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Objective: During effective antiretroviral therapy (ART), low-level plasma viremias
(LLV) (HIV RNA>30–1000 copies/ml) can be detected intermittently. We hypothesized
that systemic inflammation is associated with LLV either as the cause or result of the
production of virions from clonally expanded cells.

Methods: Prospective cohort study of HIV-infected ART-naive Peruvians enrolled prior
to ART and followed for 2 years. Plasma HIV RNA and peripheral blood mononuclear cell
(PBMC) HIV DNA concentrations were quantified pre-ART from individuals whose
plasma HIV RNA was ART-suppressed. Inflammatory biomarker concentrations were
measured pre and during ART. Single-genome amplification (SGA) derived HIV env and
pol genotypes from pre-ARTand LLVspecimens.Antiretroviral levels during ART assessed
adherence. Statistical associations and phylogenetic relationships were examined.

Results: Among 82 participants with median plasma HIV RNA less than 30 copies/ml,
LLV were detected in 33 of 82 (40%), with a LLV median HIV RNA of 73 copies/ml.
Participants with vs. without LLV had significantly higher pre-ART plasma HIV RNA
(P<0.001) and PBMC HIV DNA (P<0.007); but, during ART, their antiretroviral drug
levels were similar. LLV env sequences were monotypic in 17 of 28 (61%) and diverse in
11 of 28 (39%) participants. Those with the monotypic vs. diverse LLV pattern had
elevated hsCRP and sCD163 (P¼0.004) and LLV with more X4 variants (P¼0.02).

Conclusion: In individuals with monotypic LLV sequences, higher levels of pre-ART
HIV DNA and RNA, systemic inflammation and X4 viruses suggest an interaction
between inflammation and the production of virions from proliferating infected cells,
and that naı̈ve T cells may be a source of LLV.
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Introduction
Transient low-level HIV type-1 (HIV) plasma viremias
(LLV; 30–1000 RNA copies/ml) can be detected in a
subset of participants during antiretroviral therapy (ART)
that otherwise suppresses HIV replication to below the
limits of detection by commercial assays [1–4]. LLV have
been associated with low pretreatment CD4þ T-cell
nadirs [5,6] and higher pretreatment plasma HIV RNA
loads [1,7,8]. During ART, LLV have been linked to
microbial translocation and inflammation [4,9], and in
some cases to poor adherence to ART [7,10,11]. The
causes and clinical significance of LLV remain controver-
sial because at least two processes appear to contribute to
this phenomenon [10,12]. First, the detection of multiple
identical HIV sequences in a LLV plasma from an
individual who initiates ART after viral diversification
suggests synchronous production of virions from a clone
of infected cells [13,14]. Second, the detection of multiple
LLV HIV sequences that show time-ordered evolution in
phylogenetic analyses and/or selection of novel resistance
mutations suggests full cycles of HIV replication [10,15].

The current study was undertaken to further explore
potential mechanisms causing LLV, as these appear to
constitute a viral reservoir that persists during effective
ART. We hypothesized a linkage between systemic
inflammation and production of virions from clones of
HIV-infected cells detected as identical LLV sequences
in plasma.
Methods

Study design
HIV-infected ART-naive men and women initiating a
nonnucleoside reverse transcriptase inhibitor (NNRTI)-
based ARTregimen at Hospital Nacional Dos de Mayo in
Lima, Peru enrolled in a 24-month observational study
after written informed consent, as approved by Institu-
tional Review Boards [16]. Plasma HIV RNA was
quantified prior to treatment initiation, and thereafter
quarterly. LLV were defined as plasma HIV RNA 30–
1000 copies/ml after at least one specimen following
ART initiation tested less than 30 copies/ml. Virologic
failure was defined as viremia greater than 1000 copies/ml
at two consecutive time-points.

Among participants with ART suppression (median
plasma HIV RNA <30 copies/ml) during the study, the
pre-ART plasma HIV RNA, peripheral blood mononu-
clear cell (PBMC) HIV DNA, and biomarkers of
inflammation were compared between those with and
without LLV, and within participants at time-points with
and without LLV. HIV env and pol sequences derived from
LLV were assessed in phylogenetic analyses for diversity
and divergence compared with pre-ART plasma and
PBMC sequences, and for drug-resistance mutations.
Adherence to ART was assessed by participants’ recall
using questionnaires and by measuring nevirapine (NVP)
concentrations, as most participants’ therapy included
this antiretroviral, which has a relatively long half-life.
Potential drug–drug interactions between NVP and
rifampin, the latter given to treat suspected or proven
disease because of Mycobacterium tuberculosis (MTB), were
assessed by review of the medication logs recorded at each
study visit.

