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Abstract: Several human interventions have indicated that Lactobacillus plantarum 299v (L. plantarum 299v)
increases intestinal iron absorption. The aim of the present study was to investigate possible effects
of L. plantarum 299v on the mechanisms of iron absorption on the cellular level. We have previously
shown that lactic fermentation of vegetables increased iron absorption in humans. It was revealed that
the level of ferric iron [Fe (H2O)5]2+ was increased after fermentation. Therefore, we used voltammetry
to measure the oxidation state of iron in simulated gastrointestinal digested oat and mango drinks
and capsule meals containing L. plantarum 299v. We also exposed human intestinal co-cultures of
enterocytes and goblet cells (Caco-2/HT29 MTX) to the supplements in order to study the effect
on proteins possibly involved (MUC5AC, DCYTB, DMT1, and ferritin). We detected an increase in
ferric iron in the digested meals and drinks containing L. plantarum 299v. In the intestinal cell model,
we observed that the ferric reductase DCYTB increased in the presence of L. plantarum 299v, while
the production of mucin (MUC5AC) decreased independently of L. plantarum 299v. In conclusion,
the data suggest that the effect of L. plantarum 299v on iron metabolism is mediated through driving
the Fe3+/DCYTB axis.
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1. Introduction

1.1. Lactobacillus plantarum 299v and Iron Absorption

There are various forms of iron supplements available, used by, for example, pregnant women
and young girls to treat or prevent iron deficiency. Iron supplements are often associated with adverse
effects in the gastrointestinal tract and therefore we need new ways of supplementing iron that are
better tolerated by the intestine. Probiotic bacteria, or live bacteria that are associated with positive
health effects related to the gastrointesinal tract, could therefore be beneficial components in iron
supplements in order to lessen or alleviate the potential side effects of iron salts. Probiotic effects
are often strain-specific and may depend on the way the supplements are administered, for example,
as a non-metabolically active supplement (lyophilized), as live (viable) bacteria added to a product,
or as a fermented product. The effect of probiotic bacteria of the strain L. plantarum 299v on iron
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absorption in humans has been investigated in several instances with conflicting results, which may
indicate that the way of administrating the bacteria determines the outcome. Examples that may
illustrate this are two studies of slightly different experimental conditions from the same research
group, which indicated in one of the studies that a lactic fermented (L. plantarum 299v) oat gruel
increased iron absorption in healthy young women [1] and did not increase iron absorption when
slightly or non-metabolically active bacteria was added to the heat-inactivated fermented oat gruel [2].

Since the addition of live bacteria to the heat-treated fermented product did not increase iron
absorption, it seems that it is the crude fermented product and not the bacteria that is responsible
for the beneficial effect on iron absorption. Four single-blind, sequential, placebo-controlled human
interventions with L. plantarum 299v, conducted by another research group, gave inconsistent results,
with three out of four successful studies indicating an improved iron absorption in the presence of
the bacteria [3,4]. In two of the interventions, L. plantarum 299v were administered in a lyophilized
encapsulated form and in the other two the bacteria were added live to oat and mango drinks.
These studies did not support the older studies [1,2] in terms of the impact related to the administration.
These four studies (and two more) were used for a health claim application to the European Food
Safety Authority (EFSA) stating that L. plantarum 299v increases non-heme iron absorption in humans.
However, the application was not approved and the EFSA concluded that there is insufficient scientific
evidence to support such a claim [5]. One reason for this conclusion was that no plausible mechanism
was presented in the application. This is where the present study comes in, in which we investigated
the effects of the same encapsulated supplement and fruit drinks (oat or mango) as in the four studies
on iron absorption, but this time at the mechanistic level in a human intestinal co-cultured cell model
(Caco-2/HT29 MTX).

1.2. Intestinal Uptake Routes for Iron

Iron absorption has traditionally been described to mainly involve two routes, either as active
uptake of heme-bound iron (through the folate transporter HCP1) or the transport of inorganic iron
into the cell through DMT1 (DMT1A and DMT1A-IRE). Today, we also know that iron may be
absorbed by the endocytosis of large iron complexes, which is thought to dissolve lysosomatically,
and then enter the cytosol through DMT1 [6]. It is not clear if the transport from the lysosome to the
cytosol involves the same isoform of DMT1 as the transcellular transport across the lumen-intestinal
interface. The DMT1 isoforms DMT1B and DMT1B-IRE have been associated with cytosol-endosome
transport of transferrin-imported iron from the basal cytosol [7]. DMT1 (NRAMP2/SLC11A2/DCT1)
is a cation H+-coupled transporter that is mainly distributed along the ileum and at high density in
the duodenum.

