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Nanomedicine

Federico Ambrogi, Danila Coradini, Niccolò Bassani, Patrizia Boracchi, Elia M. Biganzoli

In this chapter we focus on the bioinformatics
strategies for translating genome-wide expression
analyses into clinically useful cancer markers with
a specific focus on breast cancer with a perspective
on new diagnostic device tools coming from the
field of nanobiotechnology and the challenges
related to high-throughput data integration,
analysis, and assessment from multiple sources.

Great progress in the development of molecu-
lar biology techniques has been seen since the
discovery of the structure of deoxyribonucleic acid
(DNA) and the implementation of a polymerase
chain reaction (PCR) method. This started a new
era of research on the structure of nucleic acids
molecules, the development of new analytical
tools, and DNA-based analyses that allowed the
sequencing of the human genome, the comple-
tion of which has led to intensified efforts toward
comprehensive analysis of mammalian cell struc-

32.1 Background ......................................... 517

32.2 Biostatistics Supporting Bioinformatics
for Biomarker Discovery ........................ 519
32.2.1 Multiple Comparisons

and the False Discovery Rate ....... 522

32.3 Nanotechnology in Human Healthcare ... 525
32.3.1 New Nanobiotechnological

Perspectives in Diagnosis ............ 526

32.4 Discussion ............................................ 528

References .................................................. 529

ture and metabolism in order to better under-
stand the mechanisms that regulate normal cell
behavior and identify the gene alterations respon-
sible for a broad spectrum of human diseases,
such as cancer, diabetes, cardiovascular diseases,
neurodegenerative disorders, and others.

32.1 Background

Technical advances such as the development of molecu-
lar cloning, Sanger sequencing, PCR, oligonucleotide
microarrays and more recently the development of a va-
riety of so-called next-generation sequencing (NGS)
platforms has actually revolutionized translational re-
search and in particular cancer research. Now, scientists
can obtain a genome-wide perspective of cancer gene
expression useful to discover novel cancer biomarkers
for more accurate diagnosis and prognosis, and mon-
itoring of treatment effectiveness. Thus, for instance,
microRNA expression signatures have been shown to
provide a more accurate method of classifying cancer
subtypes than transcriptome profiling and allow classifi-
cation of different stages in tumor progression, actually
opening the field of personalized medicine (in which
disease detection, diagnosis, and therapy are tailored
to each individual’s molecular profile) and predictive

medicine (in which genetic and molecular information
is used to predict disease development, progression, and
clinical outcome).

However, since these novel tools generate a tremen-
dous amount of data and since the number of labora-
tories generating microarray data is rapidly growing,
new bioinformatics strategies that promote the maxi-
mum utilization of such data, as well as methods for
integrating gene ontology annotations with microarray
data to improve candidate biomarker selection are nec-
essary. In particular, the management and analysis of
NGS data requires the development of informatics tools
able to assemble, map, and interpret huge quantities
of relatively or extremely short nucleotide sequence
data.

As a paradigmatic example, a major pathology
such as breast cancer can be considered. Breast can-
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cer is the most common malignancy in women with
a cumulative lifetime risk of developing the disease
as high as one in every eight women [32.1]. Several
factors are associated with this cancer such as genet-
ics, life style, menstrual and reproductive history, and
long-term treatment with hormones. Until now breast
cancer has been hypothesized to develop, following
a progression model similar to that described for colon
cancer [32.2, 3], through a linear histological progres-
sion from adenosis, to ductal/lobular hyperplasia, to
atypical ductal/lobular hyperplasia, to in situ carcinoma
and finally to invasive cancer, corresponding to in-
creasingly worse patient outcome. Molecularly, it has
been suggested that this process is accompanied by in-
creasing alterations of the genes that encode for tumor
suppressor proteins, nuclear transcription factors, cell
cycle regulatory proteins, growth factors, and corre-
sponding receptors, which provide a selective advantage
for the outgrowth of mammary epithelial cell clones
containing such mutations [32.4].

Recent advances in genomic technology have im-
proved our understanding of the genetic events that
parallel breast cancer development. In particular, DNA
microarray-based technology, with the simultaneous
evaluation of thousands of genes, has provided re-
searchers with an opportunity to perform comprehen-
sive molecular and genetic profiling of breast cancer
able to classify it into some clinically relevant subtypes
and in the attempt to predict the prognosis or the re-
sponse to treatment [32.5–8]. Unfortunately, the initial
enthusiasm for the application of such an approach was
tempered by the publication of several studies reporting
contradictory results on the analysis of the same sam-
ples analyzed on different microarray platforms that
arose the skepticism regarding the reliability and the
reproducibility of this technique [32.9, 10]. In fact, de-
spite the great theoretical potential for improving breast
cancer management, the actual performance of predic-
tors, built using genes’ expression, is not as good as
initially published, and the lists of genes obtained from
different studies are highly unstable, resulting in dis-
parate signatures with little overlap in their constituent
genes. In addition, the biological role of individual
genes in a signature, the equivalence of several sig-
natures, and their relation to conventional prognostic
factors are still unclear [32.11]. Even more incomplete
and confusing is the information obtained when mo-
lecular genetics was applied to premalignant lesions;
indeed, genome analysis revealed an unexpected mor-
phological complexity of breast cancer, very far from
the hypothesized multi-step linear process, but sug-

gesting a series of stochastic genetic events leading to
distinct and divergent pathways towards invasive breast
cancer [32.12], the complexity of which limits the ap-
plication of really effective strategies for prevention and
early intervention.

