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Abstract: This study examines ultraviolet-C (UV-C) treatment supplementation as a means of in-
hibiting the senescence of pepino fruit after harvest. Pepino fruits were subjected to 1.5 kJ/m2 UV-C
treatments and then packed and stored at 10 ◦C for 28 d. Results showed that 1.5 kJ/m2 UV-C treat-
ment had the greatest ability to maintain firmness, and reduced the level of respiration and ethylene
production. Further analysis indicated that the 1.5 kJ/m2 UV-C treatment maintained the content
of total soluble solids (TSS), chlorophyll, vitamin C, flavonoids, and total phenolics. Lower levels
of malondialdehyde (MDA) and higher levels of antioxidant enzyme activity were found in UV-C
treated fruit during storage. An electronic nose (E-nose) and headspace-gas chromatography-mass
spectrometry (HS-GC-MS) was used to determine volatile compounds. Results revealed that the
UV-C treatment may promote the synthesis of a large number of alcohols and esters by maintaining
the overall level of acids, aldehydes, and esters in fruits. This may contribute to the maintenance
of the flavor of harvested fruits. In conclusion, 1.5 kJ/m2 UV-C treatment was demonstrated to
be an effective treatment for the maintenance of the sensory, nutritional, and flavor parameters of
pepino fruit.

Keywords: UV-C; pepino fruit; sensory quality; antioxidant enzymes; flavor

1. Introduction

Pepino (Solanum muricatum Aiton) fruit is a solanaceous, vegetatively propagated fruit
crop of Andean origin that has received increasing interest as an exotic fruit commodity [1,2].
Several countries have explored developing pepino into a new, horticultural product for fresh
markets, and outlined the breeding objectives needed to adapt pepino production to new
agroclimatic conditions and provide useful, fruit organoleptic traits [3]. Pepino fruits exhibit
considerable variation in size, shape, and color depending on the cultivar. Some selections
are very aromatic and juicy and are mainly used in dessert dishes or salads, whereas other
selections are used in juices or milk drinks, similar to other exotic fruits [4,5]. Pepino fruits
are low in calories, very rich in minerals, including calcium, phosphorus, and potassium,
and rich in vitamins, such as thiamin, niacin, riboflavin, and vitamin C [5,6]. Medicinal uses,
such as the treatment of hypertension, use as a diuretic, and as an antitumor treatment, have
also been attributed to pepino fruit, further strengthening its commercial value [4,7,8]. One
of the main problems with pepino fruit, however, is the significant decrease in organoleptic
and nutritional quality that occurs due to poor handling and inadequate storage conditions,
which greatly reduces the interest in this crop by commercial distributors [9,10]. In this
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regard, previous studies investigating storage and packaging technologies, such as film
packaging [11], controlled atmosphere (CA) [9], and modified atmosphere (MA) [11], have
found that specific gas concentrations can improve the storability and quality of pepino fruit.

Ultraviolet-C (UV-C) is considered a safe, effective, and economical treatment that can
be used to maintain the postharvest quality of fruit and vegetables during storage [12,13].
Low doses of UV-C, ranging from 0.01 kJ/m2 to 39 kJ/m2, have been reported to elicit a
hormetic response in a variety of fruit and vegetables [14,15]. Low-dose UV-C treatments
have been reported to delay senescence, induce resistance to pathogens, maintain fruit flavor,
and prolong the length of time produce can be stored with optimal quality [14,16,17]. UV-C
irradiation has been used to treat a variety of fruit and vegetables, including strawberry,
blueberry, grape, papaya, apple, carrot, tomato, broccoli, spinach, and others [18–20]. Despite
the general interest in this technology, however, studies on the effect of UV-C irradiation on
the postharvest quality of pepino fruit are lacking.

Previous research demonstrated that a 1 kJ/m2 UV-C treatment could effectively
reduce chilling injury and maintain the flavor quality of fruits at 4 ◦C [21]. Based on the
collective rsearch on UV-C, the objective of the present study was to determine the effect
of UV-C irradiation on the postharvest quality of pepino fruit stored at 10 ◦C. Treatments
comprising different doses of UV-C were compared to determine their effect on several
quality parameters, including sensory evaluation, nutrient content, antioxidant enzyme
activity, and volatile production. Results of our study provide a theoretical basis for the
application of UV-C on pepino fruit and contribute to the further development of UV-C
technology for the preservation of fruit and vegetables.

2. Materials and Methods
2.1. Plant Material and Treatments

Pepino fruit (Solanum muricatum Aiton, ‘Chang-li’) were harvested at commercial
maturity from an agricultural field in Minqin County, Wuwei City, Gansu Province, China
(longitude 103.08; latitude 38.62). The maturity standard used for harvesting was purple
stripes on the fruit surface, and a TSS content of 6–7%. Each fruit was covered with a
low-density polyethylene packaging net to avoid bruising, and then immediately packed
in boxes and transported back to the laboratory. Fruit was selected for uniformity in size,
color, firmness, shape, and the absence of evidence of any mechanical damage.

Pepino fruits removed from packaging were exposed to the irradiation of a UV-C
lamp tube (30 W/T8, 254 nm, Philips, Amsterdam, Holland) at a distance of 25 cm. The
UV-C dose was calculated based on irradiance, which was measured by a light-meter
(UV DATAL, 115/230V, Cole-PARMER, Vernon Hills, IL, USA). Prior to conducting the
first experiment, nine pepino fruit were randomly selected from amongst the harvested
fruit and used as the control group (0 d). An additional 540 randomly selected fruit were
randomly distributed into five groups, with approximately 108 fruits in each group and
stored for 28 d. The treatments used on the five groups were as follows: (a) untreated
fruit, serving as a control group; (b) 1.0 kJ/m2 dose of UV-C; (c) 1.5 kJ/m2 dose of UV-C;
(d) 2.0 kJ/m2 dose of UV-C; (e) and 3.0 kJ/m2 dose of UV-C. After treatment, the fruit
were enclosed in 0.03 mm thickness polyethylene film bags (every bag containing 36 fruit)
and then stored in darkness at (10 ± 1) ◦C and 80–90% relative humidity. The fruits were
collected every 7 days to determine various indexes. Each group was further divided into
three biological replicates with three fruits for each replicate (n = 3). The pulp and peel
of each fruit from were frozen separately in liquid nitrogen and stored at −80 ◦C. The
pulp was used to determine peroxidase (POD) activity, ascorbate peroxidase (APX) activity,
catalase (CAT) activity, vitamin C content, total phenolics, and flavor-related volatiles. The
peel tissue was used to assess chlorophyll, flavonoid, anthocyanin and MDA content.

