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ABSTRACT

Alignment-free methods are alternatives to
alignment-based methods when searching se-
quence data sets. The output from an alignment-free
sequence comparison is a similarity score, the
interpretation of which is not straightforward.
We propose objective functions to interpret and
calibrate outputs from alignment-free searches,
noting that different objective functions are nec-
essary for different biological contexts. This leads
to advantages: visualising and comparing score
distributions, including those from true positives,
may be a relatively simple method to gain insight
into the performance of different metrics. Using
an empirical approach with both DNA and protein
sequences, we characterise different similarity score
distributions generated under different parameters.
In particular, we demonstrate how sequence length
can affect the scores. We show that scores of true
positive sequence pairs may correlate significantly
with their mean length; and even if the correlation
is weak, the relative difference in length of the
sequence pair may significantly reduce the effec-
tiveness of alignment-free metrics. Importantly, we
show how objective functions can be used with
test data to accurately estimate the probability of
true positives. This can significantly increase the
utility of alignment-free approaches. Finally, we have
developed a general-purpose software tool called
KAST for use in high-throughput workflows on Linux
clusters.

INTRODUCTION

The rapid growth in genomic data sets poses problems for
sequence search and comparison. The most frequently used
methods for sequence comparison are based on sequence
alignment. They include very well established methods such
as BLAST (1), and algorithms like the Needleman-Wunsch

(2) or the Smith-Waterman algorithm (3). Alignment-free
methods have received less attention, nonetheless they have
been a consistently active area of research over the last
few decades (4). Alignment-free methods include a num-
ber of different approaches, and one of their main attrac-
tions is that they can scale more efficiently than alignment-
based approaches. They may also be able to detect exist-
ing relationships between sequences that are overlooked
by alignment-based approaches (5,6). Alignment-free meth-
ods have been applied to quite a diverse range of appli-
cations, including phylogenetic analysis (7); binning reads
for metagenomic analyses (8); epigenetics applications (9);
RNA-Seq quantification (10); anchoring vertebrate genome
assemblies onto reference genomes (11); bacterial genome
annotation (12) and protein classification problems (13).

Overview of alignment-free methods based on k-mer frequen-
cies

Many different alignment-free scoring methods are de-
scribed in the literature and they have been the subject of a
number of recent reviews. In (5), a number of applications of
alignment-based methods are identified and they highlight
areas where their application can be troublesome; while in
(6) a survey, explanation and evaluation of many differ-
ent alignment-free approaches is provided. Further authors
have attempted to benchmark the different methods (14,15).
We refer the reader to these excellent studies for further de-
tail on different alignment-free methods.

In this paper, we have attempted to restrict our focus to
methods that are based on k-mer frequencies, as we explain
below. We have been motivated to understand how to inter-
pret the outputs of these methods, i.e. their scores; to gain
insight into why they might fail, and the situations when
they are most successful. Here we provide a brief overview
of the rationale behind the alignment-free metrics we have
explored in this paper, and mention some of the previous an-
alytical studies that have interpreted and characterised their
score distributions.

One of the best characterised alignment-free scoring ap-
proach is the D2 metric or D2 statistic (16). The D2 metric
can be defined by considering a pair of sequences comprised
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of a reference r and query q sequence that can be decom-
posed into DNA words typically called k-mers of a specified
length k in base pairs. For example, if k = 4 then a DNA se-
quence of 4 letters A, C, G, and T can be decomposed into
4k = 44 = 256 possible words or 4-mers (GGCT or AAGA
are examples of 4-mers). The D2 statistic is a sum over all
possible k-mers, applied to the product of counts for a k-
mer $w$ in the two sequences i.e.:

D2(r, q) =
w∑

Cr (w).Cq (w) (1)

Here, Cr and Cq are the counts (number of occurrences)
of k-mers in the sequences r and q, respectively. Because this
statistic is based on counts, it can have an arbitrary value
that will tend to increase with the length of the sequences
under consideration. Various modifications have been pro-
posed to the D2 metric to give it a more practical value, e.g.
to scale the scores output from the metric so that they lie
between 0 and 1, where lower scores represent more similar
sequence pairs. For instance, the vector cosine distance can
be written as:

cosine(r, q) = D2√∑
Cr (w)2

√∑
Cq (w)2

(2)

Further modifications may then be applied to the vector
cosine metric by different authors to obtain more conve-
nient scores. For instance, in the D2 metric rather than giv-
ing a value between –1.0 and 1.0, it may be adjusted to give
a number between 0.0 and 1.0.

The frequency of occurrence of each k-mer is often used
instead of the counts. K-mer frequencies have been shown to
generate signatures unique to different organisms (17–19).
The k-mer frequencies are derived from the counts by divid-
ing each k-mer count by the total number of k-mers in the
sequence (i.e. the sequence length minus the k-mer length).
The metrics we have investigated in this paper are based on
k-mer frequencies. Once the frequency vectors have been
calculated, various distance measures can be used to esti-
mate similarity, which include the Euclidian, Manhattan,
Canberra or Chebyshev distances (6). Other metrics dis-
cussed in the literature may be tweaked in different ways by
different authors, and as they may be given different names,
it can be a challenge to clearly distinguish between different
metrics.

A similar approach to the D2 metric is used to find
alignment seeds in alignment software like BLAST (1) and
BLAT (20). The D2 metric has therefore been subjected to
relatively rigorous and sophisticated analyses (21–23). Al-
though the metric is relatively simple to implement, data
sets of biological sequences can be complex and the appli-
cation of D2 is not always straightforward to interpret. Lip-
pert et al. (21) investigated the properties of the D2 distri-
bution using an analytical approach. They found that de-
pending on the k-mer length and k-mer abundance in the
sequences under consideration, the properties of the D2 dis-
tribution change. They identified three asymptotic regimes
including the compound Poisson and normal distributions.
Foret et al. (24) proposed that the gamma distribution may
be better than the normal distribution for characterising the
D2 distribution for applications such as the analysis of EST

sequences. By comparing analytical and empirical distribu-
tions, these authors investigated estimates of significance in
the scenario of database search, where a query sequence
is compared to several other sequences, and the P-value is
then estimated for the best of these comparisons. It is worth
noting that every distribution will contain rare or significant
scores so long as there is variation between the sequences
under study. These significant scores, however, do not neces-
sarily correspond to biological significance because the met-
ric may be unable to distinguish signal, in the sense of bio-
logical features of subjective interest to the researcher, from
noise i.e. uninteresting features. Furthermore, the D2 distri-
butions can be complex to characterise due to the natural
variability of the sequences under consideration, i.e. statis-
tical noise arises from random variation in each sequence
as well as due to correlations of k-mer frequencies in both
sequences (25,26). Lippert et al. concluded their study with
the observation that ‘a naive, one distribution fits all, ap-
proach to D2 statistics could easily create serious errors in
estimating significance’ (21).

To address some of these issues, modifications to D2
were implemented in approaches such as d2Star and d2S
(also known as d2Shepp) (23,25). These two metrics use a
Markov approach to estimate the likely occurrence of var-
ious words (27). For example, they might use the back-
ground, i.e. the frequency of occurrence of 1-mers (the four
letters A, C, G and T) in a DNA sequence to calculate an ex-
pectation value of how abundant each of the possible 4-mers
should be in that sequence. These expectation values are
used to adjust the actual abundance of 4-mers measured by
the counts, and subsequently the frequencies. They adjust
the D2 metric and its distribution in various ways that may
yield greater accuracy. There is no equivalent background
for protein sequences, because proteins are the functional
molecules that DNA codes for, with different pressures act-
ing on the amino acids that comprise the sequence. More-
over, the protein alphabet is large, and protein sequences are
short, meaning that the background cannot be calculated
accurately.

