∆F) of the 5-bilayer film-coated
quartz resonator in the flow-through cell of the QCM. After rinsing the film-deposited probe with
buffer for 5 min, the steady-state frequency was recorded. The film-deposited probe was measured for
frequency at a particular time and then subsequently immersed in the glucose solution for the next
exposure step.

3. Results and Discussion

Figure 3 shows the change in the resonance frequency (∆F) of the QCM when the quartz resonator
was immersed in the H-PEI solution and DNA/GOx mixed solution. The ∆F values decreased with the
deposition of both H-PEI and the DNA/GOx mixture, which indicated that the (H-PEI/DNA + GOx)
film was successfully formed on the surface of the quartz resonator. From the flow QCM data, the
change in the resonance frequency of the (H-PEI/DNA + GOx)5 film was −1970 ± 342 Hz (n = 3). It is
considered that positively charged H-PEI and negatively charged DNA and GOx are deposited by
electrostatic attraction, which builds up the LbL film on the quartz resonator surface. There have been
other reports on the preparation of LbL films by electrostatic interaction using QCM [36]. LbL films
using DNA or GOx driven by electrostatic interactions have been reported by Zhang et al. [37,38] and
Kakade et al. It is considered that DNA and GOx are both present in the negatively charged layers
because DNA and GOx adsorb to positively charged polymers.
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The resonator was exposed to (a) 0.1 mg/mL H-PEI, (b) 10 mM HEPES buffer solution, and (c) 0.1 mg/mL
DNA (containing 0.1 mg/mL GOx).
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Figure 4 shows an AFM image and a depth profile of a dried (H-PEI/DNA + GOx)5 film. The circular
glass slides (18 mm diameter) used to prepare each of the (H-PEI/DNA + GOx)5 films were rinsed with
milli-Q water and dried for 24 h in a desiccator. The thicknesses of the LbL films were determined by
scratching the film-coated glass slide using a cutter and performing AFM depth profile scans over the
scratch. The thicknesses of the (H-PEI/DNA + GOx)5 films were estimated to be 45.68 ± 15.95 nm.
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Figure 4. AFM image of the dried (H-PEI/DNA + GOx)5 film.

Figure 5 show UV-vis absorption spectra for the (H-PEI/DNA + GOx)5 film and exposure to
100 mM H2O2 solution in 10 mM HEPES buffer containing 150 mM NaCl (pH 7.4), respectively.
The hemin has an absorption at 390 nm (Figure S1). H-PEI is adsorbed on the surface of the DNA
layers, and the LbL film has an absorption maximum derived from hemin. The disappearance of the
absorption at 390 nm was confirmed after the (H-PEI/DNA + GOx)5 film was exposed to 100 mM H2O2

solution for 1 h. The iron porphyrin is known to be oxidized by H2O2, according to Equation (1) [39,40].

Porphyrin-Fe(III) + H2O2→ Porphyrin-Fe(IV) = O + OH + H+ (1)

The oxidation of iron porphyrin significantly reduces the absorption at 390 nm (Figure S1).
The iron porphyrin contained in hemin produces ROS. The H2O2 causes the hemin to be degraded,
so that the absorption maximum derived from hemin in the film was significantly reduced. Therefore,
the absorption at 390 nm is not suitable for the evaluation of LbL film decomposition. The absorbance
of the (H-PEI/DNA + GOx)5 film at 260 nm significantly decreased when immersed in 100 mM
H2O2 solution. The DNA solution has an absorption at 260 nm, and there is no significant change in
absorption at 260 nm after hydrogen peroxide treatment (Figure S2). The absorbance coefficient of
GOx is small compared to DNA and hemin (Figure S3). Therefore, GOx has a negligible effect on the
absorbance, unless the concentration is high. The oxidation of the iron porphyrin slightly reduces the
absorbance contribution at 260 nm, whereas the contribution of the (H-PEI/DNA + GOx)5 film to the
absorbance is more significant (Table S1). If ROS are generated near the LbL films, then nonspecific
cleavage of DNA is triggered. Yoshida et al. reported the decomposition of H-PEI/DNA nanofilm
by H2O2 [25]. Similarly, the decomposition of the (H-PEI/DNA + GOx)5 films by H2O2 resulted in
a decrease in the absorption maximum derived from DNA. Therefore, changes in the absorption at
260 nm can be an indicator of the degradability of the (H-PEI/DNA + GOx)5 film.
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Figure 5. UV-vis absorption spectra for the (H-PEI/DNA + GOx)5 film (a) before and (b) after exposure
to 100 mM H2O2 solution (pH 7.4) for 1 h.