2.2. Sensory Scores

Evaluation of pepino fruit was conducted following a modification of the approach
described by Pluda et al. [22]. Three fruits for each replicate were cut into four pieces of
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the same size and marked. A ten-member trained panel ranked the pepino fruit from the
different treatment groups based on overall flavor and texture. The sensory quality of
pepino fruit was scored on a scale from 1 to 5, where 5 was excellent (fresh, aromatic flesh
without odor, full juice, high commercial value), 4 was good (dark color, no aroma and
no peculiar smell of flesh, full juice, high quality, and commercial value), 3 was moderate
(dark color, little flesh juice, soft, no odor, average quality and commercial value), 2 was
poor (brown dark colored fruit, little flesh juice, very soft, peculiar smell, poor quality and
no commercial value), and 1 was extremely poor (rotten, moldy, smelly, inedible, poor
quality, no commercial value).

2.3. Firmness, Respiration Rate, and Ethylene Production

A GY-40J type digital fruit hardness tester (Zhejiang Top Instrument Co., Ltd., Hangzhou,
China) was used to assess firmness. Three pepino fruits for each replicate were measured
for firmness at the equator of each fruit. The diameter of the probe was 0.7 cm, and the
average value of three readings from the equator of each fruit was recorded. The results of
firmness were reported as Newton (N).

Three pepino fruits for each replicate were measured respiration rate and ethylene
production. Respiration rate was assessed as the production of carbon dioxide (CO2).
Each replicate pepino fruit were placed in a glass sealed jar for 1 h and respiration was
then determined using a GHX-3051 respiration analyzer (Jun Fang Li Hua Technology-
Research Institute of Beijing, Beijing, China). The results of respiration rate were reported
as mg·kg−1·h−1.

Ethylene production was determined using a gas chromatograph (7820 A, Agilent
Technologies, Inc., Santa Clara, CA, USA). Each replicate pepino fruit were placed in a
sealed container with a gas extraction port. Headspace gas was extracted from a sample
after 1 h and then 1 mL of gas was injected into a gas chromatograph. The level of ethylene
was calculated based on the linear relationship between the peak area and the concentration
of ethylene. Ethylene production is expressed as µmol·kg−1·h−1.

2.4. TSS, Chlorophyll, Vitamin C, Flavonoids, Anthocyanin, and Total Phenolics Content

3 pepino fruit for each replicate were measured the level of TSS, which was deter-
mined using a hand-held refractometer (Atago PAL-1, Tokyo, Japan) and reported as
Brix (O%). Chlorophyll was extracted from frozen samples of pepino fruit peel tissues
using a solution of 80% aqueous acetone and chlorophyll levels were measured as de-
scribed by Sun et al. [23]. Briefly, the extract was centrifuged at 13,000× g for 10 min at
4 ◦C, and the absorbance of the supernatant was recorded at 645 nm and 663 nm using a
UV-spectrophotometer (UV-1800, Shimadzu Corporation, Tokyo, Japan) and chlorophyll
content were expressed as mg/g.

Vitamin C content was determined using an ammonium molybdate colorimetry assay
as described by [24]. Absorbance at 760 nm was measured in a spectrophotometer and
ascorbic acid was used to generate a standard curve. Vitamin C content was expressed as
mg/g.

The flavonoid content was carried out in accordance with the previous study by
Pirie et al. [25] with some modifications. A total of 2 g of pepino peel tissue and 5 mL
methanol (0.1% hydrochloric acid) were ultrasonically extracted at 25 ◦C for 10 min, and
then centrifuged at 13,000× g for 20 min at 4 ◦C, and methanol was added to bring it to
a volume of 25 mL. The supernatant was used to evaluate the content of total phenols,
flavonoids, and anthocyanins. A total of 1 mL supernatant and 0.5 mL of NaNO2 (1.5%)
solution were mixed, then 1 mL 10% AlCl3 and 1 mL 1 M NaOH were added. After
incubating for 5 min in the dark, the absorbance was measured at 490 nm. The results are
expressed in mg of epicatechin equivalent per kg of fruit weight (mg/kg).

Total anthocyanin content was evaluated using the method of Zhang et al. [26]. Briefly,
0.5 mL supernatant and 2 mL of two different buffers (0.025 M KCl pH 1 and 0.4 M
CH3COONa pH 4.5) were combined, then incubated in the dark for 15 min. Absorbance



Foods 2021, 10, 2964 4 of 16

was then measured at 510 and 700 nm. Results are expressed in mg cyanide-3-O-glucoside
equivalent per kg fruit weight (mg/kg).

Total phenol content was determined using the method of Esua et al. [27] with slight
modification. Briefly, 0.04 mL supernatant and 1 mL of Folin–Ciocalteu reagent were mixed
together, and a 7% Na2CO3 solution was then added to the mixture. After incubating for
1 h in the dark, absorbance was measured at 760 nm. Results are expressed as mg gallic
acid equivalents per one kg fruit weight (mg/kg).