Therefore, despite the great body of information
about breast cancer biology, improving our knowledge
about the puzzling bio-molecular features of neoplas-
tic progression is of paramount importance to better
identify the series of events that, in addition to genetic
changes, are involved in breast tumor initiation and pro-
gression and that enable premalignant cells to reach
the six biological endpoints that characterize malignant
growth (self-sufficiency in growth signals, insensitiv-
ity to growth-inhibitory signals, evasion of programmed
cell death, limitless replicative potential, sustained an-
giogenesis, and tissue invasion and metastasis). To do
that, instead of studying the single aspects of tumor
biology, such as gene mutation or gene expression pro-
filing, we must apply an investigational approach aimed
to integrate the different aspects (molecular, cellular,
and supracellular) of breast tumorigenesis.

At the molecular level, an increasing body of ev-
idence suggests that gene expression alone is not
sufficient to explain protein diversity and that epigenetic
changes (i. e., heritable changes in gene expression that
occur without changes in nucleotide sequences), such
as alteration in DNA methylation, chromatin structure
changes, and dysregulation of microRNA expression,
may affect normal cells and predispose them to sub-
sequent genetic changes with important repercussions
in gene expression, protein synthesis, and ultimately
cellular function [32.13–16]. At the cellular level, ev-
idence indicates that to really understand cell behavior,
we must consider also the microenvironment in which
cells grow; an environment that recent findings indi-
cate to have a relevant role in promoting and sustaining
abnormal cell growth and tumorigenesis [32.17].

This picture is further complicated by the con-
cept that among the heterogeneous cell population that
makes up the tumor, there exists an approximately
1% of cells, also known as tumor initiating cells that
are more likely derived from normal epithelial pre-
cursors (stem/precursor cells), and share with them
a number of key properties including the capacity of
self-renewal and the ability to proliferate and differ-
entiate [32.18, 19]. When altered in their response to
abnormal inputs from the local microenvironment, these
stem/precursor cells can give rise to preneoplastic le-
sions [32.20]. In fact, similarly to bone marrow-derived
stem cells, tissue-specific stem cells show remarkable
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plasticity within the microenvironment: they can en-
ter a state of quiescence for decades (cell dormancy),
but can become highly dynamic once activated by spe-
cific microenvironment stimuli from the surrounding
stroma and are ultimately transformed in tumor initi-
ating cells [32.21]. The stroma, in which the mammary
gland is embedded, is composed of adipocytes, fibrob-
lasts, blood vessels, and an extracellular matrix in which
several cytokines and growth factors are present. While
none of these cells are themselves malignant, they may
acquire an abnormal phenotype and altered function
due to their direct or indirect interaction with epithe-
lial stem/precursor cells. Acting as an oncogenic agent,
the stroma could provoke tumorigenicity in adjacent
epithelial cells leading to the acquisition of genomic
changes, at which epigenetic alterations also concur,
that can accumulate over time and provoke silencing
of more than 100 pivotal genes’ encoding for proteins
involved in tumor suppression, apoptosis, cell cycle reg-
ulation, DNA repair, and signal transduction [32.22].
Under these conditions, epithelial cells and the stroma
co-evolve towards a transformed phenotype following
a process that has not yet been worked out [32.23, 24].

Many of the soluble factors present in the stroma,
essential for the normal mammary gland development,
have been found to be associated with cancer initia-
tion. This is the case of hormone steroids (estradiol
and progesterone), which are physiological regulators
of breast development and whose dysregulation may re-
sult in preneoplastic and neoplastic lesions [32.25–27].
In fact, through their respective receptors, in epithelial
cells estrogens and progesterone may induce the syn-

thesis of local factors that, on the one hand, trigger
the activation of the stem/precursor cells and, on the
other hand, exert a paracrine effect on endothelial cells,
which in response to the vascular endothelial growth
factor, trigger neoangiogenesis activation [32.21]. In
addition, estrogens have been found implicated in the
local modifications of tissue homeostasis associated
to a chronic inflammation that may promote epithe-
lial transformation due to the continued production
of pro-inflammatory factors that favors generation of
a pro-growth environment and fosters cancer develop-
ment [32.28]; alternatively, transformed epithelial cells
would enhance activation of fibroblasts through a vi-
cious circle that supports the hypothesis according to
which cancer should be considered as a never healing
wound. Last but not least, very recent findings in animal
models have clearly indicated that an early event oc-
curring in the activation of estrogen-induced mammary
carcinogenesis is represented by the altered expression
of some oncogenic microRNAs (oncomir), suggesting
a functional link between hormone exposure and epige-
nomic control [32.29].

Concerning the forecasted role of new nanobiotech-
nology applications, disclosing the bio-molecular
events contributing to tumor initiation is, therefore, of
paramount importance and to achieve this goal a con-
vergence of advanced biocomputing tools for cancer
biomarker discovery and multiplexed nanoprobes for
cancer biomarker profiling is crucial. This is the one of
the major tasks currently ongoing in medical research,
namely the interaction of nanodevices with cells and
tissues in vivo and their delivery to disease sites.

32.2 Biostatistics Supporting Bioinformatics for Biomarker Discovery

Biomarkers refer to genes, RNA, proteins, and miRNA
expressions that can be correlated with a biological con-
dition or may be important for prognostic or predictive
aims as far as regards the clinical outcome. The dis-
covery of biomarkers has a long history in translational
research. In more recent years, microarrays have gen-
erated a great deal of work, promising the discovery
of prognostic and predictive biomarkers able to change
medicine as was known until then. Since the beginning,
the importance of statistical methods in such a context
was evident, starting from the seminal paper of Golub,
which showed the ability of gene expression to classify
tumors [32.30].

Although bioinformatics is the leading engine,
referenced in biomolecular literature, providing in-

formatics tool to handle massive omic data, the
computational core is actually represented by biostatis-
tics methodology aiming at extracting useful summary
information.

Biostatistics cornerstones are represented by large
sample and likelihood theories, hypothesis testing,
experimental design, and exploratory multivariate tech-
niques summarized in the genomic era according to
class comparison, prediction, and discovery.