The H2O2-induced decomposition of (H-PEI/DNA + GOx)5 films was investigated using UV-vis
absorption spectroscopy (Figure 6). The absorbance at 260 nm is attributed to hemin, DNA, and GOx.
Therefore, if the film is decomposed, the constituent components of the film on the quartz slides
are lost, and the absorbance at 260 nm decreases. Therefore, the decomposition of the LbL film was
evaluated using an absorbance ratio. The extent of the H2O2-induced decomposition of the LbL films
was determined using Equation (2).

Abst/Abs0 × 100 =

absorbance at 260 nm of (H − PEI/DNA + GOx)5 film
when immersed in hydorogen peroxide solution for t min

absorbance at 260 nm of (H − PEI/DNA + GOx)5 film
× 100 (2)

When the (H-PEI/DNA + GOx)5 film was exposed to the buffer for a long time, the absorbance
did not change. On the other hand, the (H-PEI/DNA + GOx)5 film immersed in H2O2 solution showed
a decrease in the absorbance ratio, and the decrease was larger as the H2O2 concentration was higher.
Significant decrease in the absorbance ratio can thus indicate the decomposition of the LbL films by
H2O2. In addition, the decomposition of the membrane is affected by the H2O2 concentration. If the
same method is used, then the glucose-induced decomposition of (H-PEI/DNA + GOx)5 film can
be evaluated.
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Figure 6. H2O2-induced decomposition of (H-PEI/DNA + GOx)5 films investigated using UV-vis
absorption spectroscopy. The LbL films were exposed to 0 (red), 1 (purple), 10 (blue), and 100 mM
(green) H2O2 solutions (pH 7.4) for up to 240 min. Error bars represent standard deviation (n = 4).

The glucose-induced decomposition of (H-PEI/DNA + GOx)5 films was investigated using UV-vis
spectroscopy (Figure 7). The glucose-induced LbL films were determined using Equation (3).

Abst/Abs0 × 100 =

absorbance at 260 nm of (H − PEI/DNA + GOx)5 film
when immersed in glucose solution for t min

absorbance at 260 nm of (H − PEI/DNA + GOx)5 film
× 100 (3)

When (H-PEI/DNA + GOx)5 films were exposed to 1, 10, and 100 mM glucose solutions for 48 h,
the absorbance ratio was 76.1%, 70.2%, and 64.0%, respectively. Hemin is an iron porphyrin molecule
and is an active cofactor for various enzymes, such as catalase and peroxidase [28]. GOx present in
the LbL films reacts with glucose to generate gluconic acid and H2O2. H2O2 present in the LbL films
reacts with hemin to generate ROS. The nonspecific cleavage of DNA by ROS promotes the partial
degradation of the LbL films. In addition, the rate of LbL film decomposition increased with the
glucose concentration. The decomposition rate of the film immersed in the glucose solution was slower
than that immersed in the H2O2 solution. However, the influence of the glucose concentration on
the decomposition of the (H-PEI/DNA + GOx)5 film was less than that from the H2O2 concentration.
GOx and glucose are enzymatic reactions; therefore, H2O2 is generated slowly and the degradation of
the LbL film is delayed. Therefore, at pH and ionic strengths close to physiological conditions, it is
possible to slowly decompose the LbL films at a low glucose concentration (1–10 mM).
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Figure 7. Glucose-induced decomposition of (H-PEI/DNA + GOx)5 films investigated using UV-vis
absorption spectroscopy. The LbL films were exposed to 0 mM (red), 1 mM (purple), 10 mM (blue),
and 100 mM (green) glucose solutions (pH 7.4) for up to 48 h. Error bars represent standard deviation
(0 mM; n = 4, 1, 10, and 100 mM; n = 3,).

