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Abstract: Fast-growing Chinese fir wood has shortfalls such as loose structure and low strength
because it grows faster than natural trees. Resin impregnation is a great way to increase the strength
of fast-growing fir. However, the resin used for impregnation is a kind of urea-formaldehyde
resin, phenolic formaldehyde resin, melamine formaldehyde resin, and the like, which introduce
harmful substances such as formaldehyde or phenolic into the wood. In this paper, Chinese fir
wood was impregnated with natural shellac polymer, and the effects of impregnation variables on
the mechanical properties of the wood were examined. The increase in strength in compression
perpendicular to grain (SCPG) of wood samples impregnated with 15% shellac solution achieved
a maximum value of 39.01%, but the modulus of rupture (MOR) was slightly reduced. The effects
of the impregnation pressure, time, and their interaction were investigated by the response surface
method (RSM). ANOVA analysis revealed that the impregnation pressure and time and the interaction
between the two seemed to have a significant effect on ∆SCPG. Based on the response face model, the
corresponding optimal parameters obtained are 1.0 MPa and 16.0 min for impregnation pressure and
time, respectively. By impregnating fir wood with the above optimal conditions, the SCPG increased
by 85.78%, whereas the MOR decreased by the least amount.

Keywords: fast-growing Chinese fir; shellac; impregnation; response face method; mechanical
properties

1. Introduction

The Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is a principal coniferous species
in the subtropical regions of China, distributed in 16 subtropical provinces, municipalities,
and autonomous regions in China [1]. The Chinese fir has had a long plantation history for
more than 3000 years in China, according to the historical records [2]. Currently, the national
Chinese fir plantation area is 8.95 × 106 ha, with a stock volume of 6.25 × 108 m3, providing
up to 30% of the logs for China’s timber industry [3,4]. It became China’s most important
commercial timber species due to its fast-growing, high-yielding, straight trunk, uniform
structure with excellent anti-fungi resistance [5,6]. However, some disadvantages, including
loose structure, low strength, and dimensional instability, of fast-growing Chinese fir wood
seriously affect the service performance, limiting its utilization in the form of solid timber
in engineering constructions, such as furniture and floors [7]. Researchers have attempted
to reduce these disadvantages through thermal modification, mechanical compression,
resin impregnation, and chemical modification processes [8]. Thermal modification of
Chinese fir wood can enhance its performance by reducing water absorption and improving
dimensional stability and biological durability, but it reduces its mechanical strength [9].
Although mechanical compression may increase the density, modulus of rupture (MOR),
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and modulus of elasticity (MOE) of the low-density wood, there will always be a certain
recovery of compressive deformation after absorption [10,11]. Using a combined process
of thermomechanical densification and heat treatment, Li et al. [12] significantly reduced
the recovery of Chinese fir wood. Chemical modification methods such as acetylation,
esterification, and furfurylation can alter the relationship between wood and moisture,
making the wood hydrophobic, thereby improving dimensional stability and reducing
decay susceptibility [13]. The resin impregnation method (RIM) has been shown to be
one of the most effective solutions for improving the mechanical properties of Chinese fir
wood [14,15]. Various synthetic thermosetting resins are commonly used for impregnating
wood, such as urea-formaldehyde resin (UF), phenolic formaldehyde resin (PF), melamine
formaldehyde resin (MF), etc. [16–18]. To improve the physical and mechanical properties of
Chinese fir wood, Ma et al. [19] impregnated it with unsaturated polyester resin. However,
the RIM either introduces some harmful chemicals into the wood or produces waste that
pollutes the environment. As a result, several inorganic chemicals, such as sodium silicate,
have been used to impregnate wood [20–22], they it will change the pH of the wood and
corrode metal furniture hardware. Replacing synthetic resins with natural polymers that
are less harmful to wood and the environment is a significant step forward.

Shellac is a natural biocompatible polymer that is commonly used as a protective
coating for food and other products [23]. Shellac is a mixture of polyesters and monoesters
that are insoluble in water but soluble in ethanol or ether [24]. Because of its excellent film-
forming, strong adhesion to the wood surface, and protective properties, shellac is used
as a varnish to preserve the surface of wooden products in the fields of wooden furniture
restoration and musical instruments [25]. In this article, natural shellac polymer was used
instead of synthetic resin to impregnate Chinese fir wood in order to use an environmentally
friendly modifier. It was also investigated whether wood could be impregnated with a
shellac solution to improve its mechanical properties.