Actually, massive omic data and the idea of per-
sonalized medicine need to develop statistical theory
according to new requirements. Even in the case of
multivariate techniques, the problems usually faced
using statistical techniques accounted for orders of
magnitude of less data than those encountered with
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Declared not
significant

Declared
significant Total

True null
hypothesis TN FP N

Non-true null
hypothesis

Total

FN TP P

NS S M

False discovery

True discovery

FWER = P (FP > 0)
FPR = FP/N

FPR = FP/S

Fig. 32.1 Explanation of FDR (for
further details, see [32.31])

high-throughput technologies. A situation that NGS
techniques will easily exacerbate.

In class comparison studies there is a predefined
group which identifies samples and the interest is in eval-
uating if the groups express the transcripts of interest
differently. Such studies are generally performed using
a transcript by transcript analysis, performing thousands
of statistical tests then correcting p-values to account for
the desired percentages of false positives and negatives.
In fact, the multiple comparison problem is the first con-
cern as traditionally methods for family-wise control are
generally too restrictive when accounting for thousands
of tests. The false discovery rate (FDR) was a major
breakthrough in such a context. The general concepts
underlying FDR are outlined later (Fig. 32.1).

Another topic discussed regards the parametric as-
sumptions underlying most of the statistical tests used.
Permutation tests were much developed to face this is-
sue and are now one of the standard tools available to
researchers.

Jeffery and colleagues [32.32] performed a system-
atic comparison of 9 different methods for identify-
ing genes differentially expressed across experimental
groups, finding that different methods gave rise to very
different lists of genes and that sample size and noise
level strongly affected predictive performance of the
methods chosen for evaluation. Also, evaluation of
the accuracy of fold-change compared to ordinary and
moderated t statistics was performed by Witten and
Tibshirani [32.33], which discusses the issues of re-
producibility and accuracy of gene lists returned by
different methods, claiming that

a researcher’s decision to use fold-change or a mod-
ified t-statistic should be based on biological, rather
than statistical, considerations.

In this sense, the classical limma-like approach [32.34]
has become a de facto standard in the analysis of
high-throughput data: gene expression and miRNA

microarrays, proteomics, and serial analysis of gene
expression (SAGE) generate an incredible amount of
data which is routinely analyzed element-wise, with-
out considering the multivariate nature of the problem.
Akin to this, non-parametric multivariate analysis of
variance (MANOVA) techniques have also been sug-
gested to identify differentially expressed genes in the
context of microarrays and qPCR-RT [32.35, 36], with
the advantage of not making any distributional assump-
tion on expression data and of being able to circumvent
the dimensionality issue related to omic data (n◦ of
subjects � n◦ of genes).

A well-known example of class comparison study
was that of van’t Veer and colleagues [32.37] in which
a panel of genes, a signature, was claimed to be pre-
dictive of poor outcome at 5 years for breast cancer
patients. In this case a group of patients relapsing at
5 years was compared in terms of gene expression to
a group of patients not relapsing within 5 years.

In class discovery studies no predefined groups are
available and the interest is in findings new groupings,
usually called bioprofiles, using the available expression
measures.

The standard statistical method to perform class dis-
covery is cluster analysis that received great expansion
due to gene expression studies. It is worth saying that
cluster analysis is a powerful yet tricky method that
should be applied taking care of outliers, stability of re-
sults, number of suspected profiles, and so on. These
aspects are very hard to face with thousands of tran-
script to be analyzed. Even more subtle is the problem
of the interpretation of the clusters obtained in terms of
disease profiles and the definition of a rule to define the
discovered profiles.

Alternatively, classical multivariate methods, such
as principal components analysis (PCA), are gaining
relevance for visualization of high-dimensional data
(Fig. 32.2) through data reduction [32.38, 39]. Recent
work on lung cancer highlighted different patterns of
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Cluster 1 Cluster 2 Cluster 3

Fig. 32.2 PCA-based biplot for evaluating
association between genes involved in cell-
polarity pathway and a set of tumor cell-lines
from the NCI60 panel. Expression values of
76 genes as profiled on 23 tumor cell lines
(6 colon, 6 breast, 8 renal and 3 leukemia)
were obtained from the well known NCI60
dataset [32.44,45], publicly available online on
the ArrayExpress website with accession num-
ber E-GEOD-5720 (hybridization performed
with human HG-U133A/133B Affymetrix
GeneChip). To interpret results, let us use
some examples. Cell lines labeled with olive
green points (colon and ER+ breast cancer)
are positively associated with the set of genes
on the lower part of the right vertical axis,
namely genes from CLDN15 and CDH1; on
the other hand, cell lines labeled with light
blue squares (renal lines and ER- breast can-
cer) are negatively associated with this set of
genes, but show some mild positive associa-
tion with genes on the left side of the upper
horizontal axis, namely genes from CDH2 to
ZYX

expression between healthy subjects and mesotelioma-
affected subjects using multivariate visualization tech-
niques and evaluated relationships between gene-sets
involved in different biological pathways via partial
least squares regression [32.40,41]. It is relevant to note
that all of these methods will have to face relevant chal-
lenges, in the perspective of being applied in the context
of NGS data, for which a considerable amount of issues
has already arisen [32.42]. The use of multivariate tech-
niques is thus a principled way for making it through the
steps of data dimensionality reduction, data normaliza-
tion, and integration, which can lead to higher chances
of driving the exploration of distinct bioprofiles [32.43].

The work of Perou and colleagues [32.5] is an im-
portant example of class discovery by cluster analysis
in a major pathology such as breast cancer. In their
work, the authors found genes distinguished between
estrogen positive cancer with luminal characteristics
and estrogen negative cancers. Among these two sub-
groups, one had a basal characterization and the other
showed patterns of up-regulation for genes linked to
oncogeneErb-B2. Repeated application of cluster anal-

ysis in different case series resulted in very similar
groupings.