2.5. POD, APX, and CAT Activity, and MDA Content

POD, APX, and CAT activity, as well as MDA content, were measured using the
method described by Cao et al. [28]. Frozen samples of powdered pepino pulp (1 g) were
mixed with 5 mL phosphate buffer (0.05 M, pH 7.0), containing 0.001 M EDTA and 2%
PVP, and centrifuged at 13,000× g for 30 min at 4 ◦C. The supernatants were used to
determine POD and CAT activity. The reaction mixture for POD activity consisted of
0.1 mL supernatant, 1 mL phosphate buffer (pH 7.8), and 0.9 mL 2% guaiacol. The change
in absorbance of the reaction mixture at 470 nm in 1 min was recorded. The reaction
mixture for CAT activity was 1 mL 0.3% H2O2, 1.9 mL 0.1 M phosphate buffer (pH 7.8),
and 0.1 mL supernatant. POD and CAT activities was measured along with the change
of per gram tissue in absorbance at 470 and 240 nm over one minute, and were expressed
as U.

The following procedure was used to measure APX activity. Samples of powdered
pepino fruit pulp (1 g) were mixed with 5 mL of phosphate buffer (pH 7.5), containing
0.001 M EDTA, 0.001 M ascorbic acid, and 2% PVP. The solution was then centrifuged at
13,000× g for 30 min at 4 ◦C, and the resulting supernatant was used to determine APX
activity. The reaction system for measuring APX activity was 2.6 mL of 0.05 M phosphate
buffer (pH 7.5), 0.1 mL of supernatant, and 0.3 mL of 0.002 M H2O2. APX activity was
measured, along with the change of per gram tissue in absorbance at 290 nm over one
minute, expressed as U.

The following protocol was used to measure MDA content. Samples of powdered,
frozen pepino peel (1 g) were mixed with 5 mL of trichloroacetic acid and centrifuged at
13,000× g for 20 min at 4 ◦C, and the supernatants were collected. Subsequently, 2 mL of
trichloroacetic acid was added to each sample tube and placed in a boiling water bath for
20 min. The concentration of MDA in the supernatant was determined after cooling to
room temperature by measuring absorbance at 450 nm, 532 nm, and 600 nm. MDA content
was calculated using the following formula (1):

MDA (M) = [6.45 × (OD532 − OD600) − 0.56 × OD450] × 10−6 (1)

The content of MDA in each kilogram of fruit sample (fresh weight) was then calcu-
lated. Results are expressed in mol/g.

2.6. Electronic Nose (E-Nose) Analysis of Volatile Signatures

An E-nose (Airsense Analytics, GmBH, Schwerin, Germany) was used to evaluate
emitted volatile signatures using the headspace inhalation method [29]. Three pepino
fruits were placed in an airtight glass container to determine the E-nose footprint at
each of the sampled time points. The containers, containing pepino fruit samples, were
equilibrated for 60 min at 10 ◦C. Subsequently, an E-nose sample needle was inserted
into the glass container to assess the volatile signature. Each measurement time was
120 s and repeated three times. The flow rate in the E-nose chamber during sampling
was 300 mL·min−1 and the E-nose sensors were recalibrated with a cleaning gas for 80 s
between each measurement. The E-nose was equipped with ten sensors. The sensors were
W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W, and W3S, and were constructed to
measure aromatic compounds, oxynitride, ammonia and aromatic compounds, hydrogen,
alkane and aromatic compounds, methane, sulfur compounds, ethanol, aromatic and
organic sulfur compounds, and alkanes, respectively.
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2.7. HS-GC-MS Analysis of Volatiles

Flavor volatiles were measured according to the method from Aubert et al. [30] with
modifications. Exactly 5 g pulp of each sample was placed in a 20 mL sealed vial with
a PTFE-silicone septum (Supelco, Bellefonte, PA, USA) with 1.5 g NaCl, and the vials
were then placed in an automatic sampling instrument after 1 h at room temperature. The
analysis of the products was carried out by HS-GC-MS (GC–MSQP 2010 Plus system with
Headspace Sampler 10; Shimadzu, Kyoto, Japan). Separation was performed on a polar
(30 m × 0.25 mm × 0.25 µm) fused silica capillary column. Helium was used as the carrier
gas at a flow rate of 1.5 mL·min−1. One microliter aliquot sample were injected at 250 ◦C
in 46 split ratios. The temperature program for GC followed the sequence: hold for 4 min
at 40 ◦C, increase to 50 ◦C at a speed of 5 ◦C·min−1, hold for 3 min, increase to 220 ◦C at a
speed of 10 ◦C·min−1, hold for 2 min. The transfer line and ion source temperature were
maintained at 150 ◦C and 200 ◦C, respectively. Qualitative analysis was performed in the
electron impact (EI) mode using the full scan mode in the m·z−1 range of 45–550 amu. The
unknown peaks were identified using the library of NIST 14 and NIST 14s. The external
standard method was used to quantify the main components in pepino fruit. The GC
conditions and MS conditions were the same as those described in the above GC-MS
analysis. Using 3-Octanol in a concentration range of 0.1 µg/L~10 mg/L, a standard curve
of the correlation between peak area and content was established (R2 > 0.99). The standard
curve method was used to calculate the content of each of the identified compounds.

2.8. Statistical Analysis

Statistical analyses were conducted using SPSS 22 (SPSS Inc., Chicago, IL, USA). The E-
nose data was analyzed using linear discriminant analysis (LDA). Additional data analysis
and processing software utilization included Origin 2019 and Winmuster (version 1.6.2),
provided along with the E-nose instrument. The data was subjected to a one-way ANOVA,
and Duncan test was used to compare means between treatments. The level of significance
was set at p < 0.05. Presented data represent the mean ± standard deviation. The heat map
was generated in Microsoft Excel 2019 and PowerPoint 2019.

3. Results
3.1. Sensory Score, Firmness, Respiration Rate, and Ethylene Production

The sensory score rating of pepino fruit exhibited a steady decline over the course of
storage (Figure 1A). The sensory score of pepino fruit that received the 1.5 kJ/m2 UV-C
treatment was higher than the other treatment groups after 14 d of storage. At the 28th
day of storage, the fruit in the control group had poor quality and no commercial value
(score < 2), whereas the fruit in the 1.5 kJ/m2 UV-C group still had average quality and a
commercial value (score > 3). The overall results indicated that the 1.5 kJ/m2 treatment
had the greatest ability to maintain the sensory quality of pepino fruit during storage.