2. Materials and Methods
2.1. Materials

Twenty-one year old fast-growing Chinese fir logs were purchased from Nanan City,
Fujian, China. The fir logs were 5 m long, and the diameter of the small head was about
320~400 mm. The air-dried density of the fir logs was about 0.36 g/cm3. The fir logs were
sawn by the rift-sawing method into square-section wood strips with a section size of
30 mm × 30 mm in a lumber mill. Bleached shellac with an average molecular weight of
about 765 Da was bought from Yunnan Lvchun Shellac Co., Ltd, in Honghe Hani and Yi
Autonomous Prefecture of China. Alcohol with a concentration of 95% was purchased from
a chemical store in Fuzhou, China, and was produced by Guangzhou Chongwen Chemical
Co., Ltd, in Guangzhou, China.

2.2. Wood Samples Preparation

The wood strips were planed on all four sides and processed into wooden bars with
a cross-sectional dimension of 20 mm × 20 mm (the error is 0~2 mm). Next, defects such
as cracks, knots, rot, etc., were cut off, and some 300 mm long defect-free wood samples
were cut from the wood bars. A pair of wood samples were cut from adjacent locations on
the same wood bar: one for the impregnation treatment and the other for the control. The
preparation and processing of the specimens is shown in Figure 1.
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Figure 1. Schematic of the impregnation with shellac polymer.

2.3. Microwave Pretreatment

In accordance with the literature, the wood samples were pretreated by microwave [26].
They were immersed in water at 25 ◦C for 24 h for the impregnation treatment. Subse-
quently, the wood samples were taken out of the water, and the surface water was wiped
away with filter paper. The samples were then pretreated for 100 s in a microwave machine
with a microwave power of 4 kW and a frequency of 2.45 GHz.

2.4. Impregnation with Shellac Solution of Different Concentrations

Shellac was dissolved in 95% alcohol to prepare 3000 mL shellac solutions with
concentrations of 10%, 15%, and 20%.

After drying for 5 h in an oven at 103 ± 2 ◦C, the wood samples were placed in
a pressure kettle. After locking the kettle lid, the pressure in the kettle was reduced to
−0.1 MPa by vacuuming, and the shellac solution was sucked into the kettle. Next, the
pressure in the kettle was raised to 1.2 MPa using an air compressor. After maintaining
the pressure for 30 min, the outlet valve was opened to reduce the pressure and discharge
the shellac solution. While the pressure in the kettle was being lowered to atmospheric
pressure, the lid of the kettle was opened and the wood samples were taken out. After 24 h
of storage at room temperature, both the wood samples and the controls were placed in a
constant temperature (20 ◦C) and humidity (65%) chamber for more than 48 h.

2.5. Interaction of Impregnation Pressure and Time

The response surface method (RSM) with two factors and five levels was employed to
optimize the experimental conditions of impregnation pressure and time. The concentration
of the shellac solution was 15% for RSM analysis, and the specific RSM design is shown in
Table 1. The increase rate of the strength in compression perpendicular to grain (∆SCPG),
increase rate of the modulus of rupture (∆MOR), and weight gain percent (WGP) were
used as the response of the RSM. Other parameters and procedures were the same as
described above.
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Table 1. Test factors and level schedule for RSM.

Factors Symbol
Levels

−1 −0.5 0 0.5 1

Impregnation pressure/MPa A 0.4 0.6 0.8 1.0 1.2
Impregnation time/min B 10 15 20 25 30

2.6. Performance Testing
2.6.1. Strength in Compression Perpendicular to Grain

In accordance with ISO 13061-5:2020, the strength in compression perpendicular to
grain (SCPG) of the wood samples was determined by the radial loading. The loading di-
rection is the radial direction of the wood, and the loading speed is 5 mm/min. The ∆SCPG
between an impregnated sample and its control sample was calculated by Equation (1):

∆SCPGi =
SCPGTi − SCPGCi

SCPGCi
× 100% (1)

where ∆SCPGi was the SCPG increase for the ith pair wood samples; SCPGTi was the
SCPG of the ith treatment sample (MPa); and SCPGCi was the SCPG of the control sample
adjacent to the ith treatment sample.