HIV RNA and DNA quantification in plasma and
single genome amplification of HIV env and pol
Plasma HIV RNA was quantified in duplicate from each
specimen using a CLIA-compliant in-house real-time gag
reverse transcription-PCR with a lower limit of
quantification (LLQ) of 30 copies/ml [17,18]. Detection
of RNA between 1 and 29 copies/ml was designated as
below LLQ (BLLQ), and if no RNA was detected as
‘target not detected’ (TND). HIV RNA quantification
was performed in the UW Retrovirology Laboratory
certified by the College of American Pathologists and the
US National Institutes of Health’s Virology Quality
Assurance (VQA) Program. Participants with ART
suppression were categorized as (þ) or (�) for detection
of LLV, as defined above. HIV RNA and cell-free HIV
DNA in plasma or serum (167 ml) were quantified by RT-
PCR; HIV DNA was measured in LLV to determine
whether it contributed to detection of HIV RNA. HIV
DNA was quantified in PBMC before and during ART
by a real-time PCR that amplifies a region of the LTR-gag
with reproducible detection of 10 c per PCR [19].

To evaluate the genotypes of HIV env C2-V5 and a region
of pol encoding protease and reverse transcriptase, cDNA
from LLV and pre-ART plasma and PBMC DNA were
diluted to single copy [20], followed by SGA and direct
sequencing [10]. SGA sequences were aligned using the
MUSCLE algorithm in Geneious (BioMatters, Newark,
New Jersey, USA), with maximum likelihood trees
generated using PhyML in DIVEIN [18]. Phylogenetic
patterns of HIV env and pol sequences were defined for
analysis as: monotypic, if 50–100% of their LLV
sequences derived by SGA were identical to other
sequences from the specimen; or diverse, if less than 50%
of sequences were monotypic. Co-receptor usage of viral
variants were predicted using a position-specific scoring
matrix (PSSM) of the HIV env V3 loop (https://
indra.mullins.microbiol.washington.edu/webpssm/) for
Clade B viruses, the dominant strain in Peru, using the
X4R5 matrix [21]. Sequences were submitted to
GenBank (accession numbers: KU740361-KU743103)
and the phylogenetic trees for entire data set are available
upon request.

Biomarkers of inflammation
Plasma biomarkers of inflammation [high-sensitivity
C-reactive protein (hsCRP) and interleukin (IL)-6],

https://indra.mullins.microbiol.washington.edu/webpssm/
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and of T-cell proliferation [soluble CD25 (sCD25)] [22],
monocyte/macrophage activation (soluble CD163
(sCD163), soluble CD14 (sCD14) [23,24], soluble tumor
necrosis factor-two (sTNFR-2) and soluble vascular
cellular adhesion molecule-1 (sVCAM-1)] were deter-
mined by ELISA [25].
Quantification of nevirapine levels in plasma
Nevirapine was protein precipitated from plasma using
acetonitrile (AcN) containing an internal standard
nevirapine-d4 (NVP-d4). An aliquot of the supernatant
was diluted with 0.5% trifluoroacetic acid to maintain
signal intensity within the linear range of the instru-
ment. Reversed phase chromatographic separation
was performed on an XBridge C18 analytical column
(2.1� 50 mm, 3.5 mm) under isocratic conditions. A
binary mobile phase consisting of 0.1% formic acid
in water and 0.1% formic acid in acetonitrile (72 : 28)
was used and provided adequate separation. Detection
and quantitation was achieved by multiple reaction
monitoring (MRM); NVP and the NVP-d4 internal
standard were detected using the following transi-
tions for protonated molecular products [MþH]þ:
m/z NVP 267.0 >107.0; m/z NVP-d4 271.2 >227.9.
This assay was developed to have a dynamic range
of 5–5000 ng/ml NVP using a 20 ml sample of human
plasma. NVP concentrations above 3000 ng/ml were
considered the threshold for adequate adherence
[26,27].
Statistical analysis
Wilcoxon two-sample test (Stata SE V12.1; StataCorp,
College Station, Texas, USA) was used to compare pre-
ART plasma HIV RNA, PBMC HIV DNA, and
biomarkers of inflammation between participants with
and without LLV during ART; within participants at
time-points when LLV were and were not detected; and
between participants with monotypic vs. more diverse
LLV sequences during ART. A Fisher’s exact test was used
to compare: the proportion of participants receiving
rifampin with vs. without LLV; the proportion of
participants with vs. without CXCR4-co-receptor-
utilizing (X4) variants; and the proportion of X4 variants
within participants’ pre-ART PBMC or plasma vs. LLV,
both overall and within phylogenetic patterns. Paired t
tests were used to compare HIV env divergence of LLV
sequences from pre-ART PBMC and plasma (Graph Pad
QuickCalcs, La Jolla, California, USA). A Wilcoxon–
Mann–Whitney test compared: a) across participants
with vs. without LLV biomarkers of inflammation/
immune activation and log10 transformed NVP con-
centrations and b) within participants with LLV at time-
points when plasma HIV RNA was vs. was not detected
biomarker concentrations and log10 transformed NVP
concentrations [28].
Results