Notwithstanding the above-mentioned issues con-
nected to cluster analysis, one of the major break-
throughs of genomic studies was actually believed to
be the definition of genomic signatures/profiles by the
repeated application of cluster analysis to different case
series without the definition of a formal rule for class
assignment of new subjects.

Profiles may then be correlated with clinical out-
come as was done for breast cancer by van’t Veer
and colleagues [32.37]. Now, more than 10 years af-
ter this study, it is not yet clear which is the real
contribution of microarray-based gene expression pro-
filing to breast cancer prognosis. Of all the so-called
first-generation signatures, only oncotype DX [32.46],
a qRT-PCR based analysis of 21 genes, has reached
level II of evidence to support tumor prognosis and has
been included in the National Comprehensive Cancer
Network guidelines, whereas the remaining signatures
have only obtained level III of evidence so far [32.47].
Reasons for this are, among the others, a lack of stabil-
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ity in terms of genes that the lists are composed of and
strong time-dependence, i. e., reduced prognostic value
after 5 to 20 years of follow-up.

Another, and more important, issue for prognos-
tic/prediction studies is connected to the design of
the study itself. In fact, a prognostic study should
be planned by defining a cohort that will be fol-
lowed during time while a case control study may
be only suggestive of signatures to be considered for
clinical management. See letter [32.48] commenting
reference [32.49] for concerns regarding such an issue.

32.2.1 Multiple Comparisons
and the False Discovery Rate

Class comparison in genomic-wide studies is one of the
most common and challenging applications since the
advent of microarray technology. The first study on pre-
dictive signatures in breast cancer in 2002 [32.6] was
mainly a class comparison study.

From the statistical viewpoint one of the first prob-
lems evidenced was the large number of statistical tests
performed in such an analysis. In particular, the clas-
sical control for false positives, emphasizing the speci-
ficity of the screening appeared from the beginning to be
too restrictive with the cost of false negatives too high.

To understand such an issue, let us suppose to have
to compare the gene expression in a group of tumor tis-
sues with that of a group of normal tissues. For each
gene a statistical test controlling the probability of say-
ing that a gene is different when in fact it is not (false
positive, FP), is performed. Such an error is called type
one error and its level is generally called α and fixed
at a 5% level. The problem is that a test at α level is
performed for each gene. Therefore, if the probability
of making a mistake (FP) is 0.05, while the probability
of not making a mistake is 0.95 (this is the probability
of saying the gene is not differentially expressed when it
is not, true negative), when performing, say, 1000 tests
the probability of not making any mistake is 0.951000,
which is practically 0. Accordingly, the probability of
at least one FP is practically 1. How can the specificity
of the experiment be controlled? A large number of pro-
cedures is available, the most simple and known is the
Bonferroni correction. Let us see how it works.

In particular, if n tests are performed at α level, the
probability of not having any false positive is (1−α)n ,
therefore the probability of making at least one false
positive is 1− (1−α)n , which can be approximated as
1−nα (for small α). The Bonferroni correction orig-
inates from this. In fact, if the tests are performed at

level αB = α/n, then we can expect to have no false pos-
itive among the genes declared differentially expressed
at α level. This is, in fact, at the cost of a large num-
ber of false positives. In genomic experiments, when
thousands of tests are performed, the Bonferroni sig-
nificance level is so low that very few genes can easily
pass the first screening probably paying too high costs in
terms of genes declared not significantly differentially
expressed when actually they have a differential expres-
sion. The balance between specificity and sensibility is
a fairly old problem in screening problems, which is
exacerbated with high-throughput data analysis.

One of the most common approaches applied in
such a context is the proposal of Benjamini and
Hochberg [32.50] called the false discovery rate (FDR)
trying to control the number of false positives among
the genes declared significant.

To better understand the novelty of FDR, let us
suppose to have M genes to be considered in the high-
throughput experiment, N of the M genes are truly
differentially expressed while P are not. Performing
the appropriate statistical test NS of the M genes are
declared not different between groups under compari-
son while S are significantly different (Fig. 32.1). The
type one error rate α (FPR) controls the number of
FP with respect to N , while using the Bonferroni cor-
rection the probability that FP is greater than 0 is
controlled. The FDR changes perspective and consid-
ers the columns of the table instead of the rows. FDR
controls the number of FP with respect to S. If, for ex-
ample, 10 genes are declared differentially expressed
with an FDR of 20%, it is expected that 2 be false posi-
tives. This may allow greater flexibility in the managing
of the screening phase of the analysis (see Fig. 32.3 for
a graphical representation of results from a class com-
parison microarray study, with an application of FDR
concepts). The problem first solved by Benjamini and
Hochberg was basically how to estimate FDR and dif-
ferent proposals have appeared since then, for example
the q-value of Storey [32.51].

In general, omic and multiplexed diagnostic tech-
nologies with the ability to produce vast amounts of
biomolecular data, have vastly outstripped our ability
to sensibly deal with this data deluge and extract useful
and meaningful information for decision making. The
producers of novel biomarkers assume that an integrated
bioinformatics and biostatistics infrastructure exists to
support the development and evaluation of multiple as-
says and their translation to the clinic. Actually, the best
scientific practice for the use of high-throughput data is
still to be developed. In this perspective, the existence of
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Fig. 32.3 Volcano plot of differential gene expression pat-
tern between experimental groups. On the x-axis the least
squares (LS) means (i. e., difference of mean expression
on log2 scale between experimental groups) and on the y-
axis –log10 transformed p-values corrected for multiplicity
using the FDR method from Benjamini et al. [32.50] are re-
ported. The horizontal red line corresponds to a cut-off for
the significance level α at 0.05. Points above this threshold
represent genes which are actually differentially expressed
between experimental groups, and that are to be further
investigated

advanced computational technologies for bioinformat-
ics is irrelevant along the translational research process
unless supporting biostatistical evaluation infrastruc-
tures exist to take advantage of developments in any
technology.

