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Glioblastoma multiforme (GBM) (grade IV astrocytoma) has been assumed to be the most fatal type of glioma with low survival
and high recurrence rates, even after prompt surgical removal and aggressive courses of treatment. Transcriptional
reprogramming to stem cell-like state could explain some of the deregulated molecular signatures in GBM disease. The present
study aimed to quantify the expression profiling of longevity-related transcriptional factors SOX2, OCT3/4, and NANOG to
evaluate their diagnostic and performance values in high-grade gliomas. Forty-four specimens were obtained from glioblastoma
patients (10 females and 34 males). Quantitative real-time polymerase chain reaction was applied for relative gene expression
quantification. In silico network analysis was executed. NANOG and OCT3/4 mRNA expression levels were significantly
downregulated while that of SOX2 was upregulated in cancer compared to noncancer tissues. Receiver operating characteristic
curve analysis showed high diagnostic performance of NANOG and OCT3/4 than SOX2. However, the aberrant expressions of
the genes studied were not associated with the prognostic variables in the current population. In conclusion, the current study
highlighted the aberrant expression of certain longevity-associated transcription factors in glioblastoma multiforme which may
direct the attention towards new strategies in the treatment of such lethal disease.

1. Introduction

Tumors of the brain were considered one of the ten most
common causes of cancer-related mortality [1]. According
to the World Health Organization (WHO) classification,
the primary brain tumors are categorized into glial tumors
(e.g., glioblastoma, astrocytomas, oligodendroglial tumors,
and ependymal tumors), embryonic tumors (e.g., medullo-
blastomas), tumors of the meninges, tumors of the hemato-
poietic system, and tumors of the sellar region [2]. The

most fatal type of glioma has been reported to be the glioblas-
toma multiforme (GBM) [3] which represents up to 50% of
almost all primary brain gliomas [4] with poor prognosis
[5] and median survival rate of nearly 25 months after treat-
ment [6]. The recurrence of the tumor after prompt surgical
removal despite the aggressive courses of radio- and chemo-
therapy denotes the limited understanding of the disease
biology [7]. Dell’Albani has stated that “new insights into
the causes and the potential treatment of CNS tumors have
come from disclosing relations with genes that regulate cell
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growth, proliferation, differentiation, and death during nor-
mal development” [7]. These genes may represent a new tar-
get for GBM treatment by ameliorating the survival rate and
preventing or minimizing disease recurrence.

Several emerging evidences support the reactivation of
pluripotent transcription factors in many types of cancer
[8-12]. As a normal biological phenomenon, these factors
are expressed in embryonic stem cells (ESCs) and somatic
cells where they imply the self-renewal [13] and the pluripo-
tency characteristics [14]. As cancer development is a multi-
step process in which differentiated cells transform into
immature ones, these factors could participate in cancer
biogenesis and/or progress.

Among these pluripotent transcription factors overex-
pressed in high-grade gliomas are “sex-determining region
Y-Box (SOX2), octamer-binding transcription factor 4
(OCT 4), and Nanog homeobox (NANOG)” [13, 15].

SOX2 gene encodes a transcriptional factor (TF) of 317
amino acids which contains a high-mobility group DNA-
binding domain (Figure 1(a)) [16]. It implicated in embry-
onic development regulation, cell fate determination, and
embryonic stem cell pluripotency. More specifically, it was
reported to control the neural stem cell proliferation and
differentiation into neurons, astrocytes, or oligodendrocytes
[17]. SOX2 is expressed in stem cells of endoderm-derived
organs such as the liver, pancreas, and stomach [18], and
its aberrant expression has been found to support self-
renewal and inhibit neuronal differentiation [19]. Addition-
ally, SOX2 knockout in glioblastoma stem cells isolated from
human glioma tumor inhibits cell proliferation and tumori-
genicity in immunodeficient mice [20].

OCT3/4 is a member of a transcription POU family
(Figure 1(b)) which has to react with other TFs in order
to stimulate or inhibit gene expression [21] in ESCs
through heterodimerization with SOX2. It was implicated
in embryonic development regulation, cell fate determina-
tion, and embryonic stem cell pluripotency [22]. Finally,
NANOG (Figure 1(c)) is involved in gene regulation with
the aforementioned two transcription factors through their
binding to the promoters of several genes which mediates
the pluripotency, inhibits embryonic stem cell differentia-
tion, and autorepresses its own expression in differentiating
cells [22]. It has been found to be localized mainly in the
nuclei of high-grade glioma cells than lower grades [15].
Despite the fact that OCT3/4 and NANOG have shown a
direct relationship with the tumor grade, their oncogenic
nature in brain tumorigenesis has not been established
yet [23].