The human form (hDMT1) has been suggested to prefer ferrous iron (Fe2+) compared to other
divalent cations [8]; in one case, hDMT1 was shown to have higher affinity for Cd2+ than Fe2+ [9].
Iron in the gastrointestinal lumen is mostly present in oxidized form (Fe3+) and must therefore be
reduced before it can be transported by DMT1. Ferric iron that has not been reduced by luminal
molecules, such as ascorbic acid, can then be reduced by a membrane-spanning reductase, DCYTB,
in the intestinal epithelium [10]. Also, DCYTB and DMT1 have been shown to co-localize at the luminal
border (in rat). Once ferrous iron is transported into the cells, it is rapidly oxidized to the ferric form
again and either will be incorporated into the cellular LIP (labile iron pool) or transported by means of
chaperones targeting cytosolic ferritin, in which iron is stored for later use. Cytosolic ferritin levels
have been shown to be proportional to cellular iron uptake and are therefore often used as a proxy for
iron uptake.

1.3. The Present Study

The study design aimed at investigating if iron uptake can be increased in the presence of
L. plantarum 299v and to study specific questions related to the mechanism of the effect on iron
absorption. In previous studies, we observed that the oxidation state of iron favours that of Fe3+ to
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a significant extent after lactic fermentation of vegetables [11] and carrot juice [12], and therefore one of
the questions here was if the lyophilized bacteria or the live viable bacteria added to the oat and mango
drinks also had the capacity to increase iron in the oxidized form, ferric iron. After confirming that
both formulations increased the level of ferric iron, the next aim was to investigate the consequence of
the increased load of ferric iron on iron transport, and therefore the effect on DCYTB and DMT1 was
studied. Intestinal mucus has been shown to have high affinity for ferric iron and has been proposed
to serve as a reservoir for iron [13]. Additionally, the expression of intestinal mucins has been observed
to increase in the presence of probiotic bacteria [14], so therefore another question was how the ferric
load and the presence of L. plantarum 299v affect the production of mucus. We chose to investigate
these questions in a previously described human co-culture model that combines intestinal cells with
mucus-producing goblet cells, at an optimized ratio, to be used for iron bioavailability studies [14].

2. Materials and Methods

2.1. Bacterial Strain and Capsule Formulation

The bacterial strain investigated in the study was Lactobacillus plantarum 299v (DSM 9843).
The active capsule contained lyophilized L. plantarum 299v at 1010 CFU, Fe fumarate (4.2 mg), ascorbate
(12 mg), and folic acid (30 µg). The control capsule contained the same constituents but no bacteria.
The capsule itself was composed of hydroxypropylmethyl cellulose and was designed to dissolve in
the stomach after 20–25 min.

2.2. Composition of Meals, Oat and Mango Drinks

The capsule meals, oat and mango drinks had the same composition as previously described [3,4].
The meals to go with the capsules consisted of two bread rolls (for recipe, see [3]), a Flora sandwich
spread (15 g; Flora, Unilever, London, UK), Önos orange jam (20 g; Önos; Orkla Foods, Malmö,
Sweden), water (200 mL), and one capsule (with or without L. plantarum 299v). A batch of meals
(based on 12 buns, without capsules) were prepared and partly homogenized in a chopper (Kenwood,
Akaho, Japan). The slurries were weighed and immediately frozen in Falcon tubes (56.6–61.0 g in each
tube). The total weight of the meal batch was 2091.2 g.

Oat drinks and mango drinks with and without L. plantarum 299v were prepared and all drinks
were supplemented with iron. Ascorbic acid content was unmodified (Table 1). The oat drink with
L. plantarum 299v was the same as used in the trial by Hoppe et al. [4] in which the bacteria were added
as a fermented oat gruel. The mango drink with L. plantarum 299v was similar, but the bacteria was
added as a ferment without oats.

Table 1. Composition of the study products (per 200 mL drink and per capsule).