In this sense, a key problem is the fragmentation
of quantitative research efforts. The analysis of high
dimensional data is mainly conducted by researchers
with limited biostatistical experience using standard
software without the knowledge of the underlying sta-
tistical principles of the methodology then exposing the
results to a wide uncertainty not only due to sample
size limitations. Moreover, so far, a large amount of
biostatistical methods and software tools supporting
bioinformatics analysis of genomic/proteomic data has
been provided but reference standardized analysis pro-
cedures coping with suitable preprocessing and quality
control approaches on raw data coming from omic
and multiplex assays are still waiting for development.
Formal initiatives for the integration of biostatistical re-
search groups with functional genomics and proteomics
labs are one of the major challenges in this context. In
fact, besides the development of innovative biostatistics
and bioinformatics tools, a major key of success lies in
the ability to integrate different competencies. Such an
integration cannot be simply demanded for the devel-
opment of software, such as the ArrayTrack initiative,
but needs to develop integrated skills assisted by a soft-
ware platform able to outline the analysis plan. In such
a context, different strategies can be adopted from open
software, such as R and bioconductor, to commercial
ones such as SAS/JMP genomics.

In a functional dynamic perspective, to the charac-
terization of the bio-profiles of cancer affected patients,
is added the complexity related to the prolonged follow-
up of patients with the necessity of the registration of
the event-history of possible adverse events (local re-
currence and/or metastasis) before death, that may offer
useful insight into disease dynamics to identify a sub-
set of patients with worse prognosis and better response
to the therapy. This makes it necessary to develop
strategies for the integration of clinical and follow-up
information with those deriving from genetic and mo-
lecular characterizations.

The evaluation and benchmarking of new analytical
processes for the discovery, development, and clinical
validation of new diagnostic/prognostic biomarkers is
an extremely important problem especially in a fast
growing area such as translational research based on
functional genomics/proteomics. In fact, the presenta-
tion of overoptimistic results based on the unsuited
application of biostatistical procedures can mask the
true performance of new biomarker/bioprofiles and cre-
ate false expectations about its effectiveness.

Guidelines for omic and cross-omic studies should
be defined through the integration of different compe-
tencies coming from clinical-translational, bioinformat-
ics, and biostatistics research competencies.

This integrated contribution from multidisciplinary
research teams will have a major impact on the de-
velopment of standard procedures that will standardize
the results and make research more consistent and ac-
curate according to relevant bioanalytical and clinical
targets.
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Fig. 32.4 Microarray studies have provided insight on global gene expression in cells and tissues with the expectation of
prognostic assessments improvement. The identification of genes whose expression levels are associated with recurrence
might also help better discriminating those subjects who are likely to respond to the various tailored systemic treatments.
However, microarray experiments raised several questions to the statistical community about the design of the experi-
ments, data acquisition and normalization, supervised and unsupervised analysis. All these issues are burdened by the
fact that typically the number of genes being investigated far exceeds the number of patients. It is well-recognized that too
large a number of predictor variables affects the performance of classification models: Bellman coined the term curse of
dimensionality [32.52], referring to the fact that in the absence of simplifying assumptions, the sample size needed to es-
timate a function of several variables to a given degree of accuracy (i. e., to get a reasonably low-variance estimate) grows
exponentially with the number of variables. To avoid this problem, feature selection and extraction issue play a crucial
role in microarray analysis. This has led several researchers to find it judicious to filter out genes that do not change their
expression level significantly, reducing the complexity of the data and improving the signal to noise ratio. However, the
adopted measure of significance in filtering (the implicitly controlled error measure) is not often easy to interpret in terms
of the simultaneous testing of thousands of genes. Moreover, gene expressions are usually filtered on a per-gene basis
and seldom taking into account the correlation between different gene expressions. This filtering approach is commonly
used in most current high-throughput experiments whose main objective is to detect differentially expressed genes (ac-
tive genes) and, therefore, to generate hypotheses rather than to confirm them. All these methods, based on a measure of
significance, select genes from a supervised perspective, i. e., accounting for the outcome of interest (the subject status).
However, an unsupervised approach might be useful in order to reveal the pattern of associations among different genes
making it possible to single out redundant information. The figure shows the data analysis pipeline developed in many
papers dealing with expressions from high throughput experiments

Integration and standardization of approaches for
assessment of diagnostic and prognostic performance
is a key issue. Many of the clinical and translational
research groups have chosen different approaches for
biodata modeling, tailored to specific types of medical
data. However, very few proper benchmarking studies
of algorithm classes have been performed worldwide
and fewer examples of best practice guidelines have
been produced. Similarly, few studies have closely ex-
amined the criteria under which medical decisions are
made. The integrating aspects of this theme relates to
methods and approaches for inference, diagnosis, prog-
nosis, and general decision making in the presence of
heterogeneous and uncertain data.

A further priority is to ensure that research in
biomarker analysis is designed and informed from the
outset to integrate well with clinical practice (to facili-
tate widespread clinical acceptance) and that it exploits
cross-over between methods and knowledge from dif-
ferent areas (to avoid duplication of efforts to facilitate
rapid adoption of good practice in the development
of this healthcare technology). Reference problems are
related to the assessment of improved diagnostic and
prognostic tools in the clinical setting, resorting to
observational and experimental clinical studies from
phase I to phase IV and the integration with studies
on therapy efficacy which would involve bioprofile and
biopattern analysis.
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In this perspective, the integration of different omic
data is a well-known issue that is receiving increasing
attention in biomedical research [32.53, 54], and which
questions the capability of researchers to make sense
out of a huge amount of data with very different fea-
tures. Since this integration can not only be seen as an
IT problem, proper biostatistical approaches need to be
taken into account that consider the multivariate nature
of the problem in the light of exploiting the maximum
prior information about the biological patterns underly-
ing the clinical problem.