Clinical and immunologic factors and nevirapine
levels associated with detection of low-level
viremia
One hundred and twenty-six ART-naive participants
enrolled and were followed from 2007 to 2011 (Fig. 1).
ART constituted of NVP or efavirenz (EFV), lamivudine
(3TC) with zidovudine or stavudine (d4T) was initiated
after enrollment [16]. HIV replication was ART-
suppressed in 82 of 89 (92%) participants completing
the 24-month study.

Analysis by participant found at least one LLV in 33 of 82
(40%) participants and no LLV in 49 of 82 (60%) (Fig. 1);
the prevalence of LLV was greater in men (24/48, 50%)
compared with women (9/34, 26%; P¼ 0.04). The
detection of plasma HIV RNA BLLQ was similar in
participants with vs. without LLV [17/33 (52%) vs. 18/49
(37%), respectively]. A total of 49 LLV episodes were
detected with a median HIV RNA of 73 copies/ml
(IQR: 40–139). HIV DNA was detected in two of 49
(4%) LLV specimens at 8 and 17 copies/ml in specimens
with HIV RNA measurements of 94 and 310 copies/
ml, respectively.

Pre-ART parameters were compared among the 82
participants who completed the study with ART
suppression by whether LLV were detected. Those with
vs. without LLV had similar pre-ART CD4þ T-cell
counts and biomarkers of inflammation/immune activa-
tion (Table 1). However, those with LLV had higher pre-
ART plasma HIV RNA (P< 0.001) and PBMC HIV
DNA concentrations (P¼ 0.007; Table 1). In participants
with one (n¼ 17) vs. greater than one (n¼ 16) LLV, there
were similar pre-ART plasma viral loads, PBMC HIV
DNA loads, and biomarkers of inflammation concentra-
tions. Within each sex, pre-ART characteristics of those
with vs. without LLV were similar, regardless of the
number of LLV (data not shown). The participants who
were lost to follow-up (LTFU) had similar pre-ART
CD4þT-cell counts compared with 82 who were studied,
but the former had lower pre-ART plasma HIV RNA
concentrations (median log10 copies/ml 5.1, IQR: 4.7–
5.3 vs. 5.4, IQR: 4.9–5.9, respectively; P¼ 0.008).

During ART, self-reported adherence was similar in those
with vs. without LLV. NVP concentrations (matched for
the study month) were similar between those with vs.
without LLV when the former’s plasma viral load was
suppressed (median 6581, IQR: 5090–7800 vs. 5872,
IQR: 4733–7002 ng/ml, P¼ 0.15), and at the time of
their LLV (median 6516, IQR: 5439–8456 ng/ml;
P¼ 0.09; Supplemental Figure 1, http://links.lww.
com/QAD/B261). Among participants with LLV,
NVP concentrations were similar at time-points when
LLV were vs. were not detected, and similar in
participants with 1 vs. more than one LLV (data not

http://links.lww.com/QAD/B261
http://links.lww.com/QAD/B261
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126 ART-naïve initiated 
nevirapine-based ART