Two further metrics that we have investigated are derived
from areas other than biological sequence analysis (28,29).
The Bray–Curtis metric was designed for ecological appli-
cations, to measure dissimilarity between two different sites
in terms of the species found in those two locations (30). The
Bray–Curtis dissimilarity can be written, when comparing
two sites i and j, as:

BCi, j = 1 − 2Ci, j

Si + Sj
(3)

where Ci, j is a sum of the species (i.e. k-mers) common to
both sites (i.e. sequences), with the sum using whichever
species count is the lesser between the two sites; the Si and
Sj are the total counts of species at each site. An important
assumption here is that the two sites are of a similar size.
The Google similarity distance is used to find semantic sim-
ilarity in web pages. It implements the idea that related key
words with similar meanings should be ‘close’ according to
this measure (31). It may be modified to compare protein
sequences (32) by summing over key words (i.e. k-mers) to
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give the Normalised Google Distance:

NGDi, j = max(Si , Sj ) − Ci, j

(Si + Sj ) − min(Si , Sj )
(4)

Here, the max(Si, Sj) and min(Si, Sj) are the greater value
between Si and Sj, or lesser, respectively. When formulated
this way it performs in a similar manner to the Bray-Curtis
dissimilarity.

Differences between alignment-based and alignment-free se-
quence comparison

Our paper is motivated by the desire to understand the ap-
plication of alignment-free methods in practice, for instance
as an alternative approach that can complement well estab-
lished genomics workflows based on sequence alignment.
A key observation we have made concerning differences
between alignment-based or alignment-free approaches is
that, with sequence alignment, the input sequences are pre-
served and may be recovered from the output (i.e. the align-
ment), thus preserving biological context; but this is not true
for alignment-free methods.

On one hand, sequence alignments are often very large
and complex data sets. They may incorporate thousands or
even millions of sequences and may be used for a range
of sophisticated applications including predicting protein
structure or elucidating evolutionary patterns (33).

On the other hand, when using an alignment-free metric,
the result of comparing two sequences is nothing more than
a number, i.e. the similarity score. It is important to realise
that at this stage all knowledge of the input sequences has
been lost: for a single pairwise comparison the similarity
score has no biological meaning at all. It is only when data
sets consisting of three or more sequences are processed that
the alignment-free scores can provide some biological in-
sight.

For example, for a set of three sequences (A, B and C), the
relative difference in the scores might indicate that sequence
pair A and B are more similar than sequence pair A and C.
Alignment-free metrics, however, do not provide an objec-
tive measure of similarity such as, for instance, the E-value
from BLAST – instead they only measure relative similar-
ity within the set of sequences being searched. The principle
output from alignment-free search is therefore the ranking
of the similarity scores (in other words, the ranking of se-
quences in the reference data set in terms of their measured
similarity to the query sequence). As we highlight in this
paper, each metric measures ‘similarity’ in different ways,
sometimes with significantly different assumptions and bi-
ases.

The use of objective functions to encode biological context

We propose that an objective (or evaluation) function
should be applied to replace the biological context that has
been lost in alignment-free search. This function can be
used to map the pair of sequence identifiers associated with
a score onto external knowledge bases that provide biologi-
cal context. Using the knowledge-bases, it will encode a par-
ticular set of criteria relevant to the specific search problem
performed by the researcher, thus allowing sequence pairs

that are true positives to be identified within that domain.
Without an objective function, it is still possible to generate
a distribution of scores, but there would be no basis to iden-
tify true positives within that distribution and so no basis to
evaluate how effective the search algorithm is. We demon-
strate how an objective function can be used to calibrate
alignment-free metrics for different applications using test
data. As a result of this process, similarity scores can be
mapped onto likelihood values, indicating the probability
of a correct prediction.

We have performed empirical studies to characterise the
properties of the score distributions generated by a number
of different alignment-free scoring metrics that use k-mer
frequencies. We have used objective functions to identify
true positives within those score distributions. The advan-
tage of our empirical approach is that it is relatively simple
to implement and it does not require the specialised statis-
tical background that may be required to engage with some
of the analytical approaches described above. Moreover, it
may be readily applied to both nucleotide and protein se-
quence.

The need for a general-purpose tool for alignment-free se-
quence comparison

To aid our investigations we developed the software KAST.
This was needed due to the lack of other suitable alignment-
free software that could process both DNA and protein se-
quences. KAST was designed for efficient execution and
to provide suitably flexible input/output formats. This al-
lowed us to embed it in data analysis pipelines so that we
could explore a variety of practical investigations. It is de-
signed to be a general-purpose tool for alignment-free se-
quence comparison. While a number of software packages
exist (5), they tend to be designed for specific research pur-
poses rather than general usage. Many are implemented in
high level scripting languages that give relatively slow exe-
cution times; or they are embedded in frameworks designed
to compare and contrast different metrics and are awkward
to use in external applications.

MATERIALS AND METHODS

Here we describe the data sets, objective functions, and
analyses that we have performed. We have split this into two
sections, one for amino acid (i.e. protein) sequence and the
other for nucleotide sequence. The list of metrics we have
investigated is given in Table 1.

Data sets and objective functions for predicting orthologs
from protein sequence

We used data sets from DIOPT (34) to develop an objec-
tive function for protein ortholog prediction. Different tools
for predicting orthologs can give different results: to over-
come this, DIOPT integrates a nine existing approaches and
demonstrates an increased sensitivity with only a modest
decrease in specificity (34). DIOPT includes inparalog and
co-ortholog predictions, and it is not restricted to one-to-
one ortholog relationships, although these are the major-
ity. The species and data we investigated were: Schizosac-
charomyces pombe or fission yeast with 5138 proteins (35);
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Table 1. The alignment-free metrics investigated. The ‘y’ or ‘–’ in a col-
umn denotes whether or not the metric was used in the protein (AA) or
nucleotide (DNA) analyses (metrics incorporating a Markov approach
where not applied to protein analyses because the background is ill-defined
in these cases), if the metric is suitable for use with sequences of vari-
able length (Len), and finally a reference for the metric is given. Note the
Markov methods d2Star and d2S are calculated with the m=0 parameter
in KAST, which sets the background k-mer length to 1 bp

Metric (and acronym) AA DNA Len Ref

D2 y y y (6)
Euclidian distance (euclid) y y y (6)
Manhattan distance (manh) y y y (6)
Chebyshev distance (cheby) y y y (6)
Normalised Canberrra distance (ncamb) y y – (6)
d2Star – y y (23,25)
d2Shepp (d2s) – y y (23,25)
Brays-Curtis (bc) y y – (30)
Normalised Google Distance (ngd) y y – (31,32)

Table 2. Statistics describing the original data sets used. The range of
sequence lengths is given by the min(imum) and max(imum) values. The
C. elegans and D. melanogaster data sets contain a few outliers (very long
protein sequences): most of the sequences are less than about 6,000 amino-
acids, respectively

Data set Min Max Mean Mode

S. pombe 24 4,924 464 378
S. cerevisiae 17 4,911 450 359
C. elegans 9 15 188 467 340
D. melanogaster 11 22 949 659 468
Species genomes 138 927 13 654 608 3 383 082 3 018 238
Strain genomes 6847 10 236 779 3 018 845 2 736 403

Saccharomyces cerevisiae or brewer’s yeast with 6,713 pro-
teins (36); Caenorhabditis elegans with 28 400 proteins (37);
and Drosophila melanogaster with 30,493 proteins (38). See
also Table 2.

Sets of protein sequences were downloaded for each of
these species and the FASTA headers processed so that the
identifiers could be mapped to the data stored in DIOPT
(DIOPT provides gene identifiers rather than protein iden-
tifiers). Tables of orthologs could then be retrieved from
DIOPT. Finally, the DIOPT data sets were adjusted so that
the identifiers used by DIOPT matched those in the FASTA
headers of the protein sequences. Thus, it was possible to
map between the FASTA headers and the ortholog data
from DIOPT.

The evaluation process involved running the alignment-
free sequence comparison with sets of protein sequences
from two different species (e.g. yeast species Y1 and Y2). A
protein from species Y1 was compared against all the pro-
teins from species Y2 using a single alignment free metric.
The scores were ranked. Then, using the objective function,
a positive prediction was called if the top ranked pair of
proteins was present in the set of DIOPT orthologs, other-
wise it was a false prediction. The process was repeated for
every protein in species Y1 so that the number of correctly
predicted orthologs could be counted. This was done in two
stages: first we perform the alignment-free comparison on
all the proteins from species Y1 using the KAST software
(presented later in this paper), then we evaluate using an ob-
jective function that counted the correct predictions using

Python scripts. True orthologs were counted if the DIOPT
evidence was one of ‘high’, ‘moderate’ or ‘low’.