Up to our knowledge, there were no previous studies
that relate the expression of the aforementioned longevity-
related transcription factors in GBM patients among the
Arab population. Hence, the present study for the first time
aimed to quantify the expression levels of these markers in
GBM sample of Egyptian patients and to correlate their
expressions with the available clincopathological features.
A thorough understanding of the relevance of each bio-
marker in GBM will be in need not only for reliable diagno-
sis of the disease but also to participate in future drug design
for this fetal tumor.
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2. Materials and Methods

2.1. Study Participants and Tissue Samples. The current study
included 44 glioblastoma patients (10 females and 34 males,
aged 38 to 62 years) assessed retrospectively from archived
formalin-fixed paraffin-embedded section (FFPE) specimens
of the Pathology Department, Mansoura University Hospi-
tals, Egypt, from 2010 to 2013. They had glioblastoma
multiforme grade 4, subjected to surgical removal and post-
operative irradiation, and followed up for more than 36
months. Specimens were collected before receiving chemo-
therapy or radiotherapy prior to surgery. They were com-
pared to 10 FFPE noncancerous brain specimens obtained
from patients undergoing brain tissue resection for other
reasons collected from the same hospital. Guidelines in the
Declaration of Helsinki were followed, and an approval by
the Medical Research Ethics Committee of Faculty of Medi-
cine, Suez Canal University, was obtained before taking part.
Written informed consent was obtained from all participants
before providing the archived tissue samples as part of their
routine register in our University Teaching Hospitals.

2.2. RNA Extraction. Extraction of total RNA from FFPE
specimens was done using RNeasy FFPE Kit (Qiagen,
52304) according to the protocol of the manufacturer.
RNA concentration and purity were assessed with Nano-
Drop ND-1000 spectrophotometer (NanoDrop Tech. Inc.,
Wilmington, DE, USA), followed by agarose gel electropho-
resis (1%) check for RNA integrity.

2.3. Reverse Transcription (RT). Complementary DNA
(cDNA) was obtained by total RNA conversion using the
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, P/N 4368814) with RT random primers on
T-Professional Basic, Biometra PCR System (Biometra,
Goettingen, Germany), as previously described [12]. Appro-
priate negative and positive controls were included in
each experiment.

2.4. Gene Expression Profiling. The Minimum Information
for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines were followed for the real-time
PCR reactions. Pluripotent gene relative expressions were
assessed using “Universal PCR master mix II, No UNG
(2x)” (TagMan®, Applied Biosystems, P/N 4440043), Taq-
Man assay (Applied Biosystems, assay ID Hs02387400_gl
for NANOG, Hs01053049_s1 for SOX2, and Hs03005111_g
for OCT3/4) and compared to the endogenous control
TATA box binding protein (TBP) (Hs00427620_m1) which
has been proved in our previous work [24] to be uniformly
and stably expressed with no significant difference between
GBM and noncancer tissues for gene expression normaliza-
tion. PCRs were done in 20 yl total volume using “StepOne™
Real-Time PCR System (Applied Biosystems)” as previously
described in details [25].

2.5. Statistical Analysis. Data analysis was done using PC-
ORD ver. 5 software package and Statistical Package for the
Social Sciences (SPSS) for windows software (version 22.0).
Two-tailed statistical tests were used for continuous and
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: Continued.
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FIGURE 1: Structural analysis of the studied longevity-related genes. (a) SOX2 gene (OMIM 184429) location in chromosome 3q26.33. The
complete gene spans 2513 bases of genomic DNA (NC_000003.12; Chr 3: 181,711,924 to 181,714,436, plus strand; human genome
assembly GRCh38). This intronless gene encodes a member of the SRY-related HMG-box family of transcription factors (translation
length: 317 amino acids). SOX2 refers to the primary and predominant transcript of the SOX2 gene. The high-mobility group box domain
amino acid sequence in the SOX2 transcription factor is highlighted by green color and the DNA-binding domain sequences are brown
colored. (b) NANOG gene (OMIM: 607937) location in chromosome 12p13.31. The complete gene spans 11,348 bases of genomic DNA
(NC_000012.12; Chr 12: 7,787,794 to 7,799,141, plus strand). The encoded protein (305 amino acids). (c) OCT3/4 gene (OMIM: 164177)
location in chromosome 6p21.33. The gene spans 1420 bases of genomic DNA (NC_00006.12; genomic coordinates (GRCh38):
6: 31,164,337-31,170,693, minus strand). The gene encodes a transcription factor (360 amino acids) containing a POU-specific
homeodomain (blue amino acid sequences) and DNA-binding domain (brown amino acid sequences). MW: molecular weight;
Da: Dalton; aa: amino acids (data source: http://Genecards.org, http://Ensembl.org and UniProtKB).