2.6.2. Modulus of Rupture

In accordance with ISO 13061-3:2014, the modulus of rupture (MOR) of the wood
samples was determined by an electromechanical universal testing machine (E44.304, MTS
systems Co. Ltd., Eden Prairie, MN, USA). The radius of the support roller and the loading
head were 30 mm, and the span was 240 mm. The loading direction was the radial direction
of the wood, and the loading speed was 10 mm/min. The ∆MOR between an impregnated
sample and its control sample was calculated by Equation (2):

∆MORi =
MORTi − MORCi

MORCi
× 100% (2)

where ∆MORi was the MOR increase for the ith pair wood samples; MORTi was the MOR
of the ith treatment sample (MPa); and MORCi was the MOR of the control sample adjacent
to the ith treatment sample.

2.6.3. Weight Gain Percent

Before impregnation treatment with the shellac solution, the wood samples were dried
to absolute dryness in an oven at 103 ± 2 ◦C, and the mass (m1) of each wood sample was
weighed by an electronic balance. After impregnation, they were dried to absolute dryness
again and their masses (m2) were determined. The WGP was computed by Equation (3):

WGP =
m2 − m1

m1
× 100% (3)

2.6.4. Scanning Electron Microscopy (SEM)

After cutting a 5 mm × 5 mm × 2 mm slice from the impregnated wood sample,
the distribution of shellac in the wood samples was observed under a scanning electron
microscope (SU8010 produced by Hitachi, Tokyo, Japan).

2.6.5. Fourier Transform Infrared (FTIR) Spectroscopy

The samples were pulverized with a ball mill, passed through a 200-mesh sieve,
and prepared by KBr tableting method. FTIR spectroscopy was performed on a Fourier
transform infrared spectrometer (VERTEX 70, produced by Bruker, Berlin, Germany) to
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investigate the state of the shellac in the wood. The scanning wavelength range was
4000–500 cm−1, the number of scans was 32, and the spectral resolution was 4 cm−1.

2.6.6. X-ray Diffraction (XRD)

The crystallinity of the wood samples was characterized by an X-ray diffractometer
on a Bruker D8 Advance diffractometer (Cu-K, Bragg-Brentano Geometry, Billerica, MA,
USA). The diffraction angle range was 5◦~40◦ (2θ), and the scanning rate was 10◦/min.
The crystallinity index was calculated from the heights of the amorphous and the total
intensity with Segal’s method [27].

2.6.7. X-ray Photoelectron Spectroscopy (XPS)

After drying the sample to absolute dryness with a vacuum dryer, XPS scans were per-
formed by Thermo Scientific (Waltham, MA, USA) K-Alpha to study the shellac molecules
present in wood. The vacuum pressure of the analysis chamber was about 5 × 10−7 mbar,
and the X-ray source was the monochromatic AlKa, 1486.6 eV energy, 12 kV voltage, and
6 mA beam current.

3. Results and Discussion
3.1. Effect of the Concentration of the Shellac Solution

As shown in Figure 2a, wood samples impregnated with different shellac concentra-
tions improved both MOR and SCPG. When impregnated with pure industrial alcohol (0%
concentration, as shown in Figure 2), the MOR and SCPG were reduced by 19.40% and
42.43%, respectively. The WGP of wood samples was reduced by 1.61% due to the extrac-
tion of alcohol-soluble aliphatic and terpenoids (Figure 2b). Comparing wood samples
impregnated with different shellac concentrations, wood samples impregnated with 15%
shellac had the highest ∆SCPG of 39.01%. The corresponding WGP as high as 35.12% was
achieved. A quite slight but noticeable decrease in MOR was observed as the concentration
of shellac solution increased in the impregnated wood samples.
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Figure 2. The mechanical strength and weight gain of wood samples impregnated with different
concentrations: (a) increase in mechanical properties; (b) WGP.