Investigations performed on protein sequences

The following investigations of predictive accuracy were
performed. In each of these tests, all the sequences from
one FASTA file are compared against all sequences in an-
other FASTA file. This results in 5138 × 6713 = 34, 491,
394 comparisons for the fission yeast versus brewer’s yeast
case. For the fly-worm case, the numbers get large and
time-consuming, especially for the larger k-mer lengths. We
therefore used subsets of this data, including 1/10th and
1/30th of the data for D. melanogaster. For instance when
the 1/30th data set is used (1107 proteins) with all the data
from C. elegans (28 400 proteins) this results in 28 882 800
comparisons, a similar number to the yeast system.

The influence of k-mer length (proteins). We investigated
this by evaluating the different metrics in two different
ways:

(1) By using the top hit only, i.e. the optimal ranked pair of
proteins based on the scores.

(2) By generating the receiver-operator curves (ROC) and
calculating the area under the curve or AUC.

Distributions: histograms of score frequencies (proteins).
The frequency of occurrence of different scores for a vari-
ety of metrics and k-mers was explored. If the maximum
and minimum possible scores fall between 0 and 1 (which it
does for most of the metrics) then that score range might be
divided into 100 bins and the number of scores falling into
each bin counted. The score frequency for a histogram bin
is calculated by dividing each of the 100 bin counts by the
total number of scores (i.e. the sum over all bins). The his-
tograms indicate how the scores distribute over the range of
allowed scores. Two different types of score frequency his-
tograms were calculated:

(1) All-scores distribution: this is when all sequences in the
two species are compared to each other and consists of
both positive and negative scores. Negative scores dom-
inate the frequency values in this histogram because
they vastly outnumber the positive scores. For example
for the 34 491 394 comparisons made in the two yeast
case, there are 7090 pairs that are classified as true or-
thologs by DIOPT (DIOPT includes, e.g. many-to-one
ortholog mappings).

(2) Positive-only distribution: this distribution is based on
the set of sequence pairs corresponding to true posi-
tive scores according to DIOPT. Only unique pairs were
included (i.e. one-to-one mappings), meaning that if a
protein from the first species of the pair mapped to mul-
tiple proteins in the second species, then only the first
such ortholog mapping was included. It consists of 4409
pairs for the yeasts system. Note that this distribution
is a subset of the all-scores distribution.

Overlaps between distributions (proteins). We have used
the histograms of score frequencies as a basis to empirically
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investigate and compare the behaviour of various scoring
metrics and parameters. To summarise these results into a
single figure, we calculated the fraction of overlap between
two score histograms. This has previously been described as
the overlapping index (39): for two distributions A and B,
the overlapping index � is given by the sum, over all scores s,
of whichever distribution has the minimum score-frequency
f, i.e.

η(A, B) =
∫ max(s)

s=0
min[ fA(s), fB(s)] ds

For example, consider the overlapping index between the
positive-only and the all-scores histogram: if the positive-
only and the all-scores distributions overlap each almost en-
tirely, the overlapping index has a value close to 1.0, and the
predictive accuracy is expected to be low; on the contrary,
if there is relatively little overlap (the overlapping index is
close to 0.0) then the predictive accuracy is expected to be
high.

Score correlations with length (proteins). We have calcu-
lated correlations between the length of the protein se-
quences (the mean of the pair) and the score, to investigate if
these are independent from each other. This was performed
in R version 3.1.2 (40) using the Spearman rank correlation
for nonparametric data. The data set used was a set of 5000
true orthologs (positives) from the fly-worm system.

Determining the likelihood of a prediction being correct for
protein ortholog predictions. We calculate the cumulative
difference in score frequency between two score histograms,
i.e. that of the positive-only and the all-scores. This can be
used with an objective function to identify a specific score
that maximises positive scores whilst allowing most negative
scores to be filtered out. For instance, the difference between
the curves is calculated by iterating over each of the bins in
the two histograms that correspond to the same scores, and
subtracting the positive-only score frequencies from those
from the all-scores. The sum of these differences gives the
cumulative difference curve and the maximum of this curve
gives a score that may be used as a cut-off score. To map
scores from pairwise comparisons onto fractional values in-
dicating the likelihood of a prediction being correct, we have
taken the output from KAST and stored the highest ranked
sequence pairs and their scores. By iterating over the range
of possible scores, usually from 0.0 to 1.0, it is possible to
quickly evaluate predictive accuracy at a range of different
scores. This allows the selection of a score that gives a de-
sired level of predictive accuracy – assuming that only the
top ranked score is of interest. We performed this using the
fly-worm system with 1/10th of the D. melanogaster data.

Data sets and objective functions for predicting taxonomic as-
signment from DNA sequence

To develop an objective function for taxonomic assignment
with DNA sequences, we used the data set generated by
Genometa of whole (or nearly whole) genome sequences
(41). A number of quality checks were performed on this
data set that reduced its size. The remaining data set con-
sists of 1705 sequences that are split into two portions. One

portion contains one genome per species and consists of
1052 sequences––we refer to this as the species or refer-
ence data set. There are 1047 unique taxonomic species in
this data set (there are redundancies due to e.g. heterotypic
synonyms). The second portion consists of 653 strain se-
quences, of which 493 (75.5%) map onto the species se-
quences in the reference data set – we refer to this as the
strain or query data set. A number of the 493 strains map
onto the same species: in total there are 187 unique taxo-
nomic species in the set of 493 strain sequences. See also
Table 2.

In order to evaluate taxonomic comparisons between
these two data sets taxonomic information was downloaded
from the NCBI taxonomy database (42) and an in-house
script was used to parse this information and build the tax-
onomic tree. A file was produced that maps the GI num-
bers in the Genometa FASTA headers to the following 6
attributes of taxonomic information, in order of the low-
est member of the hierarchy to the highest: strain, species,
genus, family, order, class, and phylum. This means that
sequences in the strain data set can be mapped onto the
species data set using the NCBI taxonomic identifiers – and
this can be used to evaluate taxonomic predictions made
by alignment-free comparison methods. Note that although
sequences in the reference data set were identified down to
the strain taxonomic level, those strains (as identified by the
taxonomic identifier) were not contained within the query
data set. This means that all matches between sequences
from the query and reference data sets occur at the species
taxonomic level or higher.

The evaluation process involved using alignment-free
metrics to score similarity between sequences from the
strain data set when compared to sequences from the species
data set. Similar to the protein case, one sequence at a time
from the strain data set was compared against all sequences
in the species data set. The scores were ranked. The ob-
jective function called a positive prediction if the sequence
identifiers belonging to the top ranked pair of sequences
mapped to the same taxonomic level, e.g. the species or
genus level. After performing all pairwise sequence com-
parisons using the KAST software, the correct taxonomic
predictions were counted using the objective function.

We investigated a number of different parameters using
the following data sets. Fragments of different sequence
lengths were extracted from each of the species (refer-
ence) and strain (query) data sets. Five fragments of the
length L were created by dividing the genome sequence into
∼10 equal sized intervals. To avoid overlaps between refer-
ence and query fragments, and to sample along the length
of the genome, the five query and reference fragments were
taken from alternating intervals. This was to reduce biases
in the data that may arise because many genome sequences
are recorded from the origin of replication: they may there-
fore be considered to be semi-aligned, and this can signifi-
cantly inflate the accuracy achieved with the shortest frag-
ments. Each fragment was created by taking the first L bases
from each of those intervals, where L was initially set to
100 bp, and then doubled until reaching 102,400 bp. In or-
der to reduce the complexity of our results, only fragments
of length L equal to 0.1, 0.4, 1.6, 6.4, 25.6 and 102.4 kb were
included in the figures. Thus for a fragment size of 0.1 kb
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there are 5 × 1052 = 5260 sequences in the species data set,
and 5 × 653 = 3265 in the strain data set; and when these
data sets are compared to each other 17 173 900 compar-
isons are made. There may be slightly less sequences in the
data sets for longer L because a few of the genome sequences
were incomplete and of insufficient length to generate the
required fragments.