categorical variables. Correlation analysis between the vari-
ables was performed via Pearson’s correlation coefficient.
p value<0.05 was considered significant. The fold change
of mRNA expression in each patient cancer tissue relative
to the mean of controls was calculated using Livak method
that depends on the quantitation cycle (C,) value with the
following equation: relative quantity = 2’AA8*1 [26]. The diag-
nostic performance of pluripotent genes was evaluated by
receiver operating characteristic (ROC) analysis. Kaplan-
Meier estimator was generated for survival analysis, and
log-rank test was applied for different Kaplan-Meier curve
(stratified by clinicopathological features) comparisons.
Linear regression analysis using ENTER method was per-
formed to evaluate potential factors affecting the overall
survival of patients. Two-way Hierarchical cluster analysis
was run for exploratory multivariate analysis. Ward’s
method and Euclidean (Pythagorean) were adjusted for

linkage method and distance measure, respectively, with a
beta value of —0.75 to reach the minimum % of chaining.
Principal Component Ordination analysis was used to visual-
ize clustering of patients according to their clinicopathologi-
cal characteristics [27].

3. Results

3.1. Expression Profile of Pluripotent Genes. Baseline clin-
ical features of the study participants are illustrated in
Table 1. Relative expression analyses of pluripotent genes
in brain cancer specimens were compared to TBP. Our
results revealed that the expression levels of NANOG
and OCT3/4 were significantly downregulated (p < 0.001
and =0.001, resp.) while that of SOX2 was significantly
upregulated (p=0.0027) in tumor specimens compared to
noncancer tissues (Figures 2(a) and 2(b)). Both NANOG
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TaBLE 1: Characteristics of GBM patients.

Variables Number (%) or mean + SE
Age
Mean + SE 51.4+0.97
Age categories
35-50y 18 (40.9)
>50y 26 (59.1)
Gender
Female 10 (22.7)
Male 34 (77.3)
Tumor site
Frontal 22 (50)
Frontotemporal 4(9.1)
Temporoparietal 18 (40.9)
Recurrence
Nonrecurrent 36 (81.8)
Recurrent 8 (18.2)
Disease-free survival (months)
Mean + SE 15.1+0.85
Range 6-27
Prolonged DFS (>1Yy) 28 (63.6)
Short DFES (<1Yy) 16 (36.4)
Overall survival (months)
Mean + SE 15.6 +0.86
Range 8-27
High survival (>1y) 30 (68.2)
Low survival (<1y) 14 (31.8)

and OCT3/4 mRNAs showed high diagnostic values as
biomarkers for GBM (AUC=0.886+0.054 and 0.736
+0.078, resp.) (Figure 3).

3.2. Association with Clinicopathological Characteristics and
Survival Analysis. Higher OCT3/4 gene expression was noted
in elder GBM patients (p = 0.036). No statistically significant
association was found with any other parameters (Figure 4).
Correlation analysis revealed moderate correlation between
NANOG and SOX2 gene expression profile (r=0.484, p =
0.023). In addition, elder age of patients was associated
with poor overall survival (OS) (r=-0.479, p=0.024) and
disease-free survival (DFS) (r = —0.481, p = 0.023) (Figure 5).

Linear regression analysis was performed to evaluate
potential factors affecting overall survival of patients. None
of the genes or clinicopathological variables was determined
as a good prognostic marker for patients’ survival in the
study population (Table 2). However, survival analysis in
GBM by log-rank and Tarone-Ware tests showed poor OS
among elder patients (Figure 6 and Table S1).

3.3. Multivariate Analysis. Exploratory multivariate analysis
by principle component and hierarchical cluster analyses
classified patients into 3 groups based on the relative expres-
sion of the combined genes (Figure 7). However, there was no
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FIGURE 2: Expression profile of pluripotent genes in GBM patients
compared to controls. (a) Values are presented as medians and
quartiles of fold change relative to controls. The box defines upper
and lower quartiles (25% and 75%, resp.) and the Whisker bars
indicate upper and lower adjacent limits. TBP was used as an
internal control. Noncancer tissues was set to have a relative
expression value of 1.0. Mann-Whitney U test was used for
comparison. p value <0.05 was considered statistically significant.
(b) Frequency of patients with up- and downregulated genes.

clear demarcation found between patients according to age,
gender, tumor site, and recurrence (Figure S1).

