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Ataxia is an impairment of the coordination of movement or the interaction of associated

muscles, accompanied by a disturbance of the gait pattern. Diagnosis of this clinical sign,

and evaluation of its severity is usually done using subjective scales during neurological

examination. In this exploratory study we investigated if inertial sensors in a smart phone

(3 axes of accelerometer and 3 axes of gyroscope) can be used to detect ataxia. The

setting involved inertial sensor data collected by smartphone placed on the dog’s back

while walking in a straight line. A total of 770 walking sessions were evaluated comparing

the gait of 55 healthy dogs to the one of 23 dogs with ataxia. Different machine learning

techniques were used with the K-nearest neighbors technique reaching 95% accuracy

in discriminating between a healthy control group and ataxic dogs, indicating potential

use for smartphone apps for canine ataxia diagnosis and monitoring of treatment effect.

Keywords: ataxia, inertial measurement unit (IMU), smartphone and IoT services, neurology, canis, gait analysis,

wearable and mobile computing

1. INTRODUCTION

Neurological disorders are among the most severe and difficult-to-treat pathological conditions in
human and veterinary medicine. In a random sample of dogs attending 89 clinics in the United
Kingdom between 2009 and 2013, every 10th patient was diagnosed with a neurological disorder
(1). Often, they progress with no prospect of cure and diagnosis and treatment occurring too late
to make a difference, ending only with euthanasia (2, 3). Ataxia dramatically impairs the quality of
life not only of the affected animals but also of their caretakers (4). Ataxia is a greek term describing
a ‘lack of order’. Canine ataxia is defined as an impairment of the coordination of movement or
the interaction of associated muscles and is accompanied by a disturbance of the gait pattern (5).
Since ataxia is a clinical sign and not a disease (5), a precise assessment of the neuroanatomical
localization of the lesion causing the gait disorder is necessary for appropriate diagnosis and therapy
(6, 7). Ataxia is a sensory phenomenon causing the aforementioned disturbance of coordination
of movement, and may occur as a sensory (proprioceptive), cerebellar or vestibular ataxia (or a
combination of these) (6, 8–10). Sensory ataxia causes a loss of sense of limb and body position,
often seen as wide-based stance, swaying gait, increased (UpperMotor Neuron, UMN) or decreased
(Lower Motor Neuron, LMN) stride length, and dragging or scuffing of the digits. It is caused by a
lesion of the afferent sensory (proprioceptive) pathways in the peripheral nerves or centrally in the
spinal cord, brainstem or forebrain. Cerebellar ataxia (11) is characterized by an inability to control
the rate and range of movement, truncal swaying, resulting in dysmetria (often hypermetria),
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FIGURE 1 | Left: placement of smartphone in Encephalog (Mon4t) iTUG test

strapped to the subject’s sternum; Right: placement of smartphone strapped

to the dog’s back in our study.

and intention tremor. Cerebellar ataxia occurs with lesions of
the cerebellum or spinocerebellar tracts within the spinal cord.
Vestibular ataxia is seen as leaning, falling or rolling to one side.
Head tilt and abnormal nystagmus may be present. Vestibular
ataxia results from lesions of the vestibular system peripherally
(receptors in the inner ear, vestibulocochlear nerve) or centrally
(brainstem, cerebellum).

These types of ataxia and their associated clinical signs
are usually recognized during a neurological examination and
subjectively assessed. However, manual assessment by experts
has serious limitations. Regardless of the degree of the observer’s
experience, the human eye is not capable of processing the full
complexity of all components of the movement patterns (12).
In dogs, it has been also shown that obvious irregularities in
gait, such as orthopedically caused lameness, cannot reliably be
quantified when observed by experienced orthopedic surgeons
(13, 14). Ataxia in animals can also be difficult to quantify with
poor interobserver agreement, despite using raters with high
clinical competence levels [see, e.g., Olsen et al. (15) for horses].
Thus, there is the urgent need to use objective gait analysis
systems, especially when quantifying levels of ataxia.