Investigations performed on DNA sequences

We investigated how the following parameters affect predic-
tive accuracy.

The influence of k-mer length (DNA). and how this may
change with different sequence lengths, for different metrics.

The influence of sequence length (DNA). This was investi-
gated in the following ways:

(1) L-equal: here the reference and query sequences are of
equal length. There are six different data sets corre-
sponding to the six different fragment lengths L.

(2) L-unequal: here the query sequences are allowed to vary
over the six different fragment lengths but the reference
query is fixed at the first 250 000 bp. The original idea
was to include the whole reference genome sequence,
but this led to cumbersome data sets and little differ-
ence in performance. There are six different data sets
corresponding to the six different query lengths L.

Distributions: histograms of score frequencies (DNA). The
calculation of this histogram is similar to that described
under the equivalent paragraph for proteins. Two different
types of score frequency histograms were calculated:

(1) All-scores distribution (L-equal and L-unequal): this is
when all sequences in the species and strain data sets
are compared to each other and consists of both posi-
tive and negative scores. There is a different distribution
for each of the 6 different fragment lengths L. Negative
scores dominate the frequency values in this histogram
because they vastly outnumber the positive scores. For
example if 5 × 1052 species sequences of length 0.1 kb
are compared against 5 × 653 strain sequences of length
0.1 kb this gives a total of 17 173 900 scores, of which
5 × 5 × 493 = 12 325 sequences would be true positive
scores

(2) Positive-only distribution (L-unequal only): this con-
sists of the strain fragments of a particular fragment
length (where L is 0.1 kb, 0.4 kb etc.) matched to the
whole genome sequences in the species data set. Only
the first 250 kb of the whole genome sequence was used
to reduce file sizes and compute speed. A positive pair
shared the same taxonomic identifier: using ‘species’ as
the taxonomic identifier resulted in 5 × 493 = 2465 se-
quence pairs (consisting of 187 species). For compari-
son, using the ‘genera’ taxonomic identifier gives 22 300
matched sequence pairs (consisting of 121 genera that
now encompass approx. 440 species). There is a differ-
ent file for each of the 6 different fragment lengths L.

Overlaps between distributions (DNA). We have used the
histograms of score frequencies as a basis to empirically in-
vestigate the behaviour of various scoring metrics and in-
put parameters. This is calculated in the same way as for
proteins.

Determining the likelihood of a prediction being correct for
taxonomic classification (DNA). This is calculated in the
same way as for proteins.

The KAST software

KAST has been implemented using the SeqAn toolkit,
a C++ template library for the analysis of biological
sequences (43). Parallelization is implemented via the
pthreads library. Data can be nucleotide or amino acid se-
quences, with an option for a 10 character reduced amino
acid alphabet (44). One advantage of the increased effi-
ciency is that it has allowed us to explore relatively long k-
mers for amino-acid sequences.

We have designed a number of different ways to input
data to enable flexibility in its usage. These include options
to provide sets of query and reference sequences, giving sim-
ilar usage to alignment software; an option to provide a sin-
gle file for all against all sequence comparisons; and the ‘in-
terleaved’ option where pairs of sequences in the input file
are compared to each other – by creating such files exter-
nally the user has full control over which sequences are com-
pared to each other. KAST supports 13 different formats for
input data (e.g. FASTA, FASTQ, sam, bam, GBK, EMBL
etc.) as well as gzipped versions. Output can be provided
as a distance matrix (for use with phylogeny applications)
or in a number of different tabular formats. The scores are
ranked in the KAST outputs.

Currently over 10 different scoring metrics are imple-
mented in KAST. These include the cosine metric; the d2
variant of the cosine metric; distance measures such as Can-
berra, Manhattan, Chebyshev, and Euclidian; the Bray-
Curtis (30) dissimilarity and the Normlised Google Dis-
tance (31,32); and approaches based on the D2 statistic
that incorporate Markov models, including d2Star, d2S (or
d2Shepp) (23,25,27) and the S2 (or dAI) metric (27). The
github documentation includes instructions on how to add
more distance measures.

Each of the metrics can be used with binary masks to
implemented gapped or spaced k-mers (45–47). For exam-
ple, masking strings like ‘1010101’ and ‘1101100’ can be
used (simultaneously) with a 7-mer. The masking string is
mapped to the k-mer and only those base positions denoted
a ‘1’ are included in the comparison metrics (those with a
‘0’ are skipped).

We have also added parameters to filter sequence pairs
with dissimilar lengths, and to apply a cut-off score.

For the KAST distribution, please see the Data Availabil-
ity section.

RESULTS AND DISCUSSION

We first consider the performance of various metrics on
protein ortholog prediction, then we consider their perfor-
mance for the taxonomic classification of DNA fragments.
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Figure 1. The fraction of correct protein ortholog predictions (based on top ranked hit) and AUC (area under the receiver-operator curve (ROC)) for the
scoring metrics given in the key (centre of figure) with different k-mer lengths. ‘Yeasts’ involves S. pombe proteins compared to S. cerevisiae, and ‘Fly-worm’
involves C. elegans proteins compared to D. melanogaster.

Influence of K-mer length on predictive accuracy for protein
ortholog prediction

In Figure 1, we have considered the prediction of protein
orthologs. Here, we have used two systems: comparisons
between two closely related species, two yeasts (S. pombe)
and (S. cerevisiae); and comparisons between two much
more distantly related species, a fly (D. melanogaster) and
a worm (C. elegans). These data are described in the ma-
terials and methods. In Figure 1, we have explored seven
different scoring metrics and k-mer lengths 1 to 4. Using
k-mers of length 5 does not improve on the results shown
here. We have measured the accuracy of ortholog predic-
tion in two different ways: firstly, by considering whether or
not the pair of sequences giving the highest ranked score
is a true ortholog; and secondly by calculating the AUC or
area under the curve for the receiver-operator curves (ROC
curves). The data for this figure are given in Supplementary
File 1.

The yeasts comparison tends to give more accurate re-
sults than the fly-worm comparisons, as might be expected

due to the smaller evolutionary distance in the yeast sys-
tem. With k-mer length 4 the fraction of correct predictions
is 65% for NGD in the yeasts, and this falls to 52% for NGD
in the fly-worm system. It is also worth noting that the fly-
worm system involves identifying the correct ortholog out
of a data set of 28 400 C. elegans proteins, whereas the this
number is considerably smaller at 6713 for the yeasts.

Three of the metrics clearly show decreased accuracy for
longer k-mers (Euclidian, Chebyshev and Canberra), while
the other four metrics tend to show improved accuracy with
longer k-mers. According to Figure 1, the scoring metrics
based on the Euclidian and the Chebyshev distances both
give poor performance in general for protein sequence, and
their performance further declines with increasing k-mer
length. This is in contrast to the Manhattan, NGD, BC and
d2 metrics, and these four metrics behave in a similar man-
ner to each other. In the yeasts, ortholog predictions based
on the fraction correct increase from 16% to 25% for k-mer
length 1, up to 54% to 65% for k-mer length 4 (with D2 giv-
ing slightly worse performance here).
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The Canberra metric gives good performance for k = 1:
here the AUC has a value of 0.911 in the yeast system and
it compares favourably to the best metric with these param-
eters, which is BC with 0.913. Performance, however drops
off significantly for the Canberra metric with larger k-mers,
with the AUC falling to 0.480 and 0.463 (slightly worse than
random) for k = 4, which compares to 0.928 and 0.822 for
BC, in the yeast and fly-worm systems respectively.