A critical review of microarray studies was per-
formed earlier in a paper by Dupuy and Simon [32.10],
in which a thorough analysis of the major limitations
and pitfalls of 90 microarray studies published in 2004
concerning cancer outcome was done (see Fig. 32.4 for
a general pipeline for high-throughput experiments).
Integrated into this review was the attempt to write
guidelines for statistical analysis and reporting of gene
expression microarray studies. Starting from this work,
it will be possible to extend the outlined criticisms to
a wider range of omic studies, in order to produce up-
dated guidelines useful for biomolecular researchers.

In the perspective of integrating omic data coming
from different technologies, a comparison of microar-
ray data with NGS platforms will be a relevant
point [32.55–57]. Due to the lack of sufficiently stan-

dardized procedures for processing and analyzing NGS
data, much attention will be given to the process
of data generation and of quality control evaluation.
Such an integration is crucial because, though capa-
bilities of NGS platforms mostly outperform those of
microarrays, protocols of management and data analy-
sis are typically very time-consuming, thus making it
impractical to be used for in-depth analysis of large
samples.

Of note, one of the ultimate goals of biomedical re-
search is to connect diseases to genes that specify their
clinical features and to drugs capable of treating them.
DNA microarrays have been used for investigating
genome-wide expression of common diseases produc-
ing a multitude of gene signatures predicting survival,
whose accuracy, reproducibility, and clinical relevance
has, however, been debated [32.48, 49, 58, 59]. More-
over, the regulatory relationships between the signature
genes have rarely been investigated, largely limiting
their biological understanding. The genes, indeed, never
act independently from each other. Rather, they form
functional connections that coordinate their activity.
Hence, it is fundamental that in each cell in every life
stage, regulatory events take place in order to keep the
healthy steady state. Any perturbation of a gene net-
work, in fact, has a dramatic effect on our life, leading
to disease and even death.

32.3 Nanotechnology in Human Healthcare

The prefix nano is from the Greek world meaning
dwarf. Nanotechnology refers to the science of mater-
ials whose functional organization is on the nanometer
scale, that is 10−9 m. Starting from ideas originating in
physics in the 1960s and boosted by the need of minia-
turization (i. e., speed) of the electronic industry the
field has grown rapidly. Today, nanotechnology is gain-
ing an important place in the medicine of the future.
In particular, by using the patho-physiological condi-
tions of diseased and inflamed tissues it is possible to
target nanoparticles and with them drugs, genes, and
diagnostic tools.

Moreover, the spatial and/or temporal contiguity of
data from NGS and nanobiotech diagnostic approaches
imposes the adoption of methods related to signal
analysis which are still to be introduced in standard soft-
ware, being related to statistical functional data analysis
methods. Therefore, the extension of the multivariate
statistical methodologies adopted so far is requested in
a functional data context; a problem that has already

been met in the analysis of mass spectrometry data from
proteomic analyses.

Nanotechnology-based platforms for the high-
throughput, multiplexed detection of proteins and
nucleic acids actually promise to bring substantial
advances in molecular diagnostics. Forecasted appli-
cations of nano-diagnostic devices are related to the
assessment of the dynamics of cell process for a deeper
knowledge of the ongoing etio-pathological process at
the organ, tissue, and even single cell level.

NGS is a growing revolution in genomic nanobiotech-
nologies that parallelized the assay process, integrating
reactions at the micro or nano scale on chip surfaces,
producing thousands or millions of sequences at once.
These technologies are intended to lower the costs of
nucleic acid sequencing far beyond that possible with
earlier methods.

Concerning cancer, a key issue is related to the im-
provement of early detection and prevention through the
understanding of the cellular and molecular pathways
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of carcinogenesis. In such a way it would be possible
to identify the conditions that are precursors of cancer
before the start of the pathological process, unraveling
its molecular origins. This should represent the next
frontiers of bioprofiling to allow the strict monitoring
and possible reversal of the neoplastic transformation
through personalized preventive strategies. Advances in
nanobiotechnology enables the visualization of changes
in tissues and physiological process with a subcellular
real-time spatial resolution. This is a revolution that can
be compared to the daguerreotype pictures from cur-
rent high-throughput multiplex approaches to the digital
high resolution of next generation diagnostic devices.

Enormous challenges remain in managing and an-
alyzing the large amounts of data produced. Such
evolution is expected to have a strong impact in terms
of personalized medical prevention and treatment with
considerable effects on society. Therefore, the success
will be strongly related to the capability of integrating
data from multiple sources in a robust and sustainable
research perspective, which could enhance the transfer
of high-throughput molecular results to novel diagnos-
tic and therapy application.

The new framework of nanobiotechnology ap-
proaches in biomedical decision support according to
improved clinical investigation and diagnostic tools
is emerging. There is a general need for guidelines
for biostatistics and bioinformatics practice in the
clinical translation and evaluation of new biomark-
ers from cross-omic studies based on hybridization,
NGS, and high-throughput multiplexed nanobiotech-
nology assays. Specifically, the major topics concern:
bioprofile discovery, outcome analysis in the presence
of complex follow-up data, assessment of diagnostic,
and prognostic values of new biomarkers/bioprofiles.

32.3.1 New Nanobiotechnological
Perspectives in Diagnosis

Current molecular diagnostic technologies are not con-
ceived to manage biological heterogeneity in tissue
samples, in part because they require homogeneous
preparation, leading to a loss of valuable spatial infor-
mation regarding the cellular environment and tissue
morphology. The development of nanotechnology has
provided new opportunities for integrating morpholog-
ical and molecular information and for the study of the
association between observed molecular and cellular
changes with clinical-epidemiological data.