An objective gait assessment would be an essential tool for
clinics not only to diagnose different neurological conditions
but also to monitor disease progression and therapeutic effects
without human biases. There are well-established methods and
models for data collection and interpretation within different
pathologies in people (16), highlighting that instrumentation
of gait using digital technologies provides objective and
subtle information that is not possible to detect from clinical
observation alone. For quadrupeds, objective assessment of ataxia
gait patterns was studied in Olsen et al. (17). It was found that
motion capture can objectively aid the assessment of horses
with ataxia; moreover, blindfolding of horses facilitates the
discrimination of ataxic patterns.

Smartphone inertial sensors are commonly used in human
activity recognition tasks (18, 19), as well as smartphone location
recognition (20), both essential for human gait analysis as part
of pedestrian dead reckoning application (21, 22). Yahalom et al.

(23) and Tchelet et al. (24) used the EncephaLogTM (Mon4t)
platform for collecting internal motion data for conducting
motor evaluation in the context of human neurology, which
utilizes smartphones’ internal motion unit (IMU) sensors. It
was validated against motion capture cameras, pressure mat
and wearable sensors used in motion labs in instrumented
Completion-time of the Timed-Up-and-Go (TUG) test, a well-
accepted clinical biomarker for rating mobility and prediction of
falls risk. TUG Completion Time and nine additional biomarkers
were validated against in Yahalom et al. (23) and Tchelet
et al. (24) respectively, suggesting that EncephaLog (Mon4t) can
provide an accurate, yet simpler, instrumented TUG platform
than existing alternatives, offering a solution for clinics that
cannot afford the cost or space required for a dedicated motion
lab and for monitoring patients at their homes. In the iTUG
test the smartphone device running EncephaLog is strapped to
the subject’s sternum. In the current study, adapting the data
collection protocol to dogs, we placed the smartphone device on
the dog’s back, securing it with an adjustable harness and bracket,
as shown in Figure 1.

Gait analysis of dogs is commonly performed using pressure
walkways (25), force plates (26), treadmills (27), computer-
assisted motion capture (28), and kinematic gait analysis (29).
These methods require expensive equipment to collect and
analyze data and are time-intensive. They are therefore rarely
used as a day-to-day clinical tool. Thus, body-worn devices
may provide an attractive simpler and cheaper alternative. Yet,
in contrast to the human domain, canine gait analysis using
body-worn devices remains underexplored.

To close this scientific gap, the current study investigated
whether IMU data obtained from a body-worn smartphone can
be used to automatically classify between dogs diagnosed with
ataxia, and a healthy control group.

2. METHODS

Data collection was performed at the Department for Small
Animal Medicine and Surgery of the University of Veterinary
MedicineHannover, Germany. The Lower Saxony State Office for
Consumer Protection and Food Safety in Oldenburg, Germany
has approved the study (reference number for this project:
20A555). Owners of participating dogs received a fact sheet
prior to the day of data collection and were informed about
the procedure in a personal conversation. All owners provided
written consent for study participation, as well as signed a form
about our privacy and data protection policy.

Prior to objective gait assessment patient history evaluation
was performed and during general examination orthopedic
diseases were excluded in order to ensure only neurologically
caused gait incoordination were included. In addition,
neurological examination was performed by board certified
diplomates as well as residents of the European College
of Veterinary Neurology (ECVN). They agreed upon a
neuroanatomical localization of the lesion and differentiated the
aforementioned forms of ataxia. During data collection the dogs
simultaneously underwent continuous inspection by the same
investigator and any gait abnormalities were recorded.
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FIGURE 2 | Phone placed on back of the dog using harness; photos from different sides.

FIGURE 3 | Flowchart diagram showing the process from data collection to model training.