There is a minimum in the AUC curve for most metrics
at k-mer length 2. This is most pronounced for the D2 and
Manhattan metrics in the yeasts comparison. This mini-
mum of the AUC curve can be at least partially explained
using factors that we explore in the subsequent subsections.
This includes the fact that scores for the metrics are not in-
dependent of the length of sequences being compared, but
instead may correlate with this parameter.

Insights on protein ortholog prediction derived from the dis-
tributions of score frequency

In Figure 2, we show distributions of score frequency, for
all-scores and positive-only distributions with the Euclid-
ian and NGD metrics, for k-mers 1 to 4. These metrics are
shown because, of the metrics represented in Figure 1, NGD
generally has the best performance and Euclidian is one
of the worst. In particular, for the AUC curve, NGD has
the highest value for K = 2, with the smallest dip in the
curve at this point. When comparing the distributions for
Euclidian, it is clear from Figure 2 that as the k-mer length
increases there is much less difference between the ‘posi-
tives’ and ‘all-scores’ distributions. The overlapping index
between the two distributions indicates how similar these
distributions are. The more similar they are, the less suc-
cessful the metric is at identifying signal from noise. Ideally,
the true orthologs or ‘positives’ would have a distribution
with minimal overlap to those of the ‘all-scores’.

In contrast to the Euclidian metric, the distributions for
NGD have greater spread over the range of possible scores
and the ‘positives’ and ‘all-scores’ distributions are more
clearly distinguishable. Scores for k-mer length 1 tend to be
distributed closer to 0.0, the bottom of the range of pos-
sible scores; while for k-mer length 4 the scores tend to be
distributed close to 1.0, the top of the scale. There is also
a relatively clear separation (i.e. a small degree of overlap)
between frequency of score distributions for ‘all-scores’ and
those for ‘positives’, across all k-mer lengths, and the sepa-
ration increases slightly for longer k-mers. This corresponds
to better predictive performance being achieved with longer
k-mers.

Distributions for the other metrics are available as fig-
ures in the supplementary information, Supplementary File
2.

In Figure 3, we have calculated the overlapping index be-
tween the ‘positives’ and the ‘all-scores’ distributions in or-
der to summarise these findings for seven different metrics
and four different k-mer lengths. The BC, NGD, d2 and
Manhattan metrics all perform well according to the results
shown in Figure 1 and they have relatively small overlaps
in Figure 3. As explained previously, a relatively small frac-
tion of overlap indicates better predictive performance than
a relatively high overlap. For these metrics, the largest over-

Figure 2. Score distributions showing the frequency of occurrence (y-axis)
of each score (x-axis) for (A) the weakly performing Euclidian, and (B)
strongly performing NGD metrics. K-mers ranging from 1 to 4 amino-
acids are considered, with the distributions given for two data sets: (i) pos-
itives for the true positive-only scores (solid line); and (ii) all-scores (dashed
line). These results are for the yeasts system. Note the overlap between the
distributions increases for the Euclidian metric, for longer k-mers, while
NGD retains significant separation between the distributions.

lap is for k-mer length 2, which corresponds to the mini-
mum of the AUC curve in Figure 1. The variation in the
scores is relatively high for k-mer length 2, leading to dis-
tributions centred on the mid-point of the range of scores
and which are spread over the full range of scores, e.g. from
0.0 to 1.0. These distributions have relatively large overlaps.
As k-mer lengths increase, the score distributions tend to be
pushed towards the extremes of the range of allowed scores,
the distributions are relatively compressed, and the overlaps
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Figure 3. The overlapping index between the curves from the positive-only
distribution (true protein orthologs) and the distribution of all-scores, for
all protein pairs in the yeasts system. The smaller the overlap index, the bet-
ter the predictive performance. The Euclidian, Chebyshev and Canberra
metrics all give poor performance for k-mers 3 and 4 in particular.

are smaller. The smallest overlap for these four metrics is for
k-mer length 4, shown in purple in Figure 3, and giving the
highest accuracy in Figure 1.

In contrast, the Euclidian, Chebyshev and Canberra met-
rics tend to have worse performance with larger k-mers. Fig-
ure 3 shows that there is large overlap between the ‘posi-
tives’ and ‘all-score’ distributions, meaning that there is lit-
tle difference between the scores for known orthologous se-
quences and those without any detectable orthology. For
these metrics, the best performance is achieved with k-mer
length 1, where their overlapping index values are lowest.

Does the similarity score correlate with mean protein se-
quence length?

In Figure 4, we explore the relationship between protein se-
quence length (i.e. the mean length of the pair of sequences
being compared) and the metric score for the ‘positives’ dis-
tribution. For the Euclidian metric, with k-mer lengths 1
to 4 we have used a dot plot to indicate the relationship
between the mean sequence length and the score, for each
protein pair. We have calculated the correlation between
mean length and score using Spearman’s rank correlation.
The correlation values are given in the figure legend and are
weakly anti-correlated for k=1 and strongly anti-correlated
with values below –0.8 for k-mers 3 and 4. Thus for the Eu-
clidian metric, which gives poorer performance as the k-mer
length increases, the scores for longer k-mers are dependent
on protein sequence length. For longer k-mers, if the mean
length of the protein pair is relatively short, then the score is
likely to be high, predicting a relatively dissimilar pair; while
if the mean length of the protein pair is relatively long, then

the proteins are predicted to be relatively similar. Ideally,
there should be zero correlation between score and sequence
length.

These results are for the fly-worm system and figures for
other metrics are given in Supplementary File 3. Similar ef-
fects are also seen in the yeasts system: although the magni-
tude of the correlation might change by around 25% or so,
the pattern (relative magnitude of correlations) across the
k-mer lengths remains the same.

In Figure 5, we have calculated the correlations in a sim-
ilar way to that described for Figure 4, but for a range of
different k-mer lengths and scoring metrics. For the D2,
BC, NGD and Manhattan metrics the highest correlation
is given for k-mer length 2 (which corresponds to the mini-
mum of the AUC curve in Figure 1), and the lowest correla-
tion for k-mer length 4 (which gives the most accurate pre-
dictions for these four metrics). As mentioned previously,
the Euclidian metric shows significant correlation for all k-
mer lengths, with k-mer length 1 giving the lowest correla-
tion magnitude, while the Canberra metric gives very high
correlation for k-mers lengths 3 and 4. This metric’s accu-
racy is very poor (worse than random, see Figure 1) for these
longer k-mers, although it is has low correlation and good
performance for shorter k-mers.

Note that for k-mer length 4 amino-acids the number of
possible k-mers is 204 = 160 000. If two protein sequences of
say 1000 amino-acids are compared then: (a) they are likely
to have a very small number of possible 4-mers in common;
(b) the number of 4-mers present in one sequence but not
present in the other is likely to be higher; while (c) the vast
majority of 4-mers will be absent in both sequences. The
number of shared 4-mers will tend to increase with longer
sequences and this may be basis of the observed correla-
tion, although other factors may be involved. The selection
of the distance metric used needs to be considered carefully
in these circumstances because the usual assumption is that
the majority of counts are non-zero. In these cases, where
the majority of counts are zero, the Euclidian distance be-
haves poorly, the Manhattan distance behaves considerably
better, and the Canberra distance only suffers from correla-
tion and poor performance with the longer k-mers.

Can the prediction of protein orthologs be improved by con-
trolling sequence length?

The correlation between metric score and mean protein se-
quence length suggests that the predictive power of the met-
rics could be improved if sequence length was controlled in
some way. To explore this, we added an option to KAST to
constrain the length of compared sequence pairs so that the
lengths are similar to within e.g. 80% of each other. Figure 6
shows the results when the sequence lengths are controlled
in this manner, for a number of different metrics, and for k-
mer length 2 (this k-mer has the highest absolute correlation
according to Figure 5).