4. Discussion

The presence of a significant heterogeneity in certain types of
solid tumors including GBM is becoming obvious. Hence, it
will be rational to search for and evaluate specific molecular
markers that could assist in diagnosis and/or prognosis of
these tumors and could act as targeted molecular markers
for personalized therapy [7]. Here, we attempted to investi-
gate the presence of a molecular signature of longevity-
related genes (SOX2, NANOG, and OCT3/4) by examining
their mRNA expression in GBM tissues relative to noncancer
tissues. Our analyses revealed that the expression level of
SOX2 was significantly upregulated. This finding was consis-
tent with several independent cohorts [28-30] and in part
with Guo et al,, [13] who detected an overexpression of
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F1GURE 3: Diagnostic performance of pluripotent genes to discriminate between GBM and noncancer samples. NANOG and OCT3/4 showed

high diagnostic values as biomarkers for GBM.

SOX2 mRNA in grade IV gliomas compared to grade II. Of
the three longevity-related factors, SOX2 seems to be the
playmaker in the development of brain tumors [18]. When
overexpressed, it promotes cell cycle progression into S
phase and proliferation [3, 20, 28, 31], which were attenu-
ated by application of SOX2-RNAi (RNA interference)

therapy [32]. At the cellular level, Garros-Regulez et al.
[33] proposed SOX2 upregulation via activation of GBM-
specific signaling pathways that maintain the overexpres-
sion of SOX2 via transforming growth factor-beta (TGF-p3),
Sonic Hedgehog (SHH), epidermal growth factor receptor
(EGFR), and fibroblast growth factor receptor (FGFR)
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F1GURE 5: Correlation matrix between transcriptomic signature and
the clinicopathological features. Pearson’s correlation analysis was
performed and represented as color gradient.

pathways. In addition, SOX2 gene amplification and DNA
promoter hypomethylation have been reported in a group
of GBM patients to expand the mechanism responsible for
SOX2 upregulation [34].

Despite that our in silico analysis revealed that the
expression of the studied stem-related factors has similar
colocalization and physical interactions with each other
[12], they seem to be differentially expressed independently
in the current samples. We found that NANOG and OCT3/
4 were significantly downregulated in GBM tissues. Our
finding might seem contradictory to the stemness role these
pluripotent transcription factors play; however, it is worth
to emphasize that the mechanistic functions of SOX2,
OCT4, and NANOG in cancer cells are a little different in
each stage of tumor progress. Kallas et al. reported high levels
of SOX2, OCT4, and NANOG transcription factor expres-
sions at the beginning of their tested human embryonic stem
cell differentiation. However, on progress of the differentia-
tion process, a decline in OCT4 and NANOG expression
levels was observed, while expression of SOX2 was kept at a
high level [35]. They suggested that the pluripotency is
maintained by a transcriptional network that is harmonized
by the aforementioned core transcription factors. During
differentiation, the epigenetic modifications could play a role
in level modulation of these factors.

The other possible reasons for inconsistency of gene
expression for the three stem cell marker studies could be
sampling bias and/or relatively low expression levels of these
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TABLE 2: Linear regression analysis to determine predictors for survival.

Unstandardized coefficients

Standardized coeflicients

95% confidence interval for B

B Std. error Beta t Sig. Lower bound Upper bound
(Constant) 34.675 10.593 3.273 0.006 11.955 57.395
Age -0.318 0.220 -0.363 —1.448 0.170 -0.790 0.153
Gender —-2.142 3.510 -0.170 -0.610 0.551 -9.671 5.387
Tumor site 0.079 1.498 0.014 0.053 0.959 -3.134 3.292
Recurrence 0.501 3.635 0.036 0.138 0.892 =7.295 8.296
NANOG 0.374 3.095 0.033 0.121 0.905 -6.263 7.011
OCT3/4 —-0.943 1.339 -0.173 -0.705 0.493 -3.815 1.928
SOX2 —-0.085 0.123 -0.214 —-0.691 0.501 —-0.348 0.178
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FIGURE 6: Kaplan-Meier survival curve in GBM patients. Log-rank (Mantel-Cox) test was used for comparison. Statistical significance

at p<0.05.