Figure 3 shows the XRD spectra of the wood samples impregnated with 15% shellac
solution (WISS15), pure industrial alcohol (WIPIA), and a control. There are typical charac-
teristic peaks of cellulose I-type structure at diffraction angles of 16.56◦ and 22.68◦ for all the
samples [28,29]. WISS15 and WIPIA both exhibit decreased appearance in their diffraction
peaks compared with the control sample. The crystallinity of WISS15, WIPIA, and control
samples were 53.08%, 52.99%, and 53.49%, respectively. In comparison to control samples,
wood samples impregnated with pure industrial alcohol showed a maximum reduction of
0.77% in crystallinity due to the strong permeability of alcohol. The alcohol molecules can
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enter the interior of the wood under high pressure, even around the crystallization area in
the cell wall, and dissolve the alcohol-soluble substances, thereby reducing the crystallinity
and mechanical properties. Impregnated with the shellac solution, the solvent alcohol had
a similar effect, but the shellac could fill the cell lumen or adhere to the cell wall to improve
its resistance to compression. As a result, the ∆SCPG of wood samples impregnated with
15% shellac solution increased by 39.01%.
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The SEM micrographs of the Chinese fir wood samples are shown in Figure 4. The
tracheids and ray cells of the wood were clean and free of sediment (Figure 4a). When
impregnated with the shellac solution, some shellac was deposited in the microcapillaries,
such as the wood ray cell cavity. However, there was no visible deposit in the tracheid
cavity, as shown in Figure 4b.
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3.2. Interaction Effect of Impregnation Pressure and Time

Table 2 presents the results of 16 experiments based on the RSM experiment model.
Subsequently, depending on the statistics parameters, various statistical analysis ap-
proaches were utilized to select a fitting model. According to the sequential model sum
of squares, the models were selected based on the highest order polynomials where the
additional terms were significant and the models were not aliased. The quadratic model
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was suggested for all three responses of ∆SCPG, ∆MOR, and WGP by the software due to
the sequential p-value (Table 3). The quadratic models of ∆SCPG, ∆MOR, and WGP were
obtained by analysis software and given as follows:

∆CSPG = −127.13 + 169.75A + 14.45B − 4.72AB − 34.71A2 − 0.30B2 (4)

∆MOR = −63.55 + 113.56A + 2.28B − 094AB − 60.88A2 − 0.05B2 (5)

WGP = 9.63 + 11.86A + 1.02B + 0.03AB − 6.30A2 − 0.02B2 (6)

Table 2. Results of the response surface experiment.

Run A-Pressure
(MPa)

B-Time
(Min)

∆SCPG (%) ∆MOR (%) WGP (%)

Actual Predicted Actual Predicted Actual Predicted

1 1 30 30.96 30.43 −17.22 −16.66 27.77 27.72
2 0.8 20 87.20 80.20 −2.73 −1.54 26.56 27.54
3 1 10 75.99 75.25 −3.96 −2.58 23.55 23.57
4 0.4 10 29.14 30.89 −12.78 −13.93 21.55 21.59
5 0.4 20 60.45 66.74 −12.17 −10.21 25.30 25.61
6 0.8 20 83.83 80.20 −0.04 −1.54 28.96 27.54
7 1.2 15 93.86 90.99 −9.41 −9.17 26.23 25.87
8 1 30 30.96 30.43 −17.22 −16.66 27.77 27.72
9 0.4 30 45.01 42.76 −15.34 −16.71 25.48 25.43

10 1.2 20 80.44 82.54 −11.83 −12.36 26.98 27.46
11 0.4 15 64.27 56.30 −11.32 −10.79 24.49 24.13
12 0.6 25 60.42 65.62 −7.28 −6.36 27.15 27.29
13 0.8 20 79.76 80.20 −1.08 −1.54 27.16 27.54
14 1.2 20 80.44 82.54 −11.83 −12.36 27.53 27.46
15 0.8 20 76.25 80.20 −0.16 −1.54 27.77 27.54
16 0.8 10 59.53 63.24 −1.10 −1.50 23.19 23.42

Table 3. Model summary statistics.

Response Source Sequential p-Value Lack of Fit p-Value Adjusted R2 Predicted R2 Comments

∆SCPG

Linear 0.0994 0.0004 0.1911 −0.1727
2FI 0.0380 0.0007 0.3968 −0.2417

Quadratic <0.0001 0.1552 0.9444 0.9001 Suggested
Cubic 0.2107 0.1579 0.9605 −7.3932

Quartic 0.1579 0.9694 Aliased

∆MOR

Linear 0.1823 0.0002 0.1120 −0.1089
2FI 0.2601 0.0002 0.1383 −0.4856

Quadratic <0.0001 0.1475 0.9545 0.8173 Suggested
Cubic 0.0618 0.9693 0.9796 0.9816