Composition Oat Drink
Lp299v

Oat Drink
Control MangoLp299v MangoControl Capsule

Lp299v
Capsule
Control

L. plantarum 299v (CFU) a 7 × 108 nd 1 × 109 nd 1 × 1010 nd
Iron (mg) b 4.1 4.0 4.0 4.1 4.2 4.2

Ascorbic acid (mg) c 12.1 15.8 7.5 7.8 12 12
Folic acid (µg) - - - - 30 30

a Lactobacillus plantarum 299v; CFU: colony forming units. The content in the drinks was analysed by Probi AB with
a modified NKML 140-2 method (2007); nd < 10 CFU/mL. b Ferrous lactate dihydrate in oat and mango drinks
(200 mL) and ferrous fumarate in the capsules. Analysed by Eurofins Food & Agro Testing, Sweden (NKML method
no 1391991). c Analysed by Eurofins Food & Agro Testing Sweden (Cereal Chemistry method). nd = not detectable.

2.3. Simulated Gastrointestinal Digestion of Capsule Meals

Active capsule (with L. plantarum 299v) and capsule control (without L. plantarum 299v) were
added to two different beakers (2 dm3) that contained 348.5 g meal slurry each (equivalent to one meal).
Next, α-amylase solution (350 mL; 75 U per mL in 0.9% NaCl; 37 ◦C) was added to the beaker and the
digest was incubated for 2 min (150 rpm; 37 ◦C). The pH at this stage was 5.12. The capsules were
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not visible at the surface at any time during the incubation. Pepsin solution was thereafter added
to the digest (350 mL; 2000 U per mL in 0.1 M HCl; 37 ◦C) and the pH became 1.69 in the Lp299v
capsule digest and 1.65 in the capsule control digest. The incubation lasted for 30 min (150 rpm;
37 ◦C). Proceeding with the digestion, pH was stepwise increased with NaHCO3 (1M) to 6.67 in the
capsule meal and 6.70 in the capsule control meal. The digest was thereafter left for incubation for 1 h
(150 rpm; 37 ◦C).

2.4. Simulated Gastrointestinal Digestion of Oat and Mango Drinks

The oat and mango drinks (1 mL) were mixed with water (5 mL; Ultrapure water type 1,
and α-amylase solution (5 mL; 75 U per mL in 0.9% NaCl; 37 ◦C). The drinks were incubated for
2 min (150 rpm; 37 ◦C) before pepsin solution was added (5 mL; 2000 U per mL in 0.1 M HCl; 37 ◦C).
The drinks were further incubated for 30 min (150 rpm; 37 ◦C) and then the pH was raised to 6.8 by
adding NaHCO3 (1M). The digest was thereafter left for incubation for 1 h (150 rpm; 37 ◦C).

2.5. Differential Pulse Anodic Stripping Voltammetry (DPASV) Measurements

Iron speciation (Fe2+/Fe3+) of the digested fruit drinks and capsule meals were analysed with
Differential Pulse Anodic Stripping Voltammetry (DPASV) using the Computrace 797 (Metrohm
Nordic AB, Stockholm, Sweden) with a platinum rotating disc electrode (Pt-RDE), a platinum auxiliary
electrode, and an Ag/AgCl/KCl reference electrode, as previously described [12]. All measurements
were done at pH 3.9–4.0 in a water solution containing NaClO4 (0.1 M) as the conductive medium.
The pH was chosen according to Allen and Flemström, who estimated the average pH in the upper
duodenal lumen to be 3.99 one hour after food intake (in humans). The pH was set by addition of HCl
(1 M) and an external pH-meter was mounted to the reaction vessel to monitor the stability of the pH.
In addition, a thermostat jacket was connected to keep the temperature at 37 ◦C. Digested samples
were added to the vessel (700 µL; the total volume was 15 mL) for measurements.