Concerning specific approaches, bioconjugated
quantum dots (QDs) [32.60–63] have been used to

quantify multiple biomarkers in intact cancer cells and
tissue specimens, allowing the integration of tradi-
tional histopathology versus molecular profiles for the
same tissue [32.64–69]. Current interest is focused on
the development of nanoparticles with one or multiple
functionalities. For example, binary nanoparticles with
two functionalities have been developed for molecu-
lar imaging and targeted therapy. Bioconjugated QDs,
which have both targeting and imaging functions, can
be used for targeted tumor imaging and for molecular
profiling applications.

Nanoparticle material properties can be exploited
to elicit clinical advantage for many applications, such
as for medical imaging and diagnostic procedures.
Iron oxide constructs and colloidal gold nanoparticles
can provide enhanced contrast for magnetic resonance
imaging (MRI) and computed tomography (CT) imag-
ing, respectively [32.70, 71]. QDs provide a plausible
solution to the problems of optical in vivo imaging due
to the tunable emission spectra in the near-infrared re-
gion, where light can easily penetrate through the body
without harm and their inherent ability to resist bleach-
ing [32.72]. For ultrasound imaging, contrast relies on
impedance mismatch presented by materials that are
more rigid or flexible than the surrounding tissue, such
as metals, ceramics, or microbubbles [32.73]. Contin-
ued advancements of these nano-based contrast agents
will allow clinicians to image the tumor environment
with enhanced resolution for a deeper understanding of
disease progression and tumor location.

Additional nanotechnologically-based detection and
therapeutic devices have been made possible using pho-
tolithography and nucleic acid chemistry [32.74, 75].
The same technology that enabled integrated circuitry,
produced microelectromechanical systems (MEMS) for
selective molecular sensing, sieving, and controlled
drug release [32.76]. Microfluidic systems, also known
as lab-on-chip, are fabricated by soft lithography of
inexpensive polymers [32.77]. Micro- and nanoarrays,
have experienced success for molecular diagnostic,
genotyping, and biomarker-guided therapeutic target-
ing [32.76, 78, 79]. Moreover, advances in proteomics
have been made possible due to the technical refinement
of lithographic resolution [32.80]. Recent interest in
nanowires [32.81, 82] and cantilever arrays [32.83–85]
for biomarker detection has shown promise. The former
are biologically gated transistors able to detect mul-
tiple, real-time, simultaneous molecular events. These
innovative nanodevices equal or exceed the sensitivity
of commercially available approaches [32.86] and are
anticipated to be clinically available in the near future.
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Highly sensitive biosensors that recognize genetic
alterations or detect molecular biomarkers at extremely
low concentration levels are crucial for the early de-
tection of diseases and for early stage prognosis and
therapy response. Nanowires have been used to detect
several biomolecular targets such as DNA and pro-
teins [32.82, 87]. The identification of DNA alterations
is crucial to better understand the mechanism of a dis-
ease such as cancer and to detect potential genomic
markers for diagnosis and prognosis. Other studies
have reported the development of a three-dimensional
gold nanowire platform for the detection of mRNA
with enhanced sensitivity from cellular and clinical
samples. Highly sensitive electrochemical sensing sys-
tems use peptide nucleic acid probes to directly detect
specific mRNA molecules without PCR amplification
steps [32.88–90].

The development of immuno and aptamer-based
nanowire biosensors to detect cancer biomarkers such
as VEGF [32.91] and CA125 [32.92], or SARS virus
N-protein [32.93] has shown a great sensitivity, pro-
viding the potential use of these nanodevices for
point-of-care diagnostic applications. To improve the
diagnostic efficacy of the biosensors, a multiplexed ap-
proach is needed to accurately identify heterogeneous
diseases such as cancer [32.94].

Cantilever nanosensors have also been used to de-
tect minute amount of protein biomarkers. Label-free
resonant microcantilever systems have been devel-
oped to detect the ng/mL level of alpha-fetoprotein,
a potential marker of hepatocarcinoma, providing an
opportunity for early disease diagnosis and progno-
sis [32.95]. Nanofabricated and functionalized de-
vices such as nanowires and nanocantilevers are fast,
multiplexed, and label-free methods that provide ex-
traordinary potential for the future of personalized
medicine.

The combination of data from multiple imaging
techniques offers many advantages over data collected
from a single modality. Potential advantages include:
improved sensitivity and specificity of disease detec-
tion and monitoring, smarter therapy selection based
on larger data sets, and faster assessment of treatment
efficacy. The successful combination of imaging modal-
ities, however, will be difficult to achieve with multiple
contrast agents. Multimodal contrast agents stand to
fill this niche by providing spatial, temporal, and/or
functional information that corresponds with anatomic
features of interest.

There is also great interest in the design of multi-
functional nanoparticles, such as those that combine

contrast and therapeutic agents. The integration of di-
agnostics and therapeutics, known as theranostics, is
attractive because it allows the imaging of therapeutic
delivery, as well as follow-up studies to assess treatment
efficacy.

Finally, a key direction of research is the optimiza-
tion of biomarker panels via principled biostatistics
approaches for the quantitative analysis of molecular
profiles for clinical outcome and treatment response
prediction. The key issues that will need to be addressed
are: (i) a panel of tumor markers will allow more ac-
curate statistical modeling of the disease behavior than
relying on single tumor markers; and (ii) the combi-
nation of tumor gene expression data and molecular
information of the cancer microenvironment is neces-
sary to define aggressive phenotypes of cancer, as well
as for determining the response of early stage disease to
treatment (chemotherapy, radiation, or surgery).