56 women

• 22 excluded 
• 14 LTFU
• 3 Died
• 5 HIV plasma RNA 
>500 copies/mL

70 men

• 22 excluded
• 13 LTFU
• 7 Died
• 2 HIV plasma RNA      

>500 copies/mL

34 with plasma HIV RNA confirmed 
< 30 copies/mL during ART

48 with plasma HIV RNA confirmed   
< 30 copies/mL during ART

9 with 
LLV

25 with 
no LLV

24 with  
LLV

24 with 
no LLV

Fig. 1. Study schema of 126 HIV-infected antiretroviral therapy-naive adult participants with AIDS-defining illness or a CD4R

T-lymphocytes less than 250 cells/ml enrolled in this observational cohort study in Lima, Peru. Forty-four participants (22 women
and 22 men) were excluded from the current analysis because of lost to follow-up (LTFU), death or virologic failure (plasma HIV
RNA>1000 copies/ml). Eighty-two of 126 participants who initiated first-line nonnucleoside reverse transcriptase (NNRTI) based-
ART completed the 2-year study with their plasma HIV RNA suppressed to a median of less than 30 copies/ml. During 2 years of
suppressive ART, low-level viremias (LLV), defined as HIV RNA between 30 and 1000 copies/ml, were detected in 33 of 82 (40%)
of ART-suppressed participants at a median 73 copies/ml (IQR: 40–139). ART, antiretroviral therapy.
shown). NVP concentrations were evaluated in 23
participants with vs. 32 without any LLV detected
during the study. In persons with LLV detected, sub-
therapeutic (<3000 ng/ml) [26,27] NVP concentrations
were found in one (33 ng/ml) of 20 specimens at the time
of the LLV, and in two of 49 specimens (2859 ng/ml and
‘below the limit of quantification’) at time-points when
their plasma HIV RNA was less than 30 copies/ml.
Among participants without any LLV detected during
the study, four of 47 specimens had sub-therapeutic
concentrations (1258, 2564, 2618 and 2656 ng/ml,).
Rifampin was reported at enrollment in six of 82 (7%)
participants, including three with co-administration with
NVP. These three participants had NVP levels deter-
mined, one had a sub-therapeutic plasma NVP concen-
tration of 2564 ng/ml, but none had LLV detected at any
time-point.
Table 1. Comparison of entry (preantiretroviral therapy) parameters betw

Participants
medians (

Total number of visits (includes enrollment) 9 (9
Plasma HIV-1 RNA log10 (copies/ml) 5.1 (4.8
PBMC HIV DNA (copies/1�106 cells) 1440 (50
CD4þ lymphocytes (cells/ml) 133 (43
High sensitivity C-reactive protein (mg/l) 2.9 (0.9
Interleukin-6 (pg/ml)c 3.5 (2.1
Soluble CD14 (ng/ml)c 3456 (31
Soluble CD25 (pg/ml)c 2584 (17
Soluble CD163 (ng/ml)c 2663 (17
Soluble tumor necrosis factor receptor-2 (pg/ml)c 4720 (43
Soluble vascular cell adhesion molecule-1 (pg/ml)c 1860 (13

ART, antiretroviral therapy; LLV, low-level viremia; PBMC, peripheral blo
aParticipants with all plasma HIV RNA less than 30 copies/ml during ART
bCompared using a Wilcoxon two-sample test P<0.05 (in bold) were not
cCytokines available from n¼44/49 without LLV and 33/33 with LLV.
Sequence patterns of HIV env in low-level
viremia
Single-genome HIV sequences were derived from the
plasma of 28 of 33 (85%) participants with LLV, as well as
their pre-ART plasma and PBMC; all with Clade B
viruses. However, we were unable to amplify env
sequences from one participant and pol from another of
the 28.

