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During the past ten years, microRNAs (miRNAs) have been shown to play a more significant role in the formation and progression
of cancer diseases than previously thought. With an increase in reports about the dysregulation of miRNAs in diverse tumor
types, it becomes more obvious that classic tumor-suppressive molecules enter deep into the world of miRNAs. Recently, it has
been demonstrated that a typical tumor suppressor p53, known as the guardian of the genome, regulates some kinds of miRNAs
to contribute to tumor suppression by the induction of cell-cycle arrest and apoptosis. Meanwhile, miRNAs directly/indirectly
control the expression level and activity of p53 to fine-tune its functions or to render p53 inactive, indicating that the interplay
between p53 and miRNA is overly complicated.The findings, along with current studies, will underline the continuing importance
of understanding this interlocking control system for future therapeutic strategies in cancer treatment and prevention.

1. Introduction

Cancer is commonly an age-related disease triggered by the
accumulation of genomic mutations that lead to the dysreg-
ulation of tumor-suppressive genes and/or protooncogenes.
For example, the functions of TP53 (tumor-suppressive gene)
and c-MYC (oncogene) have been extensively investigated,
and their critical roles in complexly regulating tumori-
genesis, including cell-cycle progression/arrest, apoptosis,
senescence, and energymetabolism, have been uncovered [1–
4]. Specifically, the significance of tumor suppressor p53 has
been suggested by the fact that DNAmutation or loss of TP53
is observed in many types (over 50%) of human tumors and
by the possibility that the dysfunctions affect the p53 signaling
network in over 80% of tumors [5, 6]. As a transcriptional
activator, the p53 protein induces various kinds of tumor-
suppressive genes, such as p21 (G

1
/S-arrest), 14-3-3𝜎 (G

2
/M-

arrest), and PUMA (apoptosis) [7–10]. p53 has also been
reported to negatively regulate specific proteins: for instance,
the p53-mediated repression of the cell-cycle regulators, such

as cyclin-dependent kinase 4 (CDK4) and cyclin E2,may lead
to cell-cycle arrest [10, 11].These prove the pivotal roles of p53
as a cellular gatekeeper.

Recently, it has been realized that small noncoding RNAs
known as microRNAs (miRNAs) contribute to many human
diseases, including cancers; that a general downregulation of
miRNAs is observed in cancers as compared with normal
tissues; and that miRNA expression profiles can be used
to classify poorly differentiated tumors [12]. In addition,
some kinds of miRNAs are shown to be connected to a
well-studied tumor-suppressive or oncogenic network [13].
It remains to be investigated how miRNAs are regulated
by transcription factors, but it is suggested that p53 enters
the miRNA world to control the expression patterns of
some miRNAs and promote cell-cycle arrest and apoptosis
through the miRNA effector pathway. miR-34a is one of the
representative miRNAs under the direct control of p53, and
this upregulation induces cell-cycle arrest and apoptosis [14–
18]. Moreover, there are many studies about miRNA effects
on cell proliferation and survival in cancers, with attention
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given to the interplay between p53 and the miRNA network.
In this review, we will focus on the regulation of the cancer
cell cycle and apoptosis by miRNA linked with the p53 axis.
We will also summarize the key miRNAs concerned with the
cell cycle and apoptosis in cancers.

2. miRNA Discovery, Biogenesis,
and Mechanism

The first miRNAs discovered were lin-4 and let-7, both of
which are the key regulators in the pathway controlling
the timing of postembryonic development in Caenorhab-
ditis elegans [19–21]. After this discovery, miRNAs have
been identified in diverse organisms, such as worms, flies,
mice, humans, and plants. Several miRNAs are conserved
among different species, indicating that these miRNAs might
have important functions and modulate gene expression.
Currently, in humans, over 2,000 microRNAs have been
identified or predicted based on the miRBase database
(http://www.mirbase.org/). Computational analyses suggest
that about 5,300 genes contain miRNA target sites: ∼30% of
human genes might be subject to the translational regulation
of miRNAs [22, 23].