The glucose-induced decomposition of (H-PEI/DNA + GOx)5 films was investigated using the
QCM (Figure 8). The extent of the decomposition was calculated from the change in the resonance
frequency (Equation (4)).

Decomposed (%) =
(
1−

∆Ft

∆F

)
× 100 (4)

∆F: frequency change of the (H − PEI/DNA)5 films
∆Ft: frequency change difference between blank and (H − PEI/DNA)5 films immersed in glucose
solution for t time

When the (H-PEI/DNA + GOx)5 film was exposed to 100 mM glucose solution for 24, 48, 72,
and 96 h, the extent of decomposition was 9.97%, 16.3%, 23.1%, and 30.5%, respectively. However,
the results of Figure 8 show less decomposition of LbL films than expected compared to Figure 7.
Compared to QCM operation, the amount of decomposition of LbL films immersed in glucose solution
during UV operation is greater. The absorbance ratio is influenced by hemin oxidation; therefore, there
was a difference in the amount of membrane degradation. The glucose-induced decomposition of LbL
films reported by Sato et al. occurred for 1 h when glucose was added [41]. On the other hand, from the
QCM results, a longer immersion time in 100 mM glucose solution resulted in greater decomposition
of the LbL films. Depending on the glucose concentration, it is possible to slowly decompose the
(H-PEI/DNA + GOx)5 film.
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Figure 8. Glucose-induced decomposition of (H-PEI/DNA + GOx)5 films was investigated using a
QCM. The LbL film was exposed to 100 mM glucose solution (pH 7.4) for up to 96 h. Error bars
represent standard deviation (n = 3).

4. Conclusions

(H-PEI/DNA + GOx)5 LbL films were prepared by alternate immersion of a substrate in H-PEI
solution and DNA solution (containing GOx). When the (H-PEI/DNA + GOx)5 films were immersed
in a H2O2 solution, partial decomposition of the LbL films was observed. The iron porphyrin in hemin
produces more ROS from the reaction with H2O2 [26,27]. The ROS cause non-specific DNA cleavage;
therefore, the decomposition of the LbL films composed of DNA was observed. Furthermore, partial
degradation was observed when the membrane was immersed in a glucose solution. GOx present in
LbL films produced H2O2 from glucose. These LbL films decomposed under physiological conditions
with various glucose concentrations, which suggests that a glucose stimuli-responsive nanofilm could
be realized. We have developed other glucose- and pH-responsive thin films [42,43]; however, the
(H-PEI/DNA + GOx)5 film has a very slow decomposition. If a drug could be encapsulated in this thin
film, then there is a possibility that a system capable of drug release over a long time period, depending
on the substrate, could be realized.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/2/319/s1,
Figure S1: UV-vis absorption spectra for 30 g/mL hemin solution (a) before and (b) after treated with 100 mM H2O2
(pH 7.4) for 1 h. The remaining H2O2 was consumed by dropping 10 L of 0.1 mg/mL catalase into the test solution
(2 mL) and letting it stand for 24 h. Figure S2: UV-vis absorption spectra for 13.6 g/mL DNA solution (red) before
and (blue) after treated with 100 mM H2O2 (pH 7.4) for 1 h. The remaining H2O2 was consumed by dropping
10 L of 0.1 mg/mL catalase into the test solution (2 mL) and letting it stand for 24 h. Figure S3: UV-vis absorption
spectra for 110 g/mL GOx solution (pH 7.4). Table S1: Absorbance difference in hydrogen peroxide treatment.
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