The firmness of pepino fruit also exhibited a downward trend during storage (Figure 1B).
Firmness in the 1.0 kJ/m2 and 1.5 kJ/m2 UV-C treatment groups decreased gradually,
whereas the firmness in the control and other treatment groups decreased sharply beginning
on the day 21 of storage. Notably, the firmness of pepino fruit in the 1.5 kJ/m2 UV-C
treatment group was higher than it was in the other treatment groups from the 14–28 d
of storage. The overall data indicated that the 1.5 kJ/m2 treatment had the most positive
effect on maintaining the firmness of pepino fruit during storage.

Respiratory rate initially decreased and then increased during storage (Figure 1C).
The respiratory rate in the 1.5 kJ/m2 UV-C treatment group was lower than in the other
treatment groups beginning at day 21 of storage. The respiration rate in the 1.5 kJ/m2 UV-C
treatment group on day 28 of storage was 0.0155 mg·kg−1·h−1, whereas in the control and
other treatment groups it was higher than 0.0215 mg·kg−1·h−1. Thus, the data indicate that
the 1.5 kJ/m2 UV-C treatment had the greatest ability to inhibit the increase in respiration
rate that occurred during the storage of pepino fruit.
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Figure 1. Sensory score (A), firmness (B), respiration rate (C), and ethylene production (D) of pepino
fruit treated with different UV-C dose during storage. Data represent the mean ± SE (n = 3). Different
letters indicate significant differences (p < 0.05) between sample groups at the time of sampling.

The rate of ethylene production decreased during the first 14 d of storage and then
remained relatively stable (Figure 1D). Ethylene production in the control group was higher
than it was in the other treatment groups beginning at 7 d of storage. Ethylene production
in the 1.5 kJ/m2 UV-C treatment was lower than it was in the other treatment groups on
days 7 and 21 of storage, but no significant difference was observed between any of the
other UV-C treatment groups. Based on the collective results, the 1.5 kJ/m2 UV-C treatment
was selected for more detailed studies for its effect on the metabolism of pepino fruit.

3.2. The Level of TSS, Chlorophyll, Vitamin C, Flavonoids, Anthocyanin, and Total Phenolics

TSS content (Figure 2A) and chlorophyll content (Figure 2B) in pepino fruit of the
control group increased during storage at 14 d but then decreased rapidly. TSS content in
the control groups was only 5.60% on 28 d of storage and chlorophyll content was only
1.59 mg/g. TSS content in the 1.5 kJ/m2 UV-C treatment group also decreased during
the first 14 d of storage, and then remained relatively stable. TSS content in the 1.5 kJ/m2

UV-C treatment group was 6.02% on day 28 of storage, which was higher than it was in
the control group. Chlorophyll content in the 1.5 kJ/m2 UV-C group increased on day 7
of storage, and then exhibited a gradual downward trend during the remaining period of
storage. Chlorophyll content was 1.89 mg/g in the 1.5 kJ/m2 UV-C group on day 28 of
storage, which was 0.3 mg/g higher than in the control group.

The level of vitamin C in the 1.5 kJ/m2 UV-C treatment group, however, was higher
than it was in the control group from days 7 to 28 of storage. The level of vitamin C
decreased by 22% in the 1.5 kJ/m2 UV-C treatment group over the 28 d of storage, whereas
it decreased by 27% in the control group (Figure 2C).

Changes in the levels of flavonoid and anthocyanin in the control and 1.5 kJ/m2

UV-C treatment groups are presented inFigure 2D,E. The content of flavonoids and an-
thocyanins in the control group increased and then decreased over the first 14 days of
storage. Flavonoid and anthocyanin levels in the UV-C treatment group, however, were
significantly higher than those in the control group after 28 days of storage.
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The level of total phenolics in pepino fruit of the two treatment groups is shown in
Figure 2F. Total phenolics exhibited a general decreasing trend in both groups overall,
however, the level of phenolics in the 1.5 kJ/m2 UV-C treatment group was higher than it
was in the control group on the day 14, 21, and 28. The content of total phenolics in the
1.5 kJ/m2 UV-C treatment group had decreased by 21% at the end of 28 d storage, whereas
it decreased by 34% in the control group.
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Figure 2. TSS (A), chlorophyll (B), vitamin C (C), flavonoids content (D), anthocyanin (E) and total
phenolic content (F) of pepino fruit treated with dark (control) and UV-C during storage. Chlorophyll,
vitamin C, and total phenolic content were measured in pulp tissue; flavonoid and anthocyanin
content were measured in peel tissues. Asterisk (*) indicates a significant difference between the
control and UV-C treatment groups at p < 0.05. Whereas a double asterisk (**) indicates significance
at p < 0.01.

3.3. POD, APX and CAT Activity, and MDA Levels

POD (Figure 3A) and CAT (Figure 3C) activity in pepino fruit during storage in the
control group and 1.5 kJ/m2 UV-C treatment group tended to increase overall. Notably,
POD and CAT activity in the 1.5 kJ/m2 UV-C treatment group was always higher than it
was in the control group. A difference between the control and UV-C treatment group in
POD and CAT activity was evident from day 7 to 28. These results clearly indicate that
the 1.5 kJ/m2 UV-C treatment induced a greater level of POD and CAT activity than was
present in the untreated, control pepino fruit.