The median number of env sequences generated from
each specimen was: 16 (IQR: 10–26) from each of 44 of
49 LLV (5 specimens yielded no amplicons); 14 (IQR: 8–
17) from four of four BLLQ, and 18 (IQR: 15–20) from
pre-ART PBMC and plasma. Phylogenetic analyses of
participants’ LLV env and pol sequences found: all or
predominantly monotypic sequences (median 81%
identical sequences) in 16 of 28 (57%) participants
een participants with versus without low-level viremias.

without LLVa,
IQR), n¼49

Participants with LLV,
medians (IQR), n¼33 P valueb,c

– 9) 9 (8 – 9) 0.090
– 5.6) 5.7 (5.2 – 6.0) <0.001

0 – 2200) 2600 (1070 – 4610) 0.007
– 213) 123 (52 – 205) 0.756
– 10.9) 3.3 (1.2 – 4.9) 0.647
– 6.7) 2.6 (1.8 – 4.3) 0.080

23 – 3867) 3499 (2702 – 4412) 0.945
77 – 3811) 2380 (1159 – 3190) 0.166
81 – 3639) 3311 (2099 – 4446) 0.105
36 – 5000) 4600 (4264 – 5000) 0.992
10–2539) 2045 (1274–2952) 0.754

od mononuclear cell.
.
ed.
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(a)

Fig. 2. Representative phylogenetic trees, divergence, and plasma HIV RNA plots from four of 28 participants who had
sequences generated from plasma low-level viremias (a–c) or viremias below the limit of quantification (d) (month specimens
collected, in parenthesis). LLV sequences from during ART (duration of ART in months) were analyzed with sequences from pre-
ART (month 0) plasma and peripheral blood mononuclear cells (PBMC), with the number of sequences generated indicated in
parentheses for each gene. Two patterns were observed in env and pol sequences from each LLV; a ‘monotypic’ pattern defined by
more than 50% identical LLV sequences or a ‘diverse’ pattern defined by more than 50% genetically diverse LLV env sequences
(Supplemental Figure 2, http://links.lww.com/QAD/B261). The more common monotypic pattern was seen in participant 1 (a),
and suggests that an infected cell clone produced the virions. The diverse pattern seen in participant 2’s (b) env sequences suggests
virions come from multiple infected cells. The LLV env sequences diverged from the most recent common ancestor (MRCA) in only
one participant in the study compared with their pre-ART specimens; this was participant 3 with monotypic X4 LLV sequences (c).
Novel drug-resistance mutations were detected in the pol sequences of three participants (b and d), but drug-resistance and
divergence in pol sequences were not detected together in any participants. Participant 4 (d) did not have LLV detected, but
analysis of a plasma specimen with HIV RNA below the limit of quantification (BLLQ) found monotypic env and pol sequences and
6/6 monotypic pol sequences had V106A and were co-amplified with X4 env sequences. Her plasma HIV RNA remained target not
detected (TND) for the remaining 15 months of the study. In the graphs displaying plasma HIV RNA loads, a small square indicates
when the value was TND and is placed on the line drawn at the limit of quantification (LOQ) (1.48 log10 or 30 copies/ml), and if
BLLQ, this is noted below the square. Sequences were rooted using representative sequences from GenBank (Clade B: B.US.83.RF,
B.US.90.WEAU160, B.FR.83.HXB2, B.US.86.JRFL). The scale bar (horizontal line) indicates the number of substitutions per site.
‘Linked sequences,’ indicates that the env and pol sequences were co-amplified from the same reaction diluted to a single viral
template. The env sequences predicted to use the CXCR4 co-receptor are enclosed in brackets labeled ‘X4’; all other sequences are
predicted to use CCR5 co-receptor. LLV, low-level viremias; BLLQ, below the limit of quantification.
(Fig. 2a, c, d); and genetically diverse sequences in 12 of
28 (43%) participants (Fig. 2b). The magnitude of the
LLV were similar between participants with monotypic
vs. diverse patterns of LLV.
The frequency of HIV env genotypes predicted to use the
X4 co-receptor was higher in LLV compared with pre-
ART plasma and PBMC [LLV: 135/315 (43%) vs. pre-
ART plasma: 8/160 (5%) P< 0.001, and vs. pre-ART

http://links.lww.com/QAD/B261
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PBMC: 46/174 (26%) P< 0.001]. The detection of X4
had a similar prevalence across participants with
monotypic (6/16; 38%) vs. diverse (5/12; 42%) LLV.
However, the frequency of X4 variants was greater in the
combined LLV sequences from participants with the
monotypic vs. diverse LLV pattern [89/183 (49%) vs. 46/
132 (35%), P¼ 0.02].