2.6. Experiments in the Caco-2/HT29 Co-Culture Cell Model

Human intestinal cells (Caco-2; HTB37; ATCC, Manassas, VA, USA) and mucus-producing
goblet cells (HT29-MTX-E12; ATCC, VA, USA) were grown separately in flasks and the medium
(MEM, 10% FBS; Gibco; Thermo Fisher Scientific; Waltham, MA, USA) was changed three times a week.
Cells were passaged at approx. 80% confluence about once per week. The cells were seeded in 12-well
plates in the ratio 75% Caco-2 cells (p.37–39)/25% HT29-MTX cells (p.52–54) according to the methods
of Mahler et al. [15] and co-cultured for 13 days before the experiments. At day 13, the medium was
changed into MEM 5% FBS. Twenty-four hours later, at day 14, the experiments were initiated. In the
first trials, the cells were incubated with the content of the L. plantarum 299v and control capsules in
triplicates for 5–60 min. After that, the cells were washed in PBS, new warm medium (MEM 5% FBS)
was added, and then the cells were brought back to the incubator for another 24 h to allow them to
respond in terms of changing their protein expression. At day 15, each set of cells from the five time
points + controls (0 h) were lysed in RIPA buffer (Sigma-Aldrich, Schnelldorf, Germany) containing
Pierce protease/phosphatase inhibitors (Thermo Fisher Scientific; MA, USA). Ferritin formation was
measured with a DRG ferritin kit (EIA-4408; DRG, CA, USA) and DMT1, DCYTB, and MUC5A1C were
all measured with specific ELISAs based on HRP cleavage of substrate, yielding either a fluorescent or
coloured product (Amplex®Elisa development kit, Invitrogen, Paisley, UK or o-Phenylenediamine
dihydrochloride, Sigma-Aldrich, Schnelldorf, Germany). DMT1, DCYTB, and MUC5A1C protein
expression was normalised to cellular protein in each well (Pierce BCA assay; Thermo Fisher Scientific;
MA, USA). In the second set of trials, the cells were incubated with digested oat and mango drinks
([Fe] = 16 µM) and capsule meals for 4 h ([Fe] = 29 µM). The cells were then brought back to the
incubator for 20 more hours before lysis (24 h in total).
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2.7. Statistics

All statistical analyses were done in Microsoft Excel 2011–2017. Significance tests were made using
Student’s unpaired 2-tailed t-test and p values <0.05 were considered to be significant. All experiments
were done in triplicates; data are means ± standard deviation (SD) from n = 2–4, where n is the number
of trials.

3. Results

3.1. L. Plantarum 299v-Induced Increase in Ferric Iron in Simulated Gastrointestinal Digested Oat Drinks
Was Associated with Elevated Expression of the Cellular Ferric Reductase DCYTB in the Caco-2/HT29 MTX
Cell Model

The oxidation state of soluble iron (Fe3+/Fe2+) in the simulated gastrointestinal digested
capsule-meals and drinks with and without L. plantarum 299v was compared using differential pulse
anodic stripping voltammetry, which measures ferric and ferrous species simultaneously in the
solution. The presence of L. plantarum 299v in the digested capsule meals and drinks significantly
increased the level of ferric iron by 16% ± 1.49%, p = 0.017 (capsule meals), 26% ± 4.4%, p = 0.001
(oat drink), and 39% ± 1.0%, p = 0.019 (mango drink) (Figure 1a). There was no change in the levels
of soluble ferrous iron, suggesting that the ferric iron is released from the matrix in the presence
of the bacteria. The results also suggest that the actual fermentation (the level of metabolic activity)
might increase ferric iron, since the smallest increase was represented by the lyophilized bacteria, and
the greatest increase by the live bacteria in the oat and mango drinks. Oat drink digests were fed to
the Caco-2/HT29 MTX cell model (4-h incubations) and the cells responded with an increase in the
protein expression of the brush boarder ferric reductase, DCYTB, in the presence of L. plantarum 299v
(24%, p = 0,027) (Figure 1b).
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Figure 1. (a) Blue bars: percentage increase in ferric iron (Fe3+) and grey bars: insignificant changes (p 
< 0.05) in ferrous iron (Fe2+) in L. plantarum 299v supplemented meals, oat and mango drinks after 
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Figure 1. (a) Blue bars: percentage increase in ferric iron (Fe3+) and grey bars: insignificant changes
(p < 0.05) in ferrous iron (Fe2+) in L. plantarum 299v supplemented meals, oat and mango drinks after
simulated gastrointestinal digestion measured with differential pulse anodic stripping voltammetry
(DPASV). Data are means ± SD, n = 3. An asterisk (*) indicates a significant difference from control
(without L. plantarum 299v; p < 0.05). (b) Cellular level of the ferric reductase DCYTB was significantly
increased (24%; p = 0.027) after a 4-h incubation with digested oat drinks containing L. plantarum 299v.
DCYTB protein levels in cells (triplicate wells) were measured after 24 h from the first encounter.
Data are means ± SD, n = 2. Letters a and b indicate significant differences (a: p = 0.032, b: p = 0.027).
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3.2. Time-Response Experiments of Undigested Capsule Contents in Caco-2/HT29 Cells

3.2.1. The Reductase DCYTB and the Ferrous Iron Importer DMT1

The investigation also showed that there is an immediate interaction between the lyophilized
L. plantarum 299v in the supplement (containing iron, ascorbic acid, and folic acid) and the intestinal
cells, which only required 5 min of incubation (Figure 2a). An increase in the capacity to reduce ferric
iron (Fe3+) into ferrous iron (Fe2+) in association with increasing levels of ferric iron (Fe3+) in the
presence of bacteria could be part of a potential positive effect of L. plantarum 299v on iron absorption.
Accordingly, we investigated if an increase in ferric reductase activity would also affect the ferrous
iron (Fe2+) importer DMT1. The data indicated that there was no significant effect of L. plantarum 299v
on DMT1 expression (5–60 min), Figure 2b.