APX activity in the two groups exhibited an overall downward trend during storage
(Figure 3B). APX activity in fruit that received the 1.5 kJ/m2 UV-C treatment, however,
was higher than in the control group on day 7 and 28 of the storage. At the end of storage
period, APX activity in the 1.5 kJ/m2 UV-C treatment group was 70% higher than it was in
the control group.
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In contrast to APX activity, MDA content exhibited an overall upward trend during
storage in both groups (Figure 3D). Notably, MDA content in the pepino fruit of the
1.5 kJ/m2 UV-C treatment group increased sharply after day 21 of storage, whereas the
control group exhibited increase on the day 14. MDA content in the control group at the
end of storage was 0.072 times greater than it was in the 1.5 kJ/m2 UV-C treatment group.
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Figure 3. POD activity (A), APX activity (B), CAT activity (C) and MDA content (D) of pepino fruit
treated with dark (control) and UV-C during storage. POD, APX and CAT activity were measured in
pulp tissue; MDA content was measured in peel tissue. Asterisk (*) indicates a significant difference
between the control and UV-C treatment groups at p < 0.05. Whereas a double asterisk (**) indicates
significance at p < 0.01.

3.4. Flavor-Related Parameters
3.4.1. E-Nose Analysis Results

The flavor characteristics of pepino fruit were comprehensively analyzed using an
E-nose equipped with 10 kinds of sensors. The results obtained with the E-nose are
based on the odor molecules being emitted from the pepino fruit and their concentration.
Representative E-nose sensor intensity curves of the volatile compounds are presented
in Figure 4A,B. The differences in the profiles observed between the control group and
1.5 kJ/m2 UV-C treatment group suggest that a noticeable alteration in the composition
of volatile compounds occurred in response to the UV-C treatment by the end of the
storage period.

Linear discriminant analysis (LDA) was used to linearly transform the original data
vector, so that samples with different properties could be more readily distinguished [31].
Two variables (LD1 = 78.309%, LD2 = 16.088%) are based on the E-nose values and collective
values greater than 90% indicate that each group can be readily distinguished. The distance
between the two groups represents the difference between the two groups. Results indicate
that the extension of storage time was the main contributor to the observed changes in the
profile of volatile compounds in pepino fruit, followed by UV-C treatment. Notably, the
1.5 kJ/m2 UV-C treatment group was closer to the initial volatile (odor) signature (0 d) than
the control group.

A radar fingerprint chart of the volatile compounds in the initial control group (0 d),
1.5 kJ/m2 UV-C group, and the control group during storage is presented in Figure 4D. The
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closer the distance of a reading to its initial value, the less change that has occurred. Results
indicate that the response values for the W5S, W1W, W2S, and W2W sensors exhibited a
significant change, indicating that ethanol, oxynitride, and sulfur compounds in pepino
fruit were altered in composition and/or quantity during storage.
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Figure 4. E-nose sensor intensity for volatile compounds in control pepino fruit (A) and 1.5 kJ/m2

UV-C treated pepino fruit (B) harvested for day 28. (C) Linear discriminant analysis of E-nose data for
control pepino fruit and 1.5 kJ/m2 UV-C treated pepino fruit harvested at different time. (D) Radar
fingerprint chart of volatile compounds in control pepino fruit and 1.5 kJ/m2 UV-C treated pepino
fruit harvested for 28 d. Pulp tissues were used to obtain the E-nose profiles.

3.4.2. GC-MS Analysis Results

Volatile compounds in pepino fruit and the changes that occurred during storage
and in response to the UV-C treatment were assessed by GC-MS. A total of 73 com-
pounds, divided into 6 classes, were identified: alcohols (18), esters (20), aldehydes (16),
hydrocarbons (3), acids (10), and others (6) (Table 1). In addition, 17 volatile compounds
were detected which were present over the whole storage period, including alcohols (3),
esters (2), aldehydes (7), acids (3) and others (2) (Figure 5). These results indicated that
the volatile aroma components in pepino fruit were mainly alcohols, esters and aldehydes.
The results of the electronic nose indicated that ethanol, oxynitride, and sulfur compounds
in the pepino fruit are the most obvious types of compound types that are affected during
storage and by the UV-C treatment. The results obtained in the GC-MS analysis are,
thus, similar to the E-nose results. The GC-MS data indicate that storage time and UV-C
treatment increased the content of alcohol compounds, whereas thiomalic acid (a sulfur
compound) was only present in the control group and was not detected at 28 days in the
UV-C treatment samples.
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Table 1. Quantitative results of the level of aroma compounds in pepino fruit during storage for 0 d and 28 d.

Category Number Formula Volatile Compounds

Content (mg·kg−1)

0 d Control
28 d

1.5 kJ/m2

28 d

Alcohols
(18)

1 C3H8O 1-Propanol 1.4002 ± 0.02 ND ND
2 C5H10O 3-methylbut-3-en-1-ol 1.54 ± 0.07 1.6288 ± 0.03 1.3971 ± 0.04
3 C5H12O Pentanol 1.8347 ± 0.02 ND ND
4 C6H14O Hexanol 2.1133 ± 0.06 2.7704 ± 0.02 2.8096 ± 0.03
5 C8H16O Oct-1-en-3-ol 1.0308 ± 0.01 0.9432 ± 0.01 ND
6 C4H10S2 1,4-Butanedithiol ND 0.8900 ± 0.04 ND
7 C5H10O 1-Penten-3-ol ND 3.8201 ± 0.13 4.2583 ± 0.09
8 C5H12O Isoamylol ND 1.7775 ± 0.07 1.7782 ± 0.03
9 C9H18O cis-6-Nonen-1-ol ND 0.9467 ± 0.01 ND
10 C5H12O2 2-Isopropoxyethanol ND 0.9435 ± 0.01 0.9977 ± 0.02
11 C4H10O2 1,3-Butanediol ND ND 2.7975 ± 0.08
12 C5H12O 3-methyl-2-butanol ND ND 4.0145 ± 0.54
13 C6H14O2 1,5-Hexanediol ND ND 1.1312 ± 0.03
14 C9H20O 3-ethylheptan-3-ol ND ND 0.9622 ± 0.01
15 C5H10O cis-2-Penten-1-ol ND ND 1.4607 ± 0.06
16 C9H18O cis-2-Nonen-1-ol ND ND 0.9458 ± 0.02
17 C6H14O6 D-Sorbitol ND ND 0.977 ± 0.01
18 C10H18O (-)-α-Terpineol ND ND 0.9565 ± 0.01