Whenever compared with pre-ART sequences, LLV env
sequences did not diverge from the MRCA, except in
two participants. One of these participants’divergent LLV
clade had a monotypic pattern, whereas the other’s had a
diverse pattern. Both divergent clades were composed
entirely of X4 variants, which were not detected in the
pre-ART specimens of one participant (Fig. 2c).

HIV pol sequences were derived from 27 of 33 (82%)
participants’ LLV. The median number of pol sequences
generated from each of 44 of 49 LLV plasmas was: 17
(IQR: 10–25), from four of four BLLQ plasmas was 20
(IQR: 6–20), and from each of the 27 participants’ pre-
ART PBMC and plasmas was 16 (IQR: 13–20). The
HIV pol sequences exhibited both the monotypic and
diverse patterns, with the pattern in pol correlating with
that in env in 25 of 26 (96%) participants. Novel drug-
resistance mutations were detected in three of 27 (11%)
participants. Two participants had a single mutant variant
detected, one with V108I in one of 26 (4%) sequences
(data not shown) and another with P225H in one of nine
(11%) LLV sequences (Fig. 2b); both of these LLV had a
diverse pattern. Their NVP concentrations (n¼ 3 each,
including at the time of LLV) were all in the therapeutic
range. The third participant with ‘emergent’ resistance
did not have a LLV; rather she had six monotypic
sequences with V106A derived from a BLLQ during
EFV-based ART; this clade regressed towards the MRCA
compared with pre-ART sequences (Fig. 2d). Low-level
viremia pol sequences did not significantly diverge from
the MRCA in any participant compared with their pre-
ART PBMC sequences.

Inflammation and cellular activation
Participants with vs. without LLV had similar pre-ART
concentrations of hsCRP, IL-6, sCD25, sCD163,
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Fig. 2. (Continued).
sTNFR2, and sVCAM-1 (Table 1). During ART, all
biomarkers decreased (P< 0.001), regardless of whether
LLV were or were not detected, except for hsCRP and
sCD14 (Fig. 3). Comparisons of participants’ biomarkers
of inflammation during ART by the LLV env pattern
found that those with monotypic LLV sequences had
elevated sCD163 and hsCRP (P¼ 0.004) at time points
with and without LLV (Fig. 3). In contrast, participants
with diverse LLV env patterns had elevated sCD14
concentrations (P¼ 0.004) at times when LLV were
detected (Fig. 3).
Discussion

The current study contributes novel and confirmatory
findings to our understanding of the mechanisms leading
to LLV. Aspects of our data confirm previous findings,
including that LLV were more prevalent among
participants with higher pre-ART plasma HIV RNA
[29–35] and HIV DNA concentrations [30], overall LLV
were not associated with poor adherence or low plasma
concentrations of NVP [3,34,36], and two phylogenetic
HIV env sequence patterns (monotypic vs. diverse
sequences) were observed as previously reported [10],
although, participants with the diverse LLV pattern in this
study did not have genotypic findings supportive of virus
replication as in our previous study. Novel observations
include: an increased frequency of X4 variants in LLV
compared with their pre-ART plasma and PBMC, with
enrichment of X4 variants evident in LLV of participants
with the monotypic but not those with the diverse LLV
pattern; and distinct cytokine profiles between partici-
pants with the monotypic vs. diverse LLV pattern, which
suggests two different mechanisms or cell types might
produce LLV.

Previously, evidence suggested that LLV result from two
processes. Ours [10,18,37] and others observations
[3,5,10,12,38] found that LLV sequences were predomi-
nately monotypic [3,5,10,12,14,38]. Monotypic HIV env
sequences without divergence and pol sequences without
novel drug resistance mutations [3,10,12,37–40] were
linked to multiple identical integration sites, which
suggests that monotypic virions are produced by infected
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Fig. 2. (Continued).
cell clones [14,38]. Less frequently, LLV, usually with
diverse sequences, clearly came from multiple full cycles
of HIV replication with accumulation of multiple new
drug-resistant variants and with increasing HIV sequence
divergence [10]. However, the viral replication in the
latter and other studies often did not result in virologic
failure within the timeframe of the study [10,12,39,40].