Nutrients 2018, 10, x FOR PEER REVIEW  6 of 11 

(without L. plantarum 299v; p < 0.05). (b) Cellular level of the ferric reductase DCYTB was significantly 
increased (24%; p = 0.027) after a 4-h incubation with digested oat drinks containing L. plantarum 299v. 
DCYTB protein levels in cells (triplicate wells) were measured after 24 h from the first encounter. Data 
are means ± SD, n = 2. Letters a and b indicate significant differences (a: p = 0.032, b: p = 0.027). 

3.2. Time-Response Experiments of Undigested Capsule Contents in Caco-2/HT29 Cells 

3.2.1. The Reductase DCYTB and the Ferrous Iron Importer DMT1 

The investigation also showed that there is an immediate interaction between the lyophilized L. 
plantarum 299v in the supplement (containing iron, ascorbic acid, and folic acid) and the intestinal 
cells, which only required 5 min of incubation (Figure 2a). An increase in the capacity to reduce ferric 
iron (Fe3+) into ferrous iron (Fe2+) in association with increasing levels of ferric iron (Fe3+) in the 
presence of bacteria could be part of a potential positive effect of L. plantarum 299v on iron absorption. 
Accordingly, we investigated if an increase in ferric reductase activity would also affect the ferrous 
iron (Fe2+) importer DMT1. The data indicated that there was no significant effect of L. plantarum 299v 
on DMT1 expression (5–60 min), Figure 2b. 

 
(a) 

 

(b) 
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Figure 2. (a) Cellular level of the ferric reductase DCYTB was significantly increased in the presence of
L. plantarum 299v (p = 0.0008 at 5 min, p = 0.03 at 15 min, p = 0.004 at t = 30 min) as indicated with letters
a, b, and c. (b) Cellular expression of the iron importer DMT1 was not significantly increased in the time
interval 5–60 min of incubation, as measured 24 h after the first encounter. Data are means ± SD, n = 3.

3.2.2. Cellular Mucin (MUC5AC) Production

We used MUC5AC as a marker for mucus production, since MUC5AC is readily expressed in the
goblet cell line HT29-MTX-E12 [16]. Both the control capsule and the capsule containing L. plantarum
299v affected the cells to downscale their expression of MUC5AC, suggesting that this effect may
be caused by the supplemental iron, ascorbic acid, or folic acid rather than the bacteria (Figure 3a).
The decrease in mucus production was not caused by cell death (Figure 3b). The level of secreted mucin
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into the medium was fairly constant (data not shown) in all treated cells. The difference between the
control cells with no capsule (t = 0) and cells with capsules was significant after 60 min of incubation
(control capsule: p = 0.008 and L. plantarum 299v capsule: p = 0.002). There were also small significant
differences between the control and L. plantarum 299v capsule at two time points in which the mucin
production was lower in cells incubated with L. plantarum 299v (5 min: p = 0.05 and 45 min: p = 0.01)
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Figure 3. (a) Mucin production (MUC5AC) significantly decreased from baseline (control, no exposure
to any capsules) in the presence of the capsules independent of L. plantarum 299v (from 0 to 60 min;
p = 0.008 and p = 0.002 for control and active capsules, respectively). * indicates a significant difference
from control; Data, shown as relative fluorescence units (RFU) normalized to total cell protein, are
means ± SD, n = 3. (b) Total protein (proportional to cell number) shows that the decrease in mucus
production is not caused by cell death.