The smartphone used for gait assessment was an iPhone
SE (Apple Inc.) on which a customized version of the
EncephalogClinic R© (Mon4t) app was installed. Modern
smartphones contain an electronic device called IMU containing
two types of inertial sensors—accelerometers and gyroscopes (30)
the recordings of which are captured by the EncephalogClinic R©

(Mon4t) app upon its actication. An accelerometer measures the
specific force vector and a gyroscope measures the angular rate
vector. In the collected dataset, a single data point is a pair of
three-dimensional accelerometer and gyroscopes readings. The
duration of a single sample (several data points) is determined
by a fixed window size (WS), thus, the data signal can be viewed
as a multivariate time series, and we apply standard techniques
of feature extraction and feature selection (31) to it, as illustrated
in Figure 3.

The smartphone was fixed on the dog’s body using an
adjustable elastic harness (Julius-K9 R©, Hungary) with a bracket
on top in which the smartphone was securely placed on the
participant’s back, as shown in Figure 2.

An individual adaptation phase to the gait analysis laboratory
as well as the surrounding technical equipment and the harness
with the smartphone on the dogs’ dorsum was implemented in
order to guarantee a smooth and relaxed, most possibly natural
walking. Participating dogs were then led on a 150 cm long, loose
leash to walk back and forth on a 140 x 400 cm, skid resistant
felt grid mat with regularly arranged crisscross marks. Walking
was performed in a slow pace in a straight line in the center
of the grid mat. While orthopedic disease usually causes more
severely affected gait abnormalities when the pace is increased,
the opposite is true for ataxia. The integration of movement is

best observed in slower pace. Observations at a slow walking
pace for gait evaluation in neurological disorders ensure that the
clinician does not miss neurological gait deficits. Walking pace
was selected by the dog and only artificially corrected by the
owner if the dog started trotting.

This protocol was repeated for at least five times, in order
to reach at least a minimum of 50 strides, which is based on
the experience from our former studies into ataxia evaluation
(32, 33).

To be able to retrospectively reconstruct each gait assessment
session the procedure was filmed from five perspectives (each side
and bird’s eye view).

Walking sessions were performed during routine neurological
examination and could be easily implemented to clinical
engagement. Owners of participating dogs were informed prior
to the procedure and provided written consent.

3. RESULTS

This section presents the functional flow of a sample signal
starting from dataset, through preprocessing, ending with model
evaluation, as demonstrated in Figure 3.

3.1. Data Collection
Data was collected from 507 walking sessions of 55 healthy
control group dogs (39 females and 16 males) and samples from
263 walking sessions of 23 dogs with ataxia (9 females and 14
males). Median age of dogs was 3 years (range 1–12 years) and
6 years (range 1–13 years) for the control group and the ataxic
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TABLE 1 | Model performance comparison between ET, Extra trees classifier; AB, AdaBoost; GNB, Gaussian Naive Bayes; GB, gradient boosting; LR, logistic regression;

KNN, K-nearest neighbors; SVM, support vector machine RF, random forest; DT, decision trees (DT).

ET AB GNB GB LR KNN SVM RF DT

Accuracy (%) 94.65 93.10 93.55 95.16 95.02 95.77 95.11 93.24 94.48

Precision 0.9383 0.9379 0.9365 0.9462 0.9474 0.9546 0.9454 0.9379 0.9502

Recall 0.9392 0.9354 0.9308 0.9428 0.9491 0.9505 0.9475 0.9306 0.9423

F1-score 0.9468 0.9357 0.9386 0.9479 0.9445 0.9578 0.9463 0.9335 0.9482

The bold value is the best performing model (KNN).

group, respectively. Median weight of dogs was 15.5 kg (range 7–
32 kg) and 20 kg (range 4.4–41.4 kg) for the control group and
the ataxic group, respectively. Ataxia was caused by spinal cord
lesions in 11 dogs, by cerebellar disorders in 4 dogs, and 8 dogs
had ataxia secondary to phenobarbitone treatment. Ataxia of one
dog was of uncertain origin. The patient data is included in the
Supplementary Material.