Currently, the major tasks in biomedical nanotech-
nology are (i) to understand how nanoparticles interact
with blood, cells, and organs under in vivo physio-
logical conditions and (ii) to overcome one of their
inherent limitations, that is, their delivery to diseased
sites or organs [32.96–98]. Another major challenge
is to generate critical studies that can clearly link
biomarkers with disease behaviors, such as the rate of
tumor progression and different responses to surgery,
radiation or drug therapy [32.99]. The current chal-
lenge is, therefore, related to the advancement of
biostatistics and biocomputing techniques for the anal-
ysis of novel high-throughput biomarkers coming from
nanotechnology applications. Current applications in-
volve high-throughput analysis of gene expression data
and for multiplexed molecular profiling of intact cells
and tissue specimens. The advent of fast and low
cost high-throughput diagnostic devices based on NGS
approaches appears to be of critical relevance for im-
proving the technology transfer to disease prevention
and clinical strategies.

The development of nanomaterials and nanode-
vices offers new opportunities to improve molecular
diagnosis, increasing our ability to discover and iden-
tify minute alterations in DNA, RNA, proteins, or
other biomolecules. Higher sensitivity and selectivity
of nanotechnology-based detection methods will per-
mit the recognition of trace amounts of biomarkers
which will open extraordinary opportunities for sys-
tems biology analysis and integration to elicit effective
early detection of diseases and improved therapeutic
outcomes; hence paving the way to achieving individ-
ualized medicine.
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Effective personalized medicine depends on the
integration of biotechnology, nanotechnology, and in-
formatics. Bioinformatics and nanobioinformatics are
cohesive forces that will bind these technologies to-
gether. Nanobioinformatics represents the application
of information science and technology for the purpose
of research, design, modeling, simulation, communica-
tion, collaboration, and development of nano-enabled
products for the benefit of mankind. Within this frame-
work a critical role is played by evaluation and
benchmarking approaches according to a robust Health

Technology Assessment approach; moreover the devel-
opment of enhanced data analysis approaches for the
integration of multimodal molecular and clinical data
should be based on up to date and validated biostatisical
approaches. Therefore, in the developing nanobiotech-
nology era, the role of biostatistical support to bioinfor-
matics is definitely essential to prevent loss of money
and suboptimal developments of biomarkers and diag-
nostic disease signature approaches of the past, which
followed a limited assessment according to a strict busi-
ness perspective rather than to social sustainability.

32.4 Discussion

Concerning the relevance and impact for national health
systems, it is forecasted that current omic approaches
based on nanobiotechnology will contribute to the iden-
tification of next generation diagnostic tests which
could be focused on primary to advanced disease pre-
vention by early diagnosis of genetic risk patterns, or
the start or natural history of the pathological process
of multifactor chronic disease by the multiplexed as-
sessment of both direct and indirect, inner genetic, or
environment causal factors.

A benefit of such a development would be finally re-
lated to the reduction of costs in the diagnostic process
since nanobiotechological approaches seem best suited
in the perspective of points-of-care POC diagnostic fa-
cilities which could be disseminated in large territories
with a reduced number of excellence clinical facilities
with reference diagnostic protocols. Nanomaterials are
providing the small, disposable lab-on-chip tests that
are leading this new approach to healthcare. A variety of
factors are provoking calls for changes in how diagnosis
is managed. The lack of infrastructure in the developing
world can be added to the inefficiency and cost of many
diagnostic procedures done in central labs, rather than
by a local doctor. For the developed world, an increas-
ingly elderly population is going to exacerbate demand
on healthcare and any time-saving solutions will help
deal with this new trend. POC devices are looking to
reduce the dependence on lab tests and make diagno-
sis easier, cheaper, and more accessible for countries
lacking healthcare infrastructure.

A key role in the overall framework will be played
by data analysis under principled biostatistical ap-
proaches to develop suitable guidelines for data quality
analysis, the following extraction of relevant informa-
tion and communication of the results in an ethical and
sustainable perspective for the individual and society.

The proper, safe and secure management of person-
alized data in a robust and shared bioethical reference
framework is, indeed, expected to reduce the social
costs related to unsuited medicalization through re-
newed preventive strategies. A strong biostatistical
based Health Technology Assessment phase will be
essential to avoid the forecasted drawbacks of the intro-
duction of such a revolution in prevention and medicine.

To be relevant for national health services, re-
search on biostatistics and bioinformatics applied to
nano-biotechnology should exploit its transversal role
across multiple applied translational research projects
on biomarker discovery, development, and clinical vali-
dation until their release for routine application for diag-
nostic/prognostic aims. Objectives that would enable an
accelerated framework for translational research since
the involvement of quantitative support are listed here:

• Technological platforms for the developments in the
fields of new diagnostic prevention and therapeu-
tic tools. In the context of preventing and treating
diseases, the objectives are to foster academic and
industrial collaboration through technological plat-
forms where multidisciplinary approaches using
cutting edge technologies arising from genomic re-
search may contribute to better healthcare and cost
reduction through more precise diagnosis, individ-
ualized treatment, and more efficient development
pathways for new drugs and therapies (such as the
selection of new drug candidates), and other novel
products of the new technologies.• Patentable products: customized array and mul-
tiplex design with internal and external controls
for optimized normalization. Validation by dou-
ble checked expression results for genes or protein
in the customized array and multiplex assays.
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Patenting of validated tailor-made cDNA/proteomic
arrays that encapsulate gene/protein signatures re-
lated to the response to the therapy with optimized
cost/effectiveness properties.

A robust, multidisciplinary quantitative assessment
framework in translational research is a global need,
which should characterize any specific laboratory and
clinical translation project. However, the quantitative
assessment phase is rarely based on an efficient co-
operation between biologists, biotechnologists, and
clinicians with biostatisticians, with relevant skills in

this field. This represents a major limitation to the
rapid transferability of basic research results to health-
care. Such a condition is solved in the context of
pharmacology in the research and development of new
drugs to their assessment in clinical trials, whereas,
for diagnostic/prognostic biomarkers, this framework is
still to be fully defined.

Such a gap is wasting resources and is malprac-
tice in the use of biomarkers and related bioprofiles for
clinical decision making in critical phases of chronic
and acute major diseases like cancer and cardiovascular
pathologies.
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