miRNAs are initially transcribed by RNA polymerase
II/III into primary transcripts (pri-miRNAs) [24, 25], which
are processed by the complex of RNase III enzyme, Drosha,
and its partner DGCR8 [26]. The pri-miRNAs are converted
into ∼65 nucleotides (nt) of a stem-loop precursor (pre-
miRNA) [27]. These pre-miRNAs are transported to cyto-
plasm by Exportin-5/Ran-GTP and processed by another
RNase III, Dicer, to generate a double-strand RNA of about
19–25 nt in length [28–30]. One strand of miRNA gives rise
to the mature miRNA, which is incorporated into the RNA-
induced silencing complex (RISC). The miRNAs guide the
RISC complex to the 3-untranslated region (3-UTR) of
the target mRNAs, leading to the translational repression
or destabilization of the mRNA [31, 32]. In animal systems,
the recognition of target mRNA usually requires the “seed”
sequence, which is 2–8 nt from the 5-end of the miRNA
[22, 33]. Unlike with plant systems, because of this imperfect
complementarity, there are extensive base-pairings to the
sequence of mRNAs, and this makes it more complicated to
predict miRNA targets and study miRNA biology. Recently,
it has been shown that animal miRNAs can induce the degra-
dation of target mRNAs (mRNA degradation and decay)
besides translational repression: inhibition of translation
elongation; cotranslational protein degradation; competition
for the cap structure; and inhibition of ribosomal subunit
joining [34–37]. However, the exact order and impact of these
events still need to be investigated further.

3. p53 Transactivation Function in a
Relationship with Tumorigenesis

Based on numerous studies at both structural and functional
levels, p53 is known as a key player in genome stability
and tumor suppression. In an unstressed condition, the
expression level of p53 is kept low by the activity of an E3

ubiquitin ligase, mouse double minute 2 (MDM2) [38–40].
Under stressed conditions, p53 is activated in response to
diverse intrinsic and extrinsic signals, such as DNA damage,
oncogene activation, and hypoxia. As a sequence-specific
transcription factor, the activated p53 acts directly on cancer-
associated pathways to suppress tumor progression by mod-
ulating cell-cycle arrest, senescence, apoptosis, angiogenesis,
or invasion andmetastasis [41–43].There are also demonstra-
tions showing that p53 is involved in the regulation of DNA
repair, oxidative stress, energy metabolism, and differenti-
ation [44–48]. The approach of genome-wide analyses has
identified many p53-binding sites and p53-regulated genes
which are related to tumorigenesis and various stress signals
[49, 50]. Recent works have highlighted that p53 directly
induces some specific miRNAs which function as tumor
suppressors through a novel transcriptional mechanism.
Now, although unknown aspects of the mechanism still need
to be investigated, the cooperative contribution of p53 and
miRNAs has been shown to be more important for tumor
formation and development.

4. miRNA Network with p53:
Cell Cycle and Apoptosis

4.1. miR-34 Family. In 2007, several groups reported that the
miR-34 family members are direct p53 targets and that their
expression level is strongly upregulated by genotoxic stress
in a p53-dependent manner, inducing cell-cycle arrest and
apoptosis [14–16, 51, 52]. In mammalians, the miR-34 family
is composed of miR-34a, miR-34b, and miR-34c, which are
encoded by two different genes in the miR-34a and miR-
34-b/c loci. With the overexpression of the miR-34 family
in certain kinds of cell lines, microarray analyses unveiled
hundreds of putative candidate target genes of miR-34s [15,
16, 18]. Actually, ectopic expression ofmiR-34s promotes cell-
cycle arrest in the G

1
phase, senescence, and apoptosis by

directly repressing CDK4, CDK6, cyclin E2, E2F3, MYC,
and B-cell CLL/lymphoma 2 (BCL-2) [53]. Note that the
triggering event of cell-cycle arrest or apoptosis by miR-34s
depends on the cell type and context, and the expression level
ofmiR-34swould affect the decision to proceed [15, 17, 54]. As
seen in the decreased expression of miR-34s in several types
of malignant cancers, themiR-34 family powerfully prevents
tumorigenesis in general.

In addition to the miR-34 family, p53 is also engaged
in the direct regulation of the transcriptional expression
of additional miRNAs, such as miR-107, miR-143/145, miR-
192/194/215,miR-200c/141, the let-7 family, and themiR-17-92
cluster (Figure 1 and Table 1).