In Figure 6, the black blocks in the cluster of bars for
each metric are the original predictive accuracy when length
is not controlled. The degree of improvement or deteriora-
tion, when sequence length is controlled, can be seen for
each metric by comparing the coloured blocks in a cluster
to the black block. The figure shows little or no overall im-
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Figure 4. The correlation between mean protein sequence length and the score of true positive sequence pairs, for the weakly performing Euclidian metric
with different k-mer lengths. The test was performed with Spearman’s rank correlation and the values of Rho are given in the figure. In each case, the
P-value is below 2.2e–16. Contour lines indicate the density of the dots. Large correlations are observed for longer k-mers, where performance is weakest
for this metric.

provement for the NGD, BC and Canberra metrics, but the
others, i.e. Manhattan, D2, Euclidian and Chebyshev met-
rics do show significant improvement.

The best options for the protein ortholog prediction
problem in terms of accuracy are the BC and NGD metrics
without any length filters (when these metrics are used with
length filters we observed, at best, no significant improve-
ment in accuracy). Manhattan is just as accurate as these
two metrics for k-mer lengths 3 and 4 (and also for k-mer
lengths 1 and 2, but only if the length filter is applied). The
BC and NGD metrics operate in a similar manner. They
consider sequence length to be an important component of
sequence similarity. This can be a reasonable assumption
for protein ortholog prediction, where sequences of protein
orthologs are likely (but not always) to have similar lengths.

Determining the likelihood of a prediction being correct for
protein ortholog predictions

It is desirable for alignment-free search to be applied with
a measure of the probability of success, which may be pro-
vided as an input parameter for the search. For example,

in the context of protein ortholog prediction, by applying
a particular cut-off score we should be able to limit search
results to protein pairs with, for instance, at least an 80%
chance of being a correct prediction.

First, consider that an optimal score threshold can be de-
rived from the score frequency distribution plots shown in
Figure 2. This score can be used as a filter or cut-off score:
when applied, only scores less than this value are retained.
Such a filter balances enrichment for true positives against
coverage of the full data set, which mainly consists of true
negatives. An advantage of applying this filter, therefore, is
that it removes large numbers of negative sequence pairs
from downstream analyses.

A way of identifying this cut-off score is shown in Fig-
ure 7, where the plots show the cumulative score frequen-
cies. These are calculated by summing the frequencies for
each score from 0.0, up to the maximum score of 1.0, for
the NGD metric. The cumulative frequency for the ‘posi-
tives’ distribution is subtracted from that for the ‘all-scores’
distribution to give a curve in red that shows the difference
between these curves. The maximum of this curve indicates
an optimal or cut-off score: applying this score as a filter
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Figure 5. The correlation between protein sequence length and score for
different metrics and k-mer lengths are summarised, for the ‘positives’ data
set. The test was performed with Spearman’s rank correlation and the val-
ues of rho are given by the correlation magnitude (absolute values of rho).
In each case, the P-value is less than 2.2e–16. These data are from the fly-
worm system. Correlations of higher absolute magnitude tend to associate
with weaker performance.

Figure 6. Controlling protein sequence length may lead to improvements
of performance. The black bar gives the fraction correct with no applied
length constraints, whilst the coloured bars give the fraction correct when
the sequence length is constrained using the fp parameter in KAST, as
given in the legend. For example fp=0.75 may be interpreted as the small-
est of the sequence pair having at least 75% of the length of the longest:
only sequence pairs that meet this condition are scored and ranked. The
Manhattan, D2, and Euclidian metrics in particular show improved per-
formance. These data are from the fly-worm system with k-mer length 2
amino acids.

Figure 7. Selecting a cut-off score to optimise positive predictions. For pro-
tein sequence comparison, the ‘positives’ and ‘all-scores’ histograms are
summed over the scores, from 0.0 to 1.0, to give the cumulative score fre-
quencies. They are plotted as black lines (dots and solid, respectively). The
‘difference’ curve in red is the difference between these two curves. The
peak of this curve suggests a score (given in the graph titles), such that the
majority of true positive scores lie below this value, while true negatives
tend to lie above it. The graphs for four different k-mer lengths are shown
with the NGD metric. These data are from the fly-worm system.

increases the proportion of correct predictions, but it will
yield less true positives over all. As k-mers get longer, the
peak of the difference curve shown in Figure 7 gets sharper,
indicating that the NGD metric is able to make a clearer
distinction between true and false predictions. The sharpest
peak is for k-mer length 4, and here almost all the positive
scores (over 99%) are equal to, or below, the cut-off score of
0.98.

In Figure 8, we expand on this idea. In order to obtain
scores annotated with a measure of the probability of suc-
cess, it is necessary to identify the proportion of correct pre-
dictions achieved at different score thresholds (i.e. cut-offs).
The cost of applying a cut-off score filter is that less predic-
tions are considered. This is because, by definition, apply-
ing the cut-off score will exclude protein pairs with scores
above the cut-off score – but these scores will be less likely
to be true positives than those below the cut-off score. For
example, in the fly-worm system with k-mer length 4, with-
out a cut-off score applied, all correct predictions are in-
cluded (1081 out of 2147 predictions) and 0 are excluded.
This corresponds to a predictive accuracy of 50% (based on
the top hits). When applying a cut-off score filter of 0.915
(which is approximately at the most concave section of the
red curve in Figure 7), there are 468 correct predictions with
a predictive accuracy of over 95%. The cost of achieving this
high accuracy rate, however, is that 613 of the possible cor-
rect predictions are removed by the filter. Figure 8 shows
the proportion of correct predictions calculated for a range
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Figure 8. Mapping scores to fractions of correct predictions, to derive like-
lihoods or probabilities. Curves are shown for protein ortholog prediction
for the NGD metric, with (A) k-mer length 3, and (B) k-mer length 4 amino
acids, for the yeasts and fly-worm system. The black curves show the frac-
tion of correct predictions when different cut-off scores are applied, while
the red curves show how many correct predictions are excluded by apply-
ing the cut-off score. The difference between the black curves indicates the
error that would be observed if we applied e.g. the yeast probabilities to
scores from the fly-worm system. The area of the graph has been further
divided into three areas corresponding to score ranges that correspond to
high, variable or low accuracy predictions (based on the black curves).

of cut-off scores: these are black curves in the graphs, and
are shown for both the yeasts and the fly-worm system. The
graphs also show the cost in terms of the correct predictions
excluded by the filter: these are the red curves.

It is possible to map the scores generated by the NGD
metric onto the proportion of correct predictions using the
graphs in Figure 8. In this way, we can make estimates of
the probability of a prediction being correct. In Figure 8,
the area of the graphs have been divided into three indica-
tive areas corresponding to scores that lead to high, variable
or low accuracy predictions (derived from the black lines).

For k-mer length 4, the low area would correspond to the
scores above the cut-off score given in Figure 7, i.e. above
0.98. Given that almost all correct predictions have scores
less than this value, predictions with scores above this value
are unlikely to be true (i.e. they may be allocated a likelihood
of 0.0). Conversely, scores below 0.8 could be considered
the high likelihood region: predictions are highly likely to
be true with an accuracy over 95%. In between these scores
would be a medium or variable region. In this region, it is
possible to map a score onto a probability value, thus esti-
mating the likelihood of the ortholog prediction being cor-
rect.

Once the mapping between scores and probabilities has
been derived, it may then be applied to ortholog predictions
between different pairs of species – not just to the yeasts or
fly-worm system. Some care, however, is required. In Fig-
ure 8 it can be seen that there are different levels of accuracy
between the yeasts system and the fly-worm system. Based
on the top hit predictions for k-mer length 4, their accuracy
is 65% and 50%, respectively. These two systems are com-
posed of species pairs that are relatively close and distant in
evolutionary terms. Using just these species may limit the
accuracy of the probability estimates. It is possible, however,
that a number of different species pairs separated with a
range of evolutionary distances could be used to generate a
more complete library of probabilities. The library could be
used to estimate likelihoods for pairs of species, depending
on their evolutionary distance. The objective function plays
an essential role in this process: it is used to determine the
true orthologs between a pair of species. Additional pairs of
species require additional objective functions and test data
sets.

K-mer length and DNA fragment length influence predictive
accuracy for taxonomic prediction

In our DNA sequence comparison example, sequences de-
riving from two non-overlapping fragments of a bacte-
rial genome can be recognised as similar. Alignment-based
methods are unlikely to perform well in this application
because the fragments come from the same genome. They
therefore do not share any long blocks of evolutionary con-
served sequences that are required for alignments.