Total 7.919 13.7594 24.4471

Esters
(20)

19 C7H12O2 3-Methyl-3-buten-1-yl acetate 1.1235 ± 0.04 1.0446 ± 0.05 ND
20 C10H20O2 Methyl nonanoate 0.9666 ± 0.03 ND ND
21 C11H22O2 Methyl Caprate 1.1157 ± 0.01 ND ND
22 C12H24O2 Hexyl hexanoate 1.0269 ± 0.03 1.0348 ± 0.04 0.9600 ± 0.00
23 C15H30O2 Methyl myristate 1.5104 ± 0.05 ND 1.0001± 0.02
24 C6H12O3 Ethyl 3-hydroxybutyrate 1.1658 ± 0.08 0.0018 ± 0.00 1.0259± 0.03
25 C9H16O4 Diethyl dimethylmalonate 1.2418 ± 0.03 ND ND
26 C7H14O3 Methyl 5-methoxypentanoate 1.1747 ± 0.03 ND ND
27 C5H10O2 Butyl formate ND 1.0591 ± 0.02 ND
28 C10H20O2 Butyl Hexanoate ND 0.9399 ± 0.03 ND
29 C14H28O2 Ethyl laurate ND 1.5656 ± 0.03 ND
30 C13H26O2 Methyl laurate 4.4772 ± 0.34 1.2296 ± 0.02 1.5939 ± 0.04
31 C18H36O2 Methyl 15-methylhexadecanoate ND 0.9945 ± 0.01 0.9530 ± 0.03
32 C8H16O3 Ethyl 3-hydroxyhexanoate ND 0.0018 ± 0.00 1.2870 ± 0.03
33 C6H11ClO2 Methyl 5-chloropentanoate ND ND 1.1431 ± 0.05
34 C8H16O2 Ethyl 4-methylpentanoate ND ND 1.4664 ± 0.07
35 C12H20O2 Allyl 3-cyclohexylpropionate ND ND 0.9572 ± 0.04
36 C11H22O2 Nonyl acetate ND ND 1.2089 ± 0.06
37 C13H24O2 Ethyl undecylenate ND ND 1.2955 ± 0.05
38 C15H30O2 Isopropyl dodecanoate ND ND 1.273 ± 0.03

Total 9.3254 7.8717 14.164

Aldehydes
(16)

39 C5H10O Pentanal 1.1883 ± 0.04 0.6100 ± 0.05 1.1409 ± 0.22
40 C6H12O Hexanal 25.1792 ± 3.93 23.4300 ± 2.46 15.5164 ± 4.07
41 C5H8O (E)-2-Pentenal 1.2655 ± 0.04 ND 1.2089 ± 0.03
42 C6H10O 2-hexenal 6.8883 ± 1.37 5.4300 ± 1.98 4.0673 ± 0.85
43 C9H14O (2E,4E)-2,4-Nonadienal 3.0414 ± 0.97 1.3500 ± 1.02 1.9870 ± 0.56
44 C7H12O Heptenal 1.2839 ± 0.32 0.3200 ± 0.02 1.9036 ± 0.36
45 C9H18O Nonanal 1.5303 ± 0.39 1.2569 ± 0.12 0.9751 ± 0.04
46 C8H14O (2E)-2-Octenal 1.4123 ± 0.06 ND 0.9724 ± 0.01
47 C9H16O (2E)-2-Nonenal 1.3177 ± 0.03 0.3900 ± 0.01 1.8329 ± 0.05
48 C9H14O (2E,6Z)-nona-2,6-dienal 1.1767 ± 0.13 ND 1.0488 ± 0.09
49 C7H14O Heptanal 1.0845 ± 0.04 ND ND
50 C10H16O β-Cyclocitral 0.9903 ± 0.07 ND ND
51 C10H20O Decanal ND 0.2400 ± 0.01 ND
52 C8H16O Octanal ND ND 0.9943 ± 0.05
53 C14H30O2 1,1-Diethoxydecane ND ND 1.5034 ± 0.17
54 C5H10O Isovaleraldehyde ND ND 1.8470

Total 46.3584 33.0269 34.998
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Table 1. Cont.

Category Number Formula Volatile Compounds

Content (mg·kg−1)

0 d Control
28 d

1.5 kJ/m2

28 d

Hydrocarbons
(3)

55 C6H12 cyclohexane 1.7055 ± 0.28 ND ND
56 C5H10 Cyclopentane 1.1283 ± 0.17 ND ND
57 C10H16 limonene ND 0.9522 ± 0.01 ND

Total 2.8338 0.9522 0

Acids
(10)

58 C2H4O2 acetic acid 3.0367 ± 0.53 1.2403 ± 0.02 1.0919 ± 0.01
59 C5H10O2 Pentanoic acid 0.9601 ± 0.01 ND ND
60 CH2O2 Formic Acid 0.9937 ± 0.02 ND ND
61 C5H10O2 2-Methylbutyric acid 1.1698 ± 0.30 1.1022 ± 0.05 1.0498 ± 0.02
62 C6H12O2 1-Hexanoic acid 2.2315 ± 0.27 ND 3.1323 ± 0.51
63 C9H18O2 Nonanoic acid 1.2055 ± 0.23 ND ND
64 C9H16O2 2-nonenoic acid 0.9751 ± 0.02 ND ND
65 C4H6O4 Succinic acid ND 1.0831 ± 0.04 0.9740 ± 0.09
66 C12H24O2 Lauric acid ND 1.0005 ± 0.03 ND
67 C6H10O2 trans-Hex-2-enoic acid ND 1.0670 ± 0.01 1.8462 ± 0.17

Total 10.5724 5.4931 8.0942

Others
(6)