4.2. miR-107. miR-107 is encoded within an intron of pan-
tothenate kinase 1 (PANK1), and miR-107 and its host gene
are directly activated by p53 under hypoxia condition or
with the treatment of DNA damage agents [55, 56]. Hypoxia
induces angiogenesis, which is essential for solid tumors
to grow in severe environments. miR-107 inhibits hypoxia
signaling and antiangiogenesis by repressing the expression
of hypoxia inducible factor-1𝛽 (HIF-1𝛽), which interacts with
HIF-1𝛼 to form the HIF-1 transcription factor complex [55].
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Table 1: Key microRNAs regulated by p53.

miRNA Genomic location Cancer type Target Phenotype References

miR-34s 1p36 and 11q23

Colon cancer, neuroblastoma,
pancreatic cancer, CLL,
NSCLC,
OSCC, breast cancer, bladder
cancer, kidney cancer, melanoma

CDK4, CDK6, cyclin E2,
E2F3, MYC
BCL-2

Cell-cycle arrest
apoptosis

[14–
16, 18, 51, 53, 54]

miR-107 10q23 Colon cancer, breast cancer CDK6, P130 Cell-cycle arrest [55–57]

miR-145 5q23
Colon cancer, breast cancer,
MDS,
prostate cancer

MYC, E2F3, cyclin D2,
CDK4, CDK6 Cell-cycle arrest [58–61]

miR-192/215 1q41 and 11q13 Colon cancer, lung cancer,
multiple myeloma, renal cancer CDC7, MAD2L1 Cell-cycle arrest [66–69]

miR-200c 12p13 Breast cancer, ovarian cancer FAP-1 Apoptosis [71, 81]

let-7 Multiple locations
(11 copies)

Lung cancer, colon cancer,
ovarian cancer, breast cancer,
lymphoma

CDK6, CDC25A, cyclin D,
CDC34, MYC, E2F1, E2F3 Cell-cycle arrest [61, 83–90]

miR-15a/16-1 13q14

B-CLL,
pituitary adenomas, gastric
cancer, NSCLC, prostate cancer,
ovarian cancer, pancreatic cancer

CDK1, CDK2, CDK6,
cyclin D1, D3, E1
BCL-2

Cell-cycle arrest
apoptosis [98–112]

CLL: chronic lymphocytic leukemia; NSCLC: non-small cell lung cancer; OSCC: oral squamous cell carcinoma; MDS: myelodysplastic syndromes; B-CLL: B-
cell chronic lymphocytic leukemia.
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Figure 1: p53-induced miRNAs control cell cycle and cell survival. p53 directly induces many kinds of miRNAs, which repress cell-cycle
regulators and/or antiapoptotic proteins and contribute to cell-cycle arrest and apoptosis. ThemiRNAs regulating apoptosis are shown in the
top part of this figure, and the miRNAs regulating the cell cycle are at the bottom.
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Furthermore, miR-107 promotes cell-cycle arrest in the G
1
/S

phase via targeting the cell-cycle activator CDK6 and the
antimitogenic p130 [56]. Nevertheless, miR-107 has another
aspect for directly targetingDICER1mRNAand the high level
of miR-107 might affect the production and function of p53-
induced miRNAs [57].

4.3. miR-145. It has been reported that the expression of
miR-145 is frequently decreased in colon tumors, breast
and prostate cancers and that the chromosomal region
(chromosome 5 [5q32-33] within a 4.09 kb region) is deleted
in myelodysplastic syndrome, suggesting miR-145 acts as
a tumor suppressor [58–61]. The expression of miR-145 is
transcriptionally induced by p53, andmiR-145 downregulates
c-MYC, E2F3, cyclin D2, CDK4, and CDK6 and leads to G

1

cell-cycle arrest [62, 63].
Recently, it has been found that miR-145 contains several

CpG sites in its promoter region and that the expression
of miR-145 is affected by epigenetic events such as DNA
methylation [60]. The CpG regions are located adjacent
to p53 response element upstream of miR-145, and DNA
hypermethylation inhibits p53 from binding to miR-145. In
addition to this miRNA, it has been reported that miR-
34a, miR-124a, and miR-127 are downregulated by DNA
methylation [64].