The current study and those of others [8,41–43] found
that LLVare more prevalent in individuals with larger vs.
smaller HIV DNA loads, suggesting that a larger proviral
reservoir when stimulated to transcribe DNA generates a
quantity of virions that rises above the limit of detection
to produce LLV [41–43]. Repeated detection of
monotypic viruses over months or years suggests that
virions are produced from an activated HIV-infected cell
clone [3,5,10,12,37,44]. In this study, participants were
antiretroviral-naive, and whereas short-lived episodes of
HIV replication most likely occurred on rare occasions,
no participant with monotypic or the diverse LLV pattern
showed convincing evidence of ongoing low-level virus
replication.
Viral replication with sequence divergence would be
expected to occur if antiretroviral concentrations were
below the inhibitory concentration. Although in this
study, a few participants with LLV had low-antiretroviral
concentrations, HIV env divergence was observed in only
two participants, one with therapeutic NVP levels and the
second prescribed atazanavir-based ART. The divergent
LLV clades in these two participants were constituted
entirely of X4 sequences. Their pol sequences were
monotypic, and did not diverge or encode drug-resistant
variants. Thus, the combined data from these participants
do not support viral replication. In this study, the virions
forming the two divergent LLV clades may have been
produced from archived clones without full cycles of
virus replication.

Novel drug-resistance mutations were detected infre-
quently in LLV in this study, which agrees with other
studies [2,3,10,12,39]. Also, the drug-resistance muta-
tions detected in our participants (V106A, V108I,
P225H) are not those typically associated with virologic
failure of NNRTI-based ART regimens (i.e. K103N,
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Fig. 3. Concentrations of biomarkers of inflammation and cellular determined before and during antiretroviral therapy,
including comparisons between participants with monotypic low-level viremia compared with those with diverse low-level
viremia. Concentrations of biomarkers of inflammation (a, hsCRP, IL-6, sTNFR-2, and VCAM-1) and cellular activation (b, sCD14,
sCD25, and sCD163) were measured in the plasma prior to starting ART and during ART at visits with and without LLV and grouped
by phylogenetic pattern. After initiating ART, biomarkers of inflammation and cellular activation significantly decreased
(P<0.001) across phylogenetic patterns, except for hsCRP and sCD14, which did not decrease in either pattern. During
ART, concentrations of hsCRP and sCD163 were elevated in participants with the monotypic LLV pattern compared with
participants with diverse LLV pattern. In contrast, elevated sCD14 concentrations were observed in participants with the diverse
LLV pattern. (Note: a Bonferroni correction for multiple comparisons results in significance defined as P�0.007.) ART,
antiretroviral therapy; LLV, low-level viremia.
Y181C, M184V, and/or G190A [45]) and were not in
HIV pol clades with divergence. Both V108I and P225H
were detected in LLV with therapeutic NVP concentra-
tions. The BLLQ plasma from one participant on EFV-
based ART yielded six identical sequences with V106A
that confers high-level resistance, but these sequences
regressed towards the MRCA, which is inconsistent with
ongoing viral replication. Thus, although data from
several participants include elements suggestive of HIV
replication, in no instance were findings conclusive. It is
possible that the three drug-resistant variants detected
resulted from random mutations that occurred in the
participants prior to ART, or in the two participants with
only one mutant sequence that these were generated in
the laboratory during reverse transcription of plasma.

Plasma antiretroviral concentrations have infrequently
been assessed in conjunction with LLV [3,34,36,46]. In
agreement with our study, most LLV are not associated
with decreased antiretroviral concentrations [3,34,36],
although in one study, a sensitivity analysis found a
modest association [46]. Co-administration of rifampin
and NVP can diminish NVP concentrations because of
activation of hepatic enzymes [47]. Our study was not
well suited to evaluate this effect, as rifampin was
co-administered with NVP in only three participants.
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Suboptimal antiretroviral concentrations at times of LLV
have been reported from other studies [48–50], suggest-
ing that poor-adherence or drug–drug interactions could
be a cause of LLV. However, given the generally
therapeutic levels in our study, this was not likely a
cause of LLV. Thus, the persistent monotypic LLV and
perhaps the diverse LLV observed in our study are likely
distinct from those associated with sub-therapeutic
antiretroviral levels, suggesting multiple processes can
result in LLV.