68 C6H4Cl2 1,3-Dichlorobenzene 1.1040 ± 0.23 0.9509 ± 0.16 ND
69 C6H8O 2-Ethylfuran 1.1188 ± 0.15 0.0010 ± 0.00 0.9898 ± 0.02
70 C5H8O 1-Penten-3-one 1.8548 ± 0.07 0.0020 ± 0.00 1.6495 ± 0.08
71 C13H20O β-ionone 0.9661 ± 0.01 ND ND
72 C6H10S Diallyl sulfide 1.5546 ± 0.13 ND ND
73 C4H6O4S Thiomalic acid ND 2.7241 ± 0.14 ND

Total 6.5983 3.678 2.6393

ND: Not detected
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Figure 5. Changes in the level of flavor compounds in pulp tissues of pepino fruit treated with
UV-C tand control fruit during storage. The median value of the graph is drawn after logarithmic
transformation (log10). The redder the color, the higher the content. GC-MS analysis was conducted
on pulp tissues.

The total content of alcohols in fruits increased with storage time, and the UV-C treat-
ment group had the highest content (Figure 5 and Table 1). The major alcohol compounds
present in all pepino fruit were isoamylol, 1-penten-3-ol, and 3-methylbut-3-en-1-ol, and
ethe level of the first two alcohols was higher in the 1.5 kJ/m2 UV-C treatment group than
it was in the control group as storage time progressed (Figure 5).

Esters are a major aroma component in pepino fruit. The content of esters in fruits
decreased with storage time in the control group, but increased in the UV-C treatment
group. A total of 7 kinds of esters (methyl myristate, ethyl 3-hydroxyhexanoate, methyl



Foods 2021, 10, 2964 12 of 16

5-chloropentanoate, ethyl 4-methylpentanoate, allyl 3-cyclohexylpropionate, nonyl acetate,
and isopropyl dodecanoate) were detected in the 1.5 kJ/m2 UV-C treatment group of fruit
at 28 d of storage but were not detected in the control group. Methyl laurate and ethyl
3-hydroxybutyrate were detected in pepino fruit from both treatment groups after storage
for 28 d, although their levels were higher in the UV-C-treated fruit than the control fruit.

The content of aldehydes in pepino fruit was initially high but decreased in the fruit
of both treatment groups during storage. Notably, however, the UV-C treatment inhibited
the decrease. A total of seven aldehydes were detected over the course of storage: (E)-2-
pentenal, pentanal, heptenal, 2-hexenal, (2E,4E)-2,4-nonadienal, hexanal, and nonanal. UV-
C treatment maintained the level of (2E,4E)-2, 4-nonadienal, heptenal and (2E) -2-nonenal.
Furthermore, some aldehydes, such as Octanal,1, 1-diethoxydecane, and isovaleraldehyde,
were identified in UV-C-treated fruit but not in 0 d and control fruit. Other compounds,
such as 1-hexanoic acid, trans-hex-2-enoic acid, 1-penten-3-one, 2-ethylfuran, thiomalic
acid, etc., were also identified in pepino fruit in our study. The content of these other
compounds, except thiomalic acid, were found to be higher in the UV-C treatment group
than in the control group.

4. Discussion

Pepino fruit are prone to a sharp decrease in sensory quality, firmness, and nutrients,
as well as increased rot, after they are harvested and placed in storage [9,10]. UV-C has been
demonstrated to be and environmentally friendly, effective approach for maintaining the
postharvest quality of harvested produce, reducing chilling injury, and increasing resistance
to biotic and abiotic stresses. UV-C has been demonstrated to maintain flesh firmness,
aroma, color, and nutrients, and reduce decay incidence [20,32–35]. The present study
investigated the effect of UV-C treatment on the postharvest quality of pepino fruit during
storage. Results indicated that a 1.5 kJ/m2 UV-C treatment effectively maintained sensory
quality ratings and fruit firmness, reduced the rate of respiration, and inhibited ethylene
production in stored pepino fruit. Similar results were reported in blueberries [36], cherry
tomatoes [37], strawberries [38], and peaches [39]. Notably, our research indicated that a
2.0 kJ/m2 and 3.0 kJ/m2 UV-C treatment did not have a positive effect on the maintenance
of firmness and sensory quality rankings in stored pepino fruit, whereas the 3.0 kJ/m2

UV-C treatment enhanced the respiration rate of pepino fruit (Figure 2). These results
clearly indicate that it is necessary to determine the optimum dose of UV-C needed to
preserve postharvest quality of a specific fruit or vegetable, prior to advocating its use
as a postharvest management strategy. A dosage effect has also been observed in the
postharvest treatment of nectarine fruit, where 3.0 kJ/m2 effectively managed brown rot,
whereas 6.0 kJ/m2 UV-C treatment increased the occurrence of brown rot [40].

UV-C treatment can have a positive effect on the metabolic parameters of harvested
produce, such as the respiration rate and ethylene production, but can also have a positive
influence on nutritional quality [13]. Ripe pepino fruit are abundant in monosaccharides,
which are the main contributors to TSS [5]. TSS is the most common indicator of fruit
flavor [41]. The yellowing of green produce due to the degradation of chlorophyll is
also a major postharvest problem in some fruit [35]. Our study indicated that UV-C
treatment of pepino fruit can inhibit the loss of TSS and chlorophyll during storage. These
findings are consistent with the results found in blueberry [42], grapefruit [34], and leafy
vegetables [43]. Vitamin C and phenolics are primary nutrients in fresh fruit, which
enable fruit and vegetables to have a beneficial effect on human health, but also play an
important role in the non-enzymatic antioxidant system of plants, which is responsible for
detoxifying reactive oxygen species (ROS) in cells [35]. Previous studies have found that UV-
C treatment increases the content of antioxidants, including phenolic compounds, Vitamin
C, and carotenoids in grapes, button mushrooms, and other fruits and vegetables [34,44].
The same effect was also found in our study. Namely, UV-C treatment of pepino fruit
resulted in the maintenance of higher levels of vitamin C, anthocyanin, flavonoids, and
total phenolics at the end of 28 d of storage, relative to untreated, control fruit.
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ROS is a primary contributor to the senescence of fruit and vegetables and causes
oxidative damage to proteins and lipids in plant cells. Therefore, controlling ROS produc-
tion and accumulation is an important strategy for delaying the senescence of fruit and
vegetables during postharvest storage [39]. MDA is a by-product of lipid peroxidation
and serves as a good indicator of the degree of oxidative stress and membrane structural
integrity in plants [45]. Results of our study demonstrated that the prescribed UV-C treat-
ment (1.5 kJ/m2 UV-C) decreased MDA levels in pepino tissues. These results indicate
that the prescribed UV-C treatment of harvested pepino may help to maintain membrane
integrity and reduce ROS damage.