DNA sequence varies in length much more than pro-
tein sequence. With DNA, the length of the reference and
query sequences can vary considerably with respect to each
other: one could be a 100 bp short read, the other a 10 000
000 bp chromosome. As with protein sequences, the length
of the DNA sequences can have a significant influence on
the alignment-free metric scores.

In Figure 9, we show taxonomic prediction results
achieved whilst varying both the k-mer length and the frag-
ment length. In the left-hand side graph we show the L-
equal case, whilst the L-unequal is shown in the right-hand
side graph. These results are for the d2Star metric, however
the results are broadly similar for other metrics. The data for
this figure, and equivalent data for other metrics, are given
in Supplementary File 1.

Note that for the related problem of predicting the genera
(rather the species) the predictive accuracy is significantly
higher i.e. around 85% for k = 5 and 102.4 kb fragments).
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Figure 9. The metric used is d2Star, and the comparison has been performed on both (A) the L-equal case (reference and query lengths are equal and
given in the x-axis); and (B) L-unequal case (reference is a 250 kb fragment, the query length is given in the x-axis). Longer DNA fragments lead to more
accurate predictions than those made with shorter fragments. Increasing k-mer length from 2 to 5 bp improves predictive accuracy for L-unequal, and also
for the L-equal case (but not consistently e.g. see K = 5). Here, the species is predicted and the maximum possible accuracy is 74%.

An issue with species prediction in these data sets is that
only 493 of the 653 query sequences have a shared species
classification with the reference data set, meaning that the
maximum accuracy is 74%. This is higher for genera classi-
fication at nearly 99%.

Increasing the fragment length leads to greater predictive
accuracy. Accuracy is very low for the shortest fragments,
especially for L-equal: here it is 0.2% and 0.3% for k = 2
and k = 5 respectively with 100 bp. Accuracy increases with
fragment length, tending to level off for the larger fragments
(e.g. at 39.1% and 52.9% for k = 2 and k = 5 respectively
with 102.4 kb and L-equal).

Increasing the k-mer length from 2 to 5 bp may improve
predictive accuracy. For shorter sequence lengths, however,
longer k-mers may lead to reduced accuracy. Indeed, Fig-
ure 9 shows that k = 5 is worse than k = 4 and no better
than k = 3 for the smaller fragment lengths in the L-equal
case.

There is a computational cost in using longer k-mers. The
number of DNA words that need to be counted is equal to
4k where k is the k-mer length, and four derives from the
number of DNA bases. For example, a k-mer length of 3 bp
results in 43 = 64 words and a k-mer length of 5 bp results
in 1024 words. Often a k-mer length of 4 bp is a reasonable
choice (48). It has similar accuracy to a k-mer length of 5,
but can be up to 4 times faster to calculate. The L-unequal
case is also slower to compute than L-equal because it in-
volves longer reference sequences. The ideal k-mer length
is hard to specify in general terms as it depends on a va-
riety of factors specific to the search problem. Some au-
thors have observed that reducing the k-mer length can re-
duce resource requirements whilst maintaining a compara-
ble accuracy (6); on the other hand, some authors observe
that k-mer length may be marginal for good performance
whilst noting that the appropriate choice of k is very much

dependent on the alignment-free method and its parame-
ters (15). Our results emphasis the relationship between se-
quence and k-mer length, with longer k-mers tending to re-
quiring longer sequences for good performance. We elabo-
rate on this below.

Figure 10 explores the role of fragment length on the
scores in the L-equal and L-unequal situations for k-mer
length 4 bp. In the L-equal graph, results for nine different
alignment-free metrics are shown. They tend to give similar
performance, except for the Chebyshev metric that is no-
ticeably worse for mid-length fragments, but just marginally
worse for the shortest and largest fragments.

For the L-unequal situation in Figure 10, we show the
results for 6 of the metrics. The NGD, BC and Canberra
metrics perform very badly when the reference and query
fragments are of different lengths, and so we have not in-
cluded them here. These three metrics interpret the differing
lengths in the L-unequal situation as highly dissimilar se-
quences, irrespective of k-mer frequencies, and hence they
achieve effectively zero correct predictions. There is much
more variability between the remaining metrics in the L-
unequal situation. Chebyshev again gives the worse perfor-
mance.

The methods that incorporate the background k-mer fre-
quency via Markov approaches (here the background is cal-
culated with single nucleotides) appear to perform differ-
ently to each other. Although they have similar performance
in the L-equal case, in the L-unequal case, however, d2Star
performs much better than d2S, but the difference is less for
the shortest and longest fragments. The d2Star metric per-
formed the best of all the metrics with the L-unequal data
set, for k-mers of length 3–5 bp (see Supplementary File 1).

For the metrics that do not compute the background,
there are some inconsistencies but they generally behave
slightly better in the L-unequal case than in the L-equal case
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Figure 10. Predictions using different metrics. In (A) the L-equal situation, predictions with different metrics and DNA fragments of equal size give similar
results, with Chebyshev giving the poorest performance. The situation is more complex in (B) the L-unequal situation: d2Star tends to outperform the
others, with Chebyshev again giving the poorest performance. NGD, BC and Canberra are very poor if fragments are not the same length, hence they are
not shown for the L-unequal situation.

(due to its shorter reference sequences). The D2, Manhat-
tan and Euclidian metrics are similar to each other in terms
of predictive accuracy, with the Chebyshev method giving
the weakest performance for these predictions.

Score distributions vary with k-mer length and DNA frag-
ment length

The distribution of score frequencies can vary significantly
for key parameters used in alignment free sequence compar-
ison. These include the k-mer length, the sequence fragment
lengths, the relative lengths of the sequence pair being com-
pared, and the scoring metric being deployed.

In Figure 11, we show score frequency histograms for the
all-scores distribution (described in the methods), for the
L-equal case for two metrics: d2S and NGD. For the short-
est k-mer length, i.e. 2 bp, with both metrics the score dis-
tributions are relatively similar for all sequence fragment
sizes. For the longest k-mer, i.e. 5 bp, the score distribu-
tions are much more dissimilar and distinct, except per-
haps for the two longest fragments (L = 25.6 kb and L =
102.4 kb). These results highlight the differences between
score distributions that arise from using different sequence
lengths (and with the reference and query sequences equal
in length). Figures with the distributions for other metrics,
and for the L-unequal case, are given in Supplementary
File 4.

Most analytical studies into metrics such as the D2 dis-
tribution have only considered cases where the pairs of se-
quences have equal or similar lengths. There is a risk that an
erroneous assumption might arise, i.e. that alignment-free
methods operate independently of sequence length. There
is some theoretical reasons why this could be true. An in-
fluential review (49) interpreted DNA sequences in terms
of chaotic dynamics using a visualisation of the DNA se-

quence called the Chaos Games Representation or CGR.
The CGR is a visual representation of DNA sequences that
generates very attractive images that have been shown to
have fractal properties (50,51). They have been used as the
basis for sequence comparison (52,53). Moreover, due to the
link with fractals, the CGR highlights their scale indepen-
dent nature – meaning that the frequency of occurrence of
k-mers in a whole genome sequence is repeated throughout
the genome, so that k-mer frequencies are much the same
in short or long sequence fragments (54). This observation
is true within limits: as sequences become shorter, however,
there tends to be greater likelihood of divergence from the
k-mer frequencies derived from the whole genome sequence.
The divergence may be due to specific evolutionary or func-
tional constraints being placed on the genetic code within
shorter sequences, for example due to the need to encode
a particular protein or, in bacteria, due to horizontal gene
transfer. As sequences get longer, they contain more ge-
netic features, and the pattern of k-mer frequencies then
converges towards that observed in the whole genome. Se-
quence variability manifests as noise in the alignment-free
metrics. Shorter sequences are more variable, with the re-
sult that scores from shorter sequence pairs are observed to
have means with relatively dissimilar values (i.e. closer to 1.0
in the two metrics in Figure 11), as compared to the means
generated from longer sequence pairs (which are closer to
0.0).