The recordings were made by the Mon4t app at a sampling
rate of 100Hz; the Mon4t company made them available for
us for downloading. Preprocessing, data analysis and modeling
were performed using Python. Supplementary Figure 1 presents
two different samples of healthy (blue) and ataxic (red) dogs,
measured by the accelerometer (left) and the gyroscopes (right).

3.1.1. Data Preparation

Since the samples had stagnant “tails” at the beginning and end,
where the dog was recorded prior to walking start (when the
tester pushed the start button on the app), the following cleaning
procedure was conducted to guarantee that a given time window
captures only gait: (i) Minimum acceleration threshold, to
remove stationary segments. (ii) K-means clustering, to remove
further outliers.

Next, an heuristic search was performed over the original
dataset, to examine the influence of a given sample length,
namely window size (WS), over the accuracy of a trained model.
Using a logistic regression (LR) model, Supplementary Table 1

shows how an optimal window size could be determined, since
its duration affects the number of available samples for each
class. The tradeoff is evident: the longer the WS, the slower the
periodicities that can be captured; in contrast, shorter WS yields
more samples from each raw measurement, thus improving the
model generalizability. As can be seen below, different WS elicits
different datasets, characterized by a different number of class
samples and a different Healthy/Ataxic ratio. Next, each dataset is
evaluated by the LR model, to allow an empirical benchmarking,
following the traditional 80:20 train-test split ratio. As marked in
the table, the optimal window size was chosen to be three seconds,
with a total of 1210 samples.

3.1.2. Feature Engineering

To further evaluate machine learning approaches, 15
different statistical and frequency features, presented in
Supplementary Table 2, were extracted for each of the six time
axes making a total of 90 features.

Using random forest classifier as a meta-estimator (34),
standard feature selection (FS) methods were applied (35), using
a scoring function that measures their “importance” in terms

of target predictability [here, Gini impurity; (36)]. After sorting
in descending order, redundant variables are identified by their
weak contribution to the model accuracy (left y-axis), as shown
in Supplementary Figure 5.

After setting a threshold value of 0.025 relative magnitude
(right y-axis), the model achieved 95% accuracy, with only
twelve most correlated features, thus reducing the curse
of dimensionality (37). This threshold value was chosen
heuristically using the ’knee of a curve’ method, where the
optimum point is defined as the accuracy level from which
changes in slope (accuracy) are significantly reduced, such that
adding further features becomes redundant.

3.2. Evaluation
We experimented with several models: Extra trees classifier
(ET), AdaBoost (AB), Gaussian Naive Bayes (GNB), gradient
boosting (GB), logistic regression (LR), K-nearest neighbors
(KNN), support vector machine (SVM), random forest (RF) and
decision trees (DT). Table 1 presents a comparison in terms of
the evaluation metrics of these models. The best performance
of over 95% accuracy was achieved by the KNN method, a
non-parametric model which performs classification based on
semantic similarity between neighboring data points.

4. DISCUSSION

Several studies applied smartphone IMUs for gait analysis in the
human domain (38–40), and specifically to quantify ataxia (41).
However, to the best of our knowledge, our study is the first
to show the use of smartphone IMUs to quantify neurological
canine gait.

This pilot study showed that inertial data obtained from
smartphone IMUs can be used with classical machine learning
algorithms to detect ataxia with 95% accuracy. While this
accuracy of detection of ataxic gait in dogs is high, further
data collection is important to further strengthen the validity
of our approach in a clinical setting. These preliminary results
highlight the future clinical potential of body-worn smartphone
sensors. Only few manipulations of the animal are necessary
for analysis, resulting in reduced disturbance of the animals’
behavior. In addition, the analysis can be conducted flexibly
without increased technical effort on site. Further studies will
be needed to investigate potential clinical use of the devices in
ataxic dogs.