Our observation of elevated hsCRP and sCD163 in
participants with monotypic LLVenv sequences reinforces
previous studies associating inflammation with LLV [5].
Our finding of a different cytokine pattern, with elevated
sCD14, in participants with diverse HIV env sequences
combined with our observation that LLV were not
associated with lower antiretroviral levels suggests that
different inflammatory pathways may be associated
with monotypic vs. diverse LLV. Alternatively, these
different genotypic patterns may reflect differences in
the cell populations or the genes harboring individuals’
proviruses.

Given our and others’ observations that inflammatory
cytokines decrease after initiation of ART [25,51–56], it
seems logical that viral antigens could cause inflammation
and promote cellular proliferation [5,10], or vice-versa, in
a potentially cyclic interaction. Previous studies associated
sCD163 with CD4þ T-cell activation (by expression of
CD38þ and HLA-DRþ) [57,58] and monocyte/
macrophage activation [59]. We speculate that systemic
inflammation (elevated hsCRP) and activated monocyte/
macrophages (elevated sCD163) may drive proliferation
of HIV-infected CD4þ T cells resulting in production of
monotypic LLV [5,10,38,40,58]. Among our participants
with diverse LLV, the elevated sCD14 concentrations, a
marker of microbial translocation [60], could activate
virion production from multiple infected clones across
intestinal lymphoid aggregates, consistent with others
findings [61–63].

Our novel observation of a high frequency of X4 variants
in LLV with the monotypic pattern suggests a selective
advantage for the clones producing these variants. Of
interest, is that not only do these clones persist,
proliferate, and produce LLV during ART-suppression
[44,64,65], but apparently without being targeted for
destruction by the immune system.

The observation that X4 variants were enriched in LLV
compared with pre-ART specimens, with a higher
proportion notable in those with monotypic LLV pattern,
suggests that cells harboring these variants may be more
prone to produce virions. The repeated detection of
monotypic X4 LLV sequences over months of ART
suppression and the increased representation of X4
sequences in LLV compared with their pre-ART
specimens suggest these virions emanate from long-lived
cells. The expression of X4 variants in LLVof participants
in this study may be related to their advanced stage of HIV
disease prior to starting ART [66]. Although a few studies
have evaluated X4 variants in LLV [44,64], these studies
did not detect X4 variants in monotypic LLV clades,
possibly because participants began ART in earlier stages
of HIV infection when X4 variants are less frequent
[5,62]. However, expansion of cell-associated HIV X4
variants during suppressive ART has been noted by others
[64,65]. The disproportionate detection of X4 variants in
monotypic LLV in this study combined with elevated
sCD163 suggests that activated naive T cells [67], tissue
macrophages, or possibly monocytes [12,68,69], all with
variable expression of CXCR4 [70,71], could be a source
of these LLV.

Our study population was limited in size; however, the
number of participants and the number of LLV sequences
evaluated were larger than previous reports [3,10,12,38].
Plasma HIV RNA was measured quarterly in our study,
which likely limited the detection of LLV, or biased
detection towards individuals with more frequent LLV.
This study is unique in evaluating whether HIV DNA
from lysed cells may be misperceived as plasma HIV
RNA. Notably HIV DNA was detected rarely in plasma
from our participants and only at low levels suggesting
that LLV sequences were primarily from HIV RNA.

Among individuals in our study, nearly all with
therapeutic NVP concentrations, the observed associa-
tions of intermittent LLV with larger pre-ART HIV
DNA reservoirs and with two patterns of inflammation
(i.e. elevated hsCRP and sCD163 with monotypic and
elevated sCD14 with diverse LLV genotypes) suggests
multiple inflammatory pathways are linked to infected
cell proliferation with production of virions. The
increased X4 variants among participants with monotypic
LLV compared with those with diverse LLV suggests that
naive T cells may be a source of LLV [44,70]. These
findings combined with the linkage of monotypic LLV
sequences with clones of infected cells actively producing
viruses in other studies [14,38] suggest that the cells
producing these LLV may not be eliminated by immune
surveillance either because these virions harbor escape
mutations [72,73], because of immune exhaustion [74] or
other phenomenon [75], and suggest that naive T cells or
macrophages may be a relevant source of LLV.
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