3.3. Cellular Uptake of Iron (Ferritin Expression) in Response to L. Plantarum 299v

Caco-2/HT29 MTX cellular uptake of iron, estimated by measuring a proxy for iron uptake,
ferritin, was not significantly increased due to the presence of L. plantarum 299v after a 4-h incubation
with digested oat drinks (23%, p = 0.3) or a capsule meal (7%, p = 0.8). Nor did we observe a significant
increase in ferritin expression in the presence of lyophilized L. plantarum 299v compared to capsule
content with no bacteria in the time-response study (5–60 min), which supports the results from the
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4-h incubation study (digested oat drinks and meals), in which the increase also was insignificant
(Figure 4).
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Cellular ferritin levels in Caco-2/HT29 MTX cells in response to the content of iron capsules, with and 
without L. plantarum 299v. Data are means ± SD, n = 2, in which each trial was done in triplicates. The 
differences between active capsules and control capsules (no bacteria) were not significant. 

  

Figure 4. Iron uptake (ferritin expression) in Caco-2/HT29 MTX cells. (a) Data are means ± SD, n = 3
for digested (dig.) oat drink trials and n = 2 for capsule meal trials; each trial was done in triplicates.
The differences between the study products and their controls (no bacteria) were not significant.
(b) Cellular ferritin levels in Caco-2/HT29 MTX cells in response to the content of iron capsules, with
and without L. plantarum 299v. Data are means ± SD, n = 2, in which each trial was done in triplicates.
The differences between active capsules and control capsules (no bacteria) were not significant.

4. Discussion

The novel finding of this study that the intestinal border ferric reductase DCTYB increases in the
presence of L. plantarum 299v indicates that L. plantarum 299v affects iron metabolism. However, it is
not clear if this is a secondary effect of the increase in ferric iron, although it seems plausible since
ferric iron is a substrate to DCYTB. In addition, comparing the graphs in Figure 1, it is evident that the
increase in ferric iron in active oat drink (26%) is similar to the increase in cellular DCYTB (24%) in
response to the same drink, which supports such a reasoning. However, it might not explain why the
authors in the studies by Bering et al. (described in the introduction) [2] did not observe an increase in
iron absorption after heat treating the fermented gruels following the addition of live or lyophilized
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bacteria. It would have been interesting to see data on the ferric/ferrous iron content before and after
the heat treatment in order to evaluate if this process affected the oxidation state of iron.

One can also argue that the immediate effect of a 5-min incubation (+24-h delay until lysis)
of L. plantarum 299v on DCYTB expression may imply that the effect on DCYTB does not require
any extent of fermentation of an iron-containing matrix. Examining this statement further, a 5-min
incubation, in addition to possible remaining bacterial cells after the washing step, which then had
24 h of further incubation, may just be sufficient to affect the state of iron in the serum-containing
medium. Also, the cells were exposed to about 80% higher concentration of iron (29 µM) from the
capsules compared to the drink digests (16 µM), which may explain the seemingly larger increase in
DCYTB levels in response to the capsules. To conclude the reasoning, there is no obvious contradiction
to the statement that the increased DCYTB expression may be a secondary effect of the increase in
ferric iron.

Another question that appears is why the iron importer DMT1 did not increase accordingly.
The simple answer may be that the initial increase in ferric iron is not likely to stimulate the expression
of DMT1, since its substrate is ferrous iron and not ferric iron. One would expect that succeeding
the reduction of ferric iron by DCYTB, the increase in ferrous iron would initially upregulate, and
later downregulate, DMT1. The presence of ascorbic acid may also play a role in the effect [17].
In another study, in the same cell model (Caco-2/HT29 MTX), in which the effects of probiotic bacteria,
including L. plantarum 299v, on intestinal barrier integrity with and without caprine milk carbohydrates,
L. plantarum 299v was observed to reduce MUC5A expression [18]. However, in the present study,
we observed a decrease in MUC5A expression in response to the capsules, independent of the presence
of L. plantarum 299v.

Through the years, there have been several suggested reasons for the enhancing effect of fermented
foods on iron absorption, such as the production of lactic acid and decrease in pH. However, it seems
that these factors are not likely to be the cause of increased iron absorption [11]. Another proposed
mechanism for a probiotic (L. fermentum) effect on iron absorption is the release of an enzyme with
ferric-reducing activity [19], although this mechanism seems unlikely, considering the observed effects
in the present study, unless it is a species-specific effect ascribed to L. fermentum. There are also
murine studies of probiotic effects on iron absorption [20]. However, it may be doubtful if these can
be translated into the human situation because of the impact of intracellular ascorbic acid, which
is a requirement for the function and regulation of DCYTB [21], and the fact that mice and rats
produce ascorbic acid endogenously while humans do not may question their use in human iron
absorption/metabolism studies. In addition, mice do not require DCYTB for absorption of iron from
the diet [22].
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