We have shown here the feasibility of using data obtained
by a standard smartphone fixed on the dog’s back—a setting

Frontiers in Veterinary Science | www.frontiersin.org 4 August 2022 | Volume 9 | Article 912253

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Engelsman et al. Measurement of Canine Ataxic Gait

that can be easily replicated in any consultation room or home,
enabling data acquisition anytime, anywhere. Although large
and medium-sized dogs tolerate the placement of smartphone
on their backs, smaller dogs might require other solutions.
In our study, only 9 dogs with a bodyweight of less than
10 kilogram were included. Safe and stable positioning of the
smartphone on top of the dogs’ back as well as avoiding
artificial alterations of the walking pattern was more challenging
in small breeds. For small dogs smartphones might not be
the solution, but IMU sensors can be potentially fixed on
a collar, or other places on the dog, although it may affect
accuracy of detection and requires further research to establish
optimal locations.

Using a regular smartphone, with an appropriate recoding
application, puts pet owners in a position to contribute
in a participatory way to the large-scale collection of data
to promote their pet’s health. This opens the door to
unprecedented opportunities for collecting datasets for gaining
understanding into canine neurological disorders in order to
enhance detection of pathological alterations. It can also lead
to the development of smartphone apps for diagnosing ataxia
digitally and remotely. The aspect of domestic data acquisition
has another great advantage. Stress in cats and dogs in a
clinical setting represents a burden to the animals and the
owners, often masking disease and complicating examination
and therapy, leading to even more stress (42). Domestic data
sampling minimizes stress factors and allows for longitudinal
and temporally high-resolution assessment of conditions and its
treatments, which add valuable aspects to the on-site visits to
the veterinarian.

Here, we have provided a proof of concept study, indicating
that the accelerometers and gyroscopes readings obtained from
smartphone on a dog’s back contain a strong signal related to the
characteristics of ataxic gait. One limitation of our study is that
we had a limited data set. More data are needed with a higher
number of ataxic dogs. It should be noted, that although the
KNN algorithm produces good accuracy in our, the classifier is
expected to perform slower and costlier in terms of time and
memory on larger datasets. However, other simple and more
robust algorithms such as SVM performed well on our data,
and thus can be also potentially used in future studies. In any
case, this provides a starting point for further exploration of
larger datasets, which will hopefully lead to digital biomarkers
for ataxic gait. Such biomarkers, which are objective, quantifiable
data collected by means of digital devices, such as wearables,
are increasingly used in human medicine and are typically
used to explain, assess and/or predict health-related outcomes
(43).

Another limitation is that the low-level statistical
features that we used in this study answering if ataxia was
present or not, do not provide yet adequate guidance for
clinical decision making, nor for monitoring of treatment.
Thus, another immediate direction for further studies
is exploring the explainability of the resulting models,
looking also at individual differences on ataxic patients,
and correlating IMU data characteristic with clinical data of
the patients.

As initially described, neurological issues can persist
for a long time and healing processes can be subtle and
long lasting. Extending the presented method from binary
classification (ataxic/healthy) to assessing the severity of
the ataxia condition will provide a strong basis for a
continuous and objective monitoring of the respective
condition, probably revealing subtle improvements or
deteriorations of ataxic gait. In addition, longitudinal
studies about drug impact on ataxic gait patterns could be
performed easily.

Finally, in this study we only considered classical
machine learning techniques. Obtaining more data samples
will allow us to further experiment with deep learning
approaches that capture temporal dimensions, which may
provide additional insights into the dynamics of ataxic
walking patterns.

5. CONCLUSION

Using a simple testing protocol of walking the dogs in a
straight line on a leash, we collected IMU data samples
from 23 dogs with ataxia, and sampled 55 healthy control
group dogs. We experimented with different machine
learning classification techniques on the IMU data (3
axes of accelerometer and 3 axes of gyroscope), reaching
above 95% accuracy. This indicates potential use for
smartphone apps for canine ataxia diagnosis and treatment
monitoring in a clinical as well as domestic setting. Future
research is needed to optimize and further develop this new
diagnostic tool.
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