Quartic 0.9693 0.9756 Aliased

WGP

Linear 0.0010 0.0990 0.6024 0.4821
2FI 0.9582 0.0790 0.5694 0.1053

Quadratic 0.0002 0.9655 0.9056 0.8914 Suggested
Cubic 0.9137 0.8238 0.8633 0.0108

Quartic 0.8238 0.8378 Aliased

Table 4 shows the ANOVA data of the quadratic models. The ANOVA data for the
quadratic model of ∆SCPG revealed that it had a very low probability (p < 0.00001), high
R-squared coefficient (R2 = 0.9629), adjusted R-squared coefficient (Adj-R2 = 0.9444), and
adequate precision (19.84). The polynomial equation of ∆MOR was analyzed by ANOVA
with a very low probability value (p < 0.0001), high R-squared coefficient (R2 = 0.9696),
adjusted R-squared coefficient (Adj-R2 = 0.9545), and adequate precision (18.92). Addition-
ally, the quadratic model of WGP had a very low probability (p < 0.00001), high R-squared
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coefficient (R2 = 0.9371), adjusted R-squared coefficient (Adj-R2 = 0.9056), and adequate
precision (16.15).

Table 4. Analysis of variance (ANOVA) for the quadratic models of ∆MOR, ∆SCPG, and WGP.

Response Source Sum of Squares df Mean Square F-Value p-Value Comments

∆SCPG

Model 6448.94 5 1289.79 51.94 <0.0001 significant
A-Pressure 474.22 1 474.22 19.10 0.0014 significant
B-Time 1102.95 1 1102.95 44.41 <0.0001 significant
AB 1132.99 1 1132.99 45.62 <0.0001 significant
A2 97.19 1 97.19 3.91 0.0761
B2 2917.24 1 2917.24 117.47 <0.0001 significant
Residual 248.33 10 24.83
Lack of Fit 180.09 5 36.02 2.64 0.1552 not significant
Pure Error 68.24 5 13.65

∆MOR

Model 550.68 5 110.14 63.87 <0.0001 significant
A-Pressure 8.75 1 8.75 5.07 0.0480
B-Time 174.54 1 174.54 101.21 <0.0001 significant
AB 45.05 1 45.05 26.12 0.0005 significant
A2 298.97 1 298.97 173.37 <0.0001 significant
B2 85.01 1 85.01 49.30 <0.0001 significant
Residual 17.24 10 1.72
Lack of Fit 12.62 5 2.52 2.73 0.1475 not significant
Pure Error 4.63 5 0.9253

WGP

Model 57.26 5 11.45 29.78 <0.0001 significant
A-Pressure 6.47 1 6.47 16.82 0.0021 significant
B-Time 26.89 1 26.89 69.91 <0.0001 significant
AB 0.0347 1 0.0347 0.0902 0.7701
A2 3.20 1 3.20 8.32 0.0163
B2 14.42 1 14.42 37.50 0.0001 significant
Residual 3.85 10 0.3846
Lack of Fit 0.5415 5 0.1083 0.1639 0.9655 not significant
Pure Error 3.30 5 0.6609

By analyzing the F-value and p-values from Table 3, it can be found that all regression
models were statistically significant (p < 0.0001) and the lack of fit was not significant. The
∆SCPG of the wood samples was profoundly (p < 0.0001) affected by the impregnation time
(B), the interaction between the impregnation pressure and time (AB), and the quadratic
term of time (B2). At the p < 0.005 level, impregnation pressure (A) significantly affected the
∆SCPG. With a p-value less than 0.1, the quadratic term of the pressure (B2) had less effect
on the ∆SCPG. The impregnation time (B) and the quadratic terms of pressure (A2) and
time (B2) all exhibited a very significant (p < 0.0001) effect on the ∆MOR. The impregnation
pressure (A) had a modest (p < 0.05) influence on the ∆MOR, whereas the pressure and
time interaction (AB) had a significant (p < 0.001) effect on the ∆MOR. At p < 0.0001, both
the impregnation time (B) and its quadratic term (B2) had a significant effect on the WGP.
The impregnation pressure significantly affected WGP at p < 0.005, and its quadratic term
(A2) had a moderate impact on the WGP at p < 0.005. However, the interaction impact of
impregnation pressure and time (AB) on the WGP was not significant (p > 0.5).