In addition to the non-enzymatic antioxidant system, an enzymatic antioxidant system,
comprising POD, APX, CAT, etc., exists in plants and is responsible for detoxifying ROS [26].
Our study demonstrated that UV-C treatment can enhance the enzymatic antioxidant
system in pepino fruit, including POD, APX, and CAT activity. The enhancement of the
antioxidant system in stored pepino fruit helped to maintain ROS homeostasis and, thereby,
potentially, increase disease resistance. UV-C treatment of mangoes [46], peaches [39],
bananas [47], and other fruit has also been reported to increase disease resistance by
enhancing the antioxidant system in fruit tissues, thereby regulating the metabolism of
ROS, and maintaining ROS homeostasis in cells.

In addition to the nutritional quality of fruit, the composition and content of aroma-
and flavor-related components are also important fruit quality traits [48] and are used to
evaluate fruit storage durability [49]. Previous studies have shown that UV-C treatment
can maintain the flavor of melon [50] and peach fruit [51]. The aroma of pepino fruit
is green, fresh, sweet, and pleasant, and reminiscent of melon and mango fruit [6]. In
our study, the ten sensors of the E-nose indicated that ethanol, oxynitride, and sulfur
compounds in pepino fruit changed with storage time, and that UV-C contributed to the
maintenance of the aroma found in fresh pepino fruit. Importantly, the results obtained
with the E-nose were similar to those obtained using HS-GC-MS analysis. Alcohols, esters,
and aldehydes are considered the most important aromatic compounds contributing to
the perception of the aroma of fresh fruit [52]. Alcohol compounds, such as 3-methyl-2-
buten-1-ol (also known as prenol), 3-methyl-3-buten-1-ol, and (Z)-6-non-1-ol, have been
reported to be associated with the fresh taste of pepino and cucumber fruit [5,6,53]. The
UV-C treatment, however, did not significantly increase the content of these compounds,
possibly because the UV-C treatment may maintain the aroma of fruits by promoting the
synthesis of other aromatic alcohols, such as hexanol, 3-methyl-2-Butanol, cis-2-Penten-1-ol,
and others. Rodríguez-Burruezo et al. [54] and Shiota et al. [6] found that C6 and C9
aldehydes contribute to the green odor of fruit, and that esters, primarily nonanal, hexanol,
(2E)-2-nonenal, 2-hexenal,cis-2-nonen-1-ol, and 3-methyl-3-buten-1-yl acetate, are the main
contributors to the peculiar, pleasant odor of pepino fruit. All of these compounds were
detected in our present study. The UV-C treatment only maintained the content of (2E)-2-
nonenal and (2E)-2-nonenal in fruits, but the total content of alcohols, esters, and aldehydes
in fruits was higher than it was in the control group of fruit. A total of eight alcohols, six
esters, and three aldehydes were found to be unique to UV-C treated fruit. We suggest that
UV-C may potentially maintain fruit flavor because UV-C promotes the accumulation of
(2E)-2-nonenal, (2E)-2-nonenal, and the synthesis of other aromatic flavor compounds, thus,
maintaining the total content of flavor compounds in pepino fruit. Notably, in addition
to alcohols, esters, and aldehydes, the level of acid compounds in UV-C-treated fruit
was higher than it was in control fruit at the end of storage. Wang et al. [55] reported
that the formation of aldehydes in fruit is due to the automatic oxidation of unsaturated
fatty acids. Lalel et al. [56] reported that carboxylic acids can combine with sugars to
form esters, which increase the aroma of fruit and vegetables. Thus, we speculate that
UV-C treatment maintains the levels of acids, aldehydes, and ester compounds in fruit,
whereas at the same time, it promotes the synthesis of a large amount of alcohol and acid
compounds that are converted to aldehyde compounds and ester compounds, respectively.
These enhancements result in the maintenance of fruit flavor and quality during storage.
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Furthermore, Chen et al. [17] found that ketones and some furans represent fruit flavor
enhancers. Our results also indicated that the prescribed UV-C treatment of pepino fruit
maintained the level of 1-penten-3-one and 2-ethylfuran, which presumably contributed to
the maintenance of the aroma of pepino fruit aroma during storage. In summary, 1.5 kJ/m2

UV-C treatment contributed to the maintenance of the flavor and aroma of pepino fruit
during storage.

5. Conclusions

Results of the present study indicate that a 1.5 kJ/m2 dose of UV-C irradiation ad-
ministered to harvested pepino fruit had a positive effect on the maintenance of sensory
quality, antioxidant activity, and flavor quality during postharvest storage. The 1.5 kJ/m2

UV-C treatment effectively delayed fruit senescence, maintained fruit firmness, reduced
the respiration rate, inhibited ethylene production, and maintained the nutritional quality
of pepino fruit in storage. The prescribed UV-C treatment also reduced ROS damage
by increasing the level of antioxidant compounds and antioxidant enzyme activity, and
reducing MDA levels. Collectively, our results indicate that a 1.5 kJ/m2 UV-C treatment
can be used as an effective method to maintain the quality of pepino fruit during storage.
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