factors within the individual GBM tissue examined in the
current study [36]. This could be explained by the unique
stem cell signature that has been implied by each tumor
due to the inherent intratumor heterogeneity within GBM
tissues [37-39]. Our multivariate analysis and the hierarchi-
cal cluster analysis confirmed the previous suggestions by

revealing classification of the study population into 3 groups
based on the combined gene expression that confirm a
specific protumorigenic profile. Similar to other combina-
tions of cancer stem cell markers in other types of cancer
[40, 41], previous studies revealed that cancer stem cells
which were isolated using different markers in the same
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FIGURE 7: Multivariate analyses cluster GBM patients according to transcriptomic signature. PC-ORD v5.0 was used for exploratory
multivariate analysis. Data set was profiled by the program. There was no need for transformation as beta diversity was zero and there was
no outlier. (a) Ordination graph by PCO and (b) two-way hierarchical cluster analysis. The following parameters were adjusted: linkage
method; Ward’s method; distance method; Euclidean method; relativizing matrix by column maximum; and matrix coding percentile by
column. Percent chaining=7.38. Clustering identified three patient groups according to their gene expression. The red clade for
overexpression of the three pluripotent genes, the green clade discriminates patients with gene downregulation, and the blue clade has
variable degrees of expression. Two samples (black clade) were out-group from the other clusters.

cancer phenotype had different expression profiles quantified
by real-time PCR. Combined expression analysis might more
accurately identify true cancer stem cells for each type of
cancer [40], including GBM tumors.

Ji et al. reported that unlike normal stem cells, OCT4
could be dispensable for self-renewal, survival, and differen-
tiation of transformed cells. They provided direct evidence
for the functional divergence of OCT4 from the pluripotent
state following the cancer tissue transformation [42]. This
could support the downregulation of this stem-related
marker noted in the current advanced stages of GBM cases.
Additionally, Bradshaw et al. [36] reported low OCT4
relative expressions at the transcription and protein levels
within their FFPE GBM samples. They speculated that the
relatively OCT4-expressing cell low number could indicate
the most primitive stem cell population within GBM which

may possibly bring about the rest of downstream cells within
the GBM tumor. Otherwise, the SOX2 ubiquitous redun-
dancy is more likely to be expressed in the more differenti-
ated cells reflecting its usefulness as a potential progenitor
cell marker within the GBM tissues [36].

In contrast to the finding of Zbinden et al. [43] that
NANOG was essential for GBM tumourigenicity in orthoto-
pic xenografts, we found downregulation of this marker in
the current GBM samples. We speculated that this difference
could be due to either the low NANOG-expressing cell num-
ber within the study samples as mentioned above for the
OCT4 marker or the type of NANOG transcript that has
been quantified by the available quantitative PCR analysis
at the time of the current work which preferentially recog-
nized the varying levels of NANOG expression. As NANOG
is coded by two genes (ie., NANOG and NANOGPS) in
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human, it has been found that NANOGPS is the most
abundantly expressed of the two NANOG-encoding genes
in GBMs, accounting for more than ninety percent of all
NANOG-encoding mRNAs in a number of previously tested
cases [43]. However, future lineage analyses will be required
for unravelling the high NANOG-expressing cell nature
and NANOG expression stability as recommended by the
latter researchers.

Correlating the available clincopathological features
including the survival data of GBM cases with the gene
expression results revealed that poor overall survival and
disease-free survival were found significantly among patients
as reported by previous studies [44, 45]. Despite that GBM
can occur in individuals of any age according to the previous
population-based studies, the median age is nearly above 60
years. Additionally, primary GBMs have been reported to
develop commonly in older individuals (mean, 55 years),
whereas secondary ones were found in middle-aged subjects
(39 year olds) [4].

5. Conclusion

The current study findings highlighted the dysregulated
longevity-related gene expression in GBM Egyptian cases
that could have a potential role in carcinogenesis and
procuration of stemness-like properties in this type of
tumors. The current study could be limited by the rela-
tively small sample size and the fact that all patients have
grade IV gliomas, although this last issue increases the
specificity of the study results that confined to one stage
of GBM. Additional large-scale studies including different
glioma grades are recommended to evaluate the relation
of the studied longevity-related gene expression with differ-
ent WHO grades as well as to confirm their putative role as
diagnostic and/or prognostic biomarkers. These could be an
interesting era for future individualized molecular-targeted
therapy for GBM patients.
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