3.3. Effect of the Impregnation Pressure

The interactions between the impregnated pressure and time on the ∆SCPG and ∆MOR
of wood samples can be shown by response surface 3-dimensional (3D) plots (Figure 5).
Figure 5a depicts the interaction between the impregnation pressure and time on ∆SCPG of
the wood samples. With the impregnation time was constant, the variation of ∆SCPG with
different impregnation pressure is shown in Figure 6a. When the impregnation time was
short, the ∆SCPG increased significantly with an increase in the impregnation pressure, but
the increase in ∆SCPG gradually decreased with the extension of impregnation time. When
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the impregnation time was 30 min, ∆SCPG decreased with the increase in impregnation
pressure. With the impregnation pressure constant, the change of ∆SCPG with different
impregnation times is shown in Figure 6b. It can be seen that the curves of ∆SCPG as a
function of impregnation time at different pressures were basically parabolas, and their
extreme values were approximately in the range of impregnation time of 15–20 min. With
the increase in the impregnation pressure, the extreme point of the ∆SCPG curve moved
to the left, that is, the impregnation time gradually shortened, and the ∆SCPG decreased
faster after passing the extreme point.
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Figure 5b shows the interaction between the impregnation pressure and time on
∆MOR of the wood samples. As the pressure increased from 0.4 MPa to 0.8 MPa, the
∆MOR increased from −12.17% to −0.81%, whereas it declined from −0.81% to −11.83%
as the pressure increased from 0.8 MPa to 1.2 MPa. With the impregnation time constant,
the variation of ∆MOR with different impregnation pressure is shown in Figure 6c. It was
found that the ∆MOR increased as the impregnation pressure rose from 0.4 MPa to 0.8 MPa,
whereas it reduced as the impregnation pressure increased from 0.8 MPa to 1.2 MPa, with
the extreme points being around 0.8 MPa. Furthermore, when the impregnation time was
extended, the extreme point shifted closer to the coordinate’s origin. This indicates that it is
necessary to reduce the impregnation pressure to maintain the MOR if the impregnation
time is prolonged. With the impregnation pressure constant, the variation of ∆MOR with
different impregnation time is shown in Figure 6d. If the impregnation pressure was less
than or equal to 1.0 MPa, the extreme points of the ∆MOR curve were between 15 min and
20 min. If the pressure was 1.2 MPa, ∆MOR decreased dramatically as the impregnation
time increased.

As seen in Figure 7, WRP increased with both impregnation pressure and time. This
occurs because the number of shellac molecules entering the wood interior through the
tracheid lumens and pit canals increases with increasing impregnation pressure and time.
However, a continuous increase in WGP does not necessarily improve the SCPG and MOR
of the wood samples.
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3.4. Optimization and Validation

Based on the fit models of ∆CSPG and ∆MOR, the impregnation pressure of [0.4, 1.2]
and the impregnation time [10,30] were optimized to obtain the maximum of ∆CSPG and
∆MOR. The corresponding conditions were 0.99 MPa and 16.10 min for the impregnation
pressure and the impregnation time, respectively. For verification, 12 groups of Chinese
fir wood samples were impregnated with the optimized impregnation pressure and time.
In order to facilitate the immersion process, the impregnation pressure was adjusted from
0.99 MPa to 1.0 MPa, and the impregnation time was adjusted from 16.10 min to 16 min.
The confirmatory experiment results (Table 5) show that the ∆SCPG and ∆MOR are close
to the model predicted values with low standard deviation. The measured value of ∆SCPG
is within the 95% confidence interval. Although the mean of ∆MOR is outside the 95%
confidence interval, the ∆MOR is higher than the predicted mean.

Table 5. Statistical parameters of confirmatory test results.

Response Predicted Mean Std. Dev. SE Pred 95% PI Low Data Mean 95% PI High

∆CSPG 86.7814 4.9833 2.8447 80.4429 85.7800 93.1198
∆MOR −2.3916 1.3132 0.7496 −4.0619 −0.1850 −0.7213
WGP 26.6169 0.6201 0.3540 25.8281 25.2300 27.4057
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3.5. FTIR Spectroscopy Analysis

The FTIR spectra of the wood sample impregnated with shellac solution are shown
in Figure 8. A comparison between the impregnated wood, pure shellac, and control
wood sample reveals that the FTIR spectra of the impregnated sample have an alkane
–CH2 stretching vibration absorption peak at 2850 cm−1. The -C=O stretching vibration
absorption peak at 1719 cm−1 was enhanced. However, the 3408 cm−1 -OH stretching
vibration peak, the 1634 cm−1 C=O stretching vibration absorption peak, the aromatic ring
skeleton stretching vibration absorption peak at 1510 cm−1, the 1430 cm−1 -OH bending
vibration peak, and the 1227 cm−1 aromatic ring ether bond stretching vibration absorption
peak were all weakened significantly. These results mean that the penetration of shellac
introduced the alkane –CH2, reducing the relative amounts of -OH and C=O in the wood,
whereas other chemical groups did not obviously change. The results of FTIR spectrum
analysis showed that there was no chemical reaction between the shellac molecules and the
wood components, and the shellac molecules filled the wood cell cavity or adhered to the
cell wall, which improved the compressive strength of the impregnated wood.
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Figure 8. FTIR spectroscopy of the wood samples impregnated with shellac solution.

3.6. X-ray Photoelectron Spectroscopy (XPS) Analysis

The full-spectrum scanning photoelectron spectra of the shellac, control wood sample,
and impregnated wood sample obtained by scanning with Thermo Scientific K-Alpha
photoelectron spectrometer are shown in Figure 9a, Figure 9c, and Figure 9e, respectively.
There are two main elements, C and O, on the full spectrum. The results of the C1s
peak fitting showed five distinctive peaks at 284.73 eV, 285.17 eV, 286.29 eV, 287.7 eV, and
288.91 eV, which are the characteristic peaks of shellac chemical structure C=C, C-C, C-O,
C=O, and O-C=O [30,31], respectively, as shown in Figure 9b.

The untreated wood sample exhibited four peaks around 284.96 eV, 286.42 eV, 288.02 eV,
and 289.09 eV, which are characteristic peaks of C-C, C-O, C=O, and O-C=O (Figure 9d).
After impregnation with the shellac solution, the wood sample has a characteristic peak
derived from C=C of shellac. The proportion of each C1s peak area of impregnated and
unimpregnated wood was calculated, as shown in Table 6. Because the penetration of shel-
lac introduced the C=C chemical structure, the proportion of C-C, C-O, and C=O peak areas
of the wood samples impregnated with shellac solution relatively decreased by 21.90%,
22.93%, and 30.00%, respectively. The shellac molecules impregnated into wood samples
and adhered tightly to the cell wall, effectively increasing the SCPG of wood samples
despite having no positive effect on the MOR.
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sample; (f) C1s spectrum of the impregnated wood sample. 
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Figure 9. XPS spectra of shellac and Chinese fir impregnated with shellac solution under vacuum:
(a) full spectrum of shellac; (b) C1s spectrum of shellac; (c) the full spectrum of the control wood
sample; (d) C1s spectrum of the control wood sample; (e) the full spectrum of the impregnated wood
sample; (f) C1s spectrum of the impregnated wood sample.

Table 6. The ratio of chemical structure and C1s peak of the wood impregnated with shellac solution.

Sample Index
Chemical Structure

C=C C-C C-O C=O O-C=O

Impregnated wood Binding energy/eV 284.66 285.10 286.39 287.76 289.01
Ratio of the peak area/% 24.1 48.38 22.96 4.27 3.79

Control
Binding energy/eV - 284.96 286.42 288.02 289.09
Ratio of the peak area/% - 61.95 29.79 6.10 2.16
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4. Conclusions

Compared to wood impregnated with different concentrations of shellac solution,
wood impregnated with 15% shellac solution had a 39.01% higher SCPG. However, the
MOR of the wood samples consistently decreased regardless of the concentration of the
shellac solution, but the decrease in MOR was quite slight when impregnated with 15%
shellac solution. The impregnation pressure and time were optimized by the use of response
surface models. As a result of ANOVA analysis, ∆SCPG was significantly affected by
impregnation pressure, time, and their interaction. In addition, the impregnation pressure
and the interaction between impregnation time and pressure affected the ∆MOR of the
wood samples significantly. As a result of optimization of the impregnation variables by
response surface models, 1.0 MPa impregnation pressure and 16.0 min impregnation time
were found to be the optimal parameters. The confirmatory experiments confirmed the
response surface optimization results with low prediction errors and standard deviations,
and the ∆SCPG was 85.78%. Shellac can be seen deposited inside the ray cell lumen and
covering the inner wall of the tracheid, which could also explain the increase in the ∆SCPG.
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