4.4. miR-192/215. miR-192 and miR-215 share a similar seed
sequence and are composed of two clusters: themiR-215/miR-
194-1 cluster on chromosome 1 (1q41) and the miR-192/miR-
194-2 cluster on chromosome 11 (11q13.1) [65]. miR-192 and
miR-215 are downregulated in colon cancers, lung cancers,
multiple myeloma, and renal cancers [66–69]. Some studies
have suggested that these miRNAs are also under the control
of p53 and can induce p21 expression and cell-cycle arrest in
a partially p53-dependent manner [66, 70]. Gene expression
analyses indicated thatmiR-192 andmiR-215 target a number
of transcripts that regulate DNA synthesis and the G

1
and

G
2
cell-cycle checkpoints, such as CDC7 and MAD2L1

[70]. Therefore,miR-192/215 functions as a tumor suppressor
contributing to the G

1
and G

2
/M cell-cycle arrest.

4.5. miR-200c. It is well known that p53 acts as an important
regulator in modulating epithelial-mesenchymal transition
(EMT) that is implicated in tumor progression, metas-
tasis, and the correlation of poor patient prognosis [71,
72]. The p53-induced miR-200c represses EMT by targeting
the E-cadherin transcriptional repressors ZEB1 and ZEB2,
Krüppel-like factor 4 (KLF4), and the polycomb repressor
BMI1, all of which are involved in the maintenance of
stemness [73–80]. Moreover, miR-200c contributes to the
induction of apoptosis in cancer cells via the apoptosis-
inducing receptor CD95 by targeting the apoptosis-inhibitor
FAS-associated phosphatase 1 (FAP-1) [81].

4.6. let-7a and let-7b. let-7 is known to be important for
the regulation of development and is evolutionally conserved
across bilaterian phylogeny [82]. In humans, some let-7 gene
clusters are located in fragile regions involved in cancers [61].
In lung cancers, it has been reported that the downregulated

expression of let-7members is correlatedwith poor prognosis
[83, 84]. Recent works suggested that let-7a and let-7b
expression is dependent on p53 in response to genotoxic
stress and let-7 miRNAs target CDK6, CDC25A, cyclin D,
CDC34, and MYC [85–89]. On the other hand, let-7a-d and
let-7i are direct targets of E2F1 and E2F3 during the G

1
/S

transition and are repressed in E2F1/3-null cells [90]. The let-
7 family plays multiple roles in the regulation of the cell cycle
and goes a long way toward suppressing tumor progression.

4.7. miR-17-92 Cluster. ThemiR-17-92 cluster consists ofmiR-
17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a,miR-19b, and
miR-92-1. Some of these are known to be oncogenic, as
suggested in the research showing that the cluster is upregu-
lated in human B-cell lymphoma and amplified in malignant
lymphoma [91, 92].

Different from the miRNAs mentioned above,miR-17-92
miRNAs are more or less repressed transcriptionally by p53
under hypoxia, which leads to the p53-mediated apoptosis
[93]. The p53-binding site overlaps with the TATA box of
the miR-17-92 promoter region, and p53 prevents the TATA-
binding protein (TBP) transcription factor from binding to
the site during hypoxic conditions. Moreover, miR-17-92 is
transcriptionally regulated by c-Myc [94]. Although c-Myc is
repressed by p53 activation under some stress conditions, the
repression of miR-17-92 is not dependent on c-MYC but on
p53 under hypoxia [93, 95].

Note that some members of miR-17-92 are likely to
function as tumor suppressors in different cancers. For
example, in breast cancer,miR-17-5p represses the expression
of the nuclear receptor coactivator amplified in breast cancer
1 (AIB1) that enhances the transcription activity of E2F1 to
promote the cell proliferation of breast cancer cells [96]. A
recent study showed thatmiR-17-3p reduces tumor growth by
targeting MDM2 in glioblastoma cells [97].