Once the k-mers have been well sampled via sequences
that are sufficiently long, the score distributions tend to con-
verge towards a similar shape. This can be more readily
achieved with relatively short sequences for a k-mer length
of 2 bp, which has just 16 k-mers to sample. Here a sequence
length of 400 bp would allow each 2-mer to be sampled on
average 400/16 = 25 times, thus allowing for accurate esti-
mates of k-mer abundances. In contrast, a k-mer length of
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Figure 11. Frequency of occurrence (y-axis) of each score (x-axis) in the
all-scores distribution. Results are given for two metrics: (A) d2S, and (B)
NGD; with different DNA fragment sizes, and k-mer lengths. In both
graphs the distribution is comprised from L-equal fragments, the sizes of
which are given in the key. As the fragment sizes get longer, k-mer sampling
improves, statistical noise is reduced, and the shapes of the distributions
converge towards those of the longest fragments. For the shorter k-mers,
the convergence occurs more quickly (i.e. with shorter fragments) than for
the longer k-mers.

5 bp has 1024 k-mers to sample, and with a sequence length
of 400 bp more than half of these k-mers would have fre-
quencies equal to zero: this poor sampling may adversely
affect the performance of metrics. Much longer sequences
are required to accurately estimate the 5-mer abundances,
especially for the rarer k-mers.

In a whole genome sequence, as k-mers get longer, they
are more likely to hold functional sequence, and they occur
less frequently. K-mers of length 10 bp will occur once per
million bases on average, i.e. just a few times in a typical
bacterial genome. In contrast, k-mers in the 2 bp to 5 bp
range, which we have focused on in this paper, are too short
to code for more than 1 amino-acid, but are likely to occur
1000s of times in a bacterial genome. Their functional con-
tent is minimal: it is their frequency of occurrence that pro-
vides the important signal for the similarity metrics (48,55).

Longer k-mers, however, offer alternative strategies for
detecting similarity. The presence or absence of long k-mers
can give a reliable, binary signal that can be used for classifi-
cation. This is because longer k-mers occur only rarely in se-
quences, if at all, and hence they may be used as biomarkers.
This can be a very successful strategy and has been imple-
mented in metagenomics software for taxonomic classifica-
tion (56). For instance, the software Kraken performs clas-
sification tasks for metagenomics applications. It uses the
presence of certain k-mers of length 31 bp to perform exact
matches in sequence databases (57). It may also be worth
mentioning that, if k-mers are sufficiently long, they could
be considered to be alignments’, thus pushing at the limits
of what could be called alignment-free sequence compari-
son. Nonetheless, two recent studies with a focus on bench-
marking alignment-free algorithms have explored the more
general use of k-mers of up to 10 bp and longer (14,15).

Score distributions for different metrics, k-mers, fragment
lengths and for both equal and unequal DNA fragment lengths

Figure 12 summarises the results shown in Figure 11 for a
range of different metrics. It highlights the ways in which
the score distributions generated by alignment-free metrics
depend on sequence length and k-mer length. In Figure 12,
the similarity of different score distributions is compared
by calculating the overlapping index between the distribu-
tions. To calculate the overlapping index, these distributions
are compared to the score distribution involving the longest
query sequence length, L = 102.4 kb. The overlap repre-
sents the convergence of the distributions, (see Figure 11).
The overlapping index is shown for distributions generated
using query sequence lengths from L = 0.4 kb up to L =
25.6 kb (given in the key). The reference sequences are given
as for the L-equal and L-unequal cases (see methods for
further detail). Results are given for four different k-mer
lengths, 2, 3, 4 and 5. The closer the overlapping index be-
tween the score distributions is to 1.0, the more similar the
distributions.

In Figure 12, the graphs for k = 4 (L-equal), shows that
d2S (also shown in Figure 11) with the smallest length, L
= 0.4 kb has a overlap index of 0.44. This means that the
score distribution for L = 0.4 kb is not very similar to that
for L = 102.4 kb: only a bit less than half of the distribu-
tions overlap. For L = 1.6 kb and L = 6.4 kb the overlap
index values are 0.66 and 0.86, respectively. For the longest
fragment shown in the figure key, L = 25.6 kb, the overlap
index for d2S is ∼0.96 and this means that the score distri-
bution for L = 25.6 kb has a relatively strong resemblance
to that for L = 102.4 kb.
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Figure 12. The overlapping index between the score distribution derived
for the longest fragment (L = 102.4 kb), and the smaller fragment lengths
given by the figure key, are shown. Results are given for four different k-
mer lengths and for both the (A) L-equal and (B) L-unequal situations. The
closer the overlap index is to 1.0, the better the k-mer sampling, leading to
less noise (i.e. a stronger signal). Longer DNA fragments tend to provide
better sampling of k-mers and more similar distributions, i.e. greater over-
lap. An exception occurs for the BC, NGD and Canberra metrics, which
perform very badly in the L-unequal situation (when the reference and
query sequences have dissimilar lengths).

It is tempting to consider that, as the score distributions
become more similar, the interpretation of their scores will
also become more similar – for instance, in terms of the
fraction of correct predictions as given in Figures 9 and 10.
Unfortunately, this does not quite reflect the situation. Fig-
ure 10 shows that for d2S (k = 4 and L-equal) there is a
significant increase in accuracy between L = 25.6 kb and
L = 102.4 kb (from 45% to 53%), even though the overlap

index between these score distributions is relatively high at
0.96. Other metrics show similar behaviour. The issue arises
because true positives are most likely to be found in the tail
of the distribution: relatively small changes in the tails can
influence performance and the overlap index does not re-
flect the similarity between the tails well. It is also worth
noting that these sequences differ in length by a factor of
4. Sequences that are more similar in length may still allow
for a shared interpretation of the scores. Figures 9 and 10
show that as sequences get longer, the fraction of correct
predictions tends to converge towards an upper limit. Thus,
similarity in length may be more flexibly defined for longer
sequences than for shorter sequences. In any case, it will de-
pend on a number of parameters, including the k-mer length
and metric used, and so we have not attempted to explore
this precisely here.

In certain circumstances, it is advantageous to cut the se-
quence fragments so that they are all of equal lengths. Then
the sequence pairs will generate scores from the same score-
frequency distribution, with the same degree of statistical
noise, and this can greatly simplify interpretation. This is
particularly relevant for the query fragments – if the ref-
erence fragments are sufficiently long (e.g. a large chromo-
some fragment) they may not require any adjustment. The
important point is that the sequence lengths influence the
distributions of similarity scores for the alignment-free ap-
proaches we have explored in this section, with some metrics
being more sensitive to this effect than others are. Although
in most of our experiments the Chebyshev metric gives poor
performance, it is worth noting that it does display the most
consistent scoring with varying sequence length, as shown
in Figure 12 (see the graphs for K = 3 and K = 4 for in-
stance).

There is no need for the reference and query sequences to
be of equal lengths, so long as the difference in length is con-
sistent throughout the data set. A long reference sequence
(L-unequal) will sample the k-mers relatively well, poten-
tially compensating for the lesser sampling of the query se-
quence. In general, this gives more accurate results in our
tests, and the overlaps given in Figure 12 are greater in the
L-unequal case than the L-equal case. The overlaps for the
BC, NGD and Canberra metrics, however, are very small.
For these metrics, using the L-unequal reference sequence
length (250 kb) with the much shorter query lengths gives
very poor results. There is an assumption in the design of
these metrics that sequences will be of similar length. It is
therefore important to consider this when using these met-
rics because they do not function with sequence pairs of
very dissimilar lengths.

Determining the likelihood of a prediction being correct for
DNA taxonomic classification

Similarly to the protein ortholog prediction case, it can be
advantageous to estimate the likelihood of a taxonomic pre-
diction being correct. This can be performed in a similar
manner to the protein case. Determining a cut-off score for
DNA is more complex than for proteins, however, due to
the greater variability of the sequence length and its influ-
ence on the scores. The curves in Figure 13 have been cal-
culated in a similar way to those in