4.8. miR-15a/miR-16-1. miR-15a andmiR-16-1 were identified
to be deleted and/or downregulated in approximately 68%
of B-cell chronic lymphocytic leukemia (B-CLL) [98], as is
the case in pituitary adenomas [99], gastric cancer cells [100],
prostate cancer [101–104], non-small cell lung cancer [105,
106], ovarian cancer [107], and pancreatic cancer [108], which
indicates their important functions for tumor formation.The
miRNAs are encoded by an intron of a long noncoding
RNA gene, deleted in lymphocytic leukemia 2 (DLEU2), and
DLEU2 (miR-15a/miR-16-1) was shown to be transactivated
by p53 [109]. In addition, p53 regulates the expression level of
precursor and mature miR-15a and miR-16-1 as well as miR-
143 andmiR-145 [110]. It has been reported thatmiR-15a/miR-
16-1 negatively regulates the antiapoptotic protein BCL-2 and
the cell-cycle regulators, such as CDK1, CDK2, and CDK6,
and cyclins D1, D3, and E1 [102, 110–112].

5. miRNAs Regulating Negative
Regulators of p53

It has been shown thatMDM2negatively controls the stability
and transcription activity of p53, which attenuates the tumor-
suppressive functions of p53 [40]. Actually, overexpression
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Figure 2: Indirect p53 regulationwithmiRNAs. p53 controls its stability and activity with the p53-induciblemiRNAs that directly or indirectly
target the negative regulators (MDM2 and SIRT1).miR-25,miR-32,miR-18b, andmiR-449 are not direct targets of p53 but repress the negative
regulators and lead to p53 activation.

of MDM2 is often found in many types of human cancers,
such as soft tissue sarcomas, brain tumors, and head and
neck squamous cell carcinomas [113, 114]. On the flip side,
p53 inhibits MDM2 expression using several miRNAs and
establishes the regulatory circuit between p53 and MDM2
(Figure 2). For instance, miR-192/194/215, miR-143/145, and
miR-605, which are the transcriptional targets of p53, directly
inhibit MDM2 expression [68, 114, 115].miR-29 family mem-
bers are also p53-inducible miRNAs and indirectly control
the MDM2 level by targeting p85𝛼, a regulatory subunit
of PI3 kinase (PI3K), in the PI3K/AKT/MDM2 axis [116,
117]. Furthermore, the miR-29 family directly suppresses cell
division cycle 42 (CDC42) and PPM1D phosphatase, both
of which negatively regulate p53 [116, 117]. While a liver-
specific miR-122 is not a transcriptional target of p53, the
miRNA increases p53 activity through the downregulation of
cyclin G1, which inhibits the recruitment of phosphatase 2A
(PP2A) to dephosphorylate MDM2 and causes the decrease
of MDM2 activity [118, 119]. Recent studies indicated that
tumor-suppressive miRNAs, miR-25, miR-32, and miR-18b
are also not transcriptionally regulated by p53 but affect the
p53 pathway by targetingMDM2mRNA directly [120, 121].

Besides MDM2, a NAD-dependent deacetylase, silent
information regulator 1 (SIRT1), increases the level of
deacetylated p53 and negatively regulates the p53 activity
[122, 123]. SIRT1 is targeted by the p53-inducible miR-34a
and joins the positive feedback loop connecting the miRNA,
SIRT1, and p53 (Figure 2) [124]. Additionally,miR-499 partic-
ipates in this regulatory circuit as themiRNApossesses a very
similar seed sequence of miR-34 members [125–127]. miR-
449 is upregulated by E2F1, not by p53, andmiR-34 andmiR-
449 bring in an asymmetric network to balance the functions
between p53 and E2F1.

AAAAA5
-UTR 3

-UTR
ORFTP53 mRNA

miR-25
miR-30d
miR-33
miR-125a/b
miR-380-5p
miR-1285

TP53 gene

Figure 3: Direct p53 regulation by miRNAs. miRNAs directly
interact with TP53 mRNA by binding to sites in the 3-UTR.
This interaction inhibits the translation of mRNA, resulting in the
repression of p53 activity. ORF: open reading frame.

6. miRNAs Directly Targeting TP53 mRNA

As is the case in the control of negative regulators of p53 via
miRNAs, p53 itself is repressed by several miRNAs through
direct interactionwith the 3-UTR ofTP53mRNA (Figure 3).

miR-125b is a first-identified p53-repressive miRNA and
blocks the p53 expression level to suppress apoptosis in
human neuroblastoma and lung fibroblast cells; in contrast,
the knockdown of miR-125b leads to the opposite results
[128]. Plus, miR-125a, an isoform of miR-125, was suggested
to inhibit the translation of TP53 by binding to a region of the
3-UTR [129]. The high expression of miR-125b is associated
with poor prognosis in patients with colorectal cancer [130].
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Some studies have shown that miR-125b represses factors in
the p53 network, including apoptosis regulators like PUMA,
insulin-like growth factor-binding protein 3 (IGFBP3), and
BCL2-antagonist/killer 1 (BAK1) and cell-cycle regulators like
cyclin C, CDC25C, and cyclin-dependent kinase inhibitor 2C
(CDKN2C) [131].These suggest thatmiR-125bmodulates and
buffers the p53 pathway.

Subsequently, miR-504 was reported to directly repress
the p53 protein level and reduce the p53-mediated apoptosis
and cell-cycle arrest in response to stress, and its overex-
pression promotes the tumorigenicity of colon cancer cells
in vivo [132]. Additionally, miR-380-5p, miR-33, and miR-
1285 can downregulate the p53 protein expression by directly
binding to the two sites in the 3-UTR of TP53, resulting
in the reduction of apoptosis and cell-cycle arrest [133–
135]. Indeed, miR-380-5p is highly expressed in neuroblas-
tomas with neuroblastoma-derived v-myc myelocytomatosis
viral-related oncogene (MYCN) amplification, and the high
expression level correlates with poor diagnosis [133]. More
recently, miR-30d and miR-25 also directly interacted with
the 3-UTR of TP53 to decrease the p53 level. So then, these
miRNAs affect apoptotic cell death, cell-cycle arrest, and
cellular senescence in some cell lines, such asmultiple myelo-
mas, colon cancer, and lung cancer cells [136–138]. When
taken together, themiRNAs targetingTP53would hinder p53
from exerting its tumor-suppressive functions (senescence,
apoptosis, cell-cycle arrest, etc.) under stressed conditions.

7. Concluding Remarks

Formore than a decade, small noncoding RNAs have become
increasingly central to the study of tumor biology. The
accumulating evidence of cancer-associated miRNAs reveals
the missing link between classic tumor-suppressive networks
and complex oncogenic pathways. In a stress situation, p53
directly induces various protein-coding genes such as p21 and
PUMA to contribute to cell-cycle arrest and apoptosis and,
furthermore, utilizes tumor-suppressive miRNAs, such as
miR-34s, miR-107, and miR-145 (Figure 1 and Table 1). Some
of the p53-inducible miRNAs target p53-negative regulators
(MDM2 and SIRT1), which creates a positive feedback loop
to reinforce p53 stability and activity (Figure 2). However,
as expected, miRNAs are not always on p53’s side: p53-
repressive miRNAs (miR-125s, miR-504, miR-380-5p, etc.)
reduce the p53 expression level by binding to a region of the
3-UTR of TP53 mRNA and result in the inhibition of cell-
cycle arrest and apoptosis (Figure 3).There will be more than
one way to arrest the cell-cycle and/or induce apoptosis, and
the balance between miRNAs and tumor suppressors might
be crucial in deciding which strategy to adapt.

For future diagnostic and therapeutic advances, more
extensive studies will be needed to find hidden messages in
the tumor-suppressive networks of miRNA. The regulatory
mechanism of the p53-miRNA circuit has been excellently
shown, but the upstream regulators of almost all miRNAs are
unknown at this time. What is more, regardless of computa-
tional prediction, the downstream targets of miRNA are hard
to identify exactly because of the imperfect complementarity

and the possibility that miRNAs can bind to not only the 3-
UTR but also the 5-UTR and coding regions.

In recent years, the competitive endogenous RNA
(ceRNA) hypothesis has suggested that noncoding pseudo-
genes and long noncoding RNAs act as miRNA sponges,
which is likely to counteract the effect of miRNAs on the
target mRNA transcripts [139]. Therefore, we need to move
deeper inside the world of noncoding RNAs in order to
prevent and treat diverse cancers.

Besides the miRNAs described in this paper, there are
many miRNAs related to cell-cycle regulation and apoptosis
[140–142]. However, it is unclear how these miRNAs act
additively/synergistically on tumor suppression. Even the
longest journey to understand the role of miRNA begins with
a single experiment. The next ten years will be more exciting
in the quest to see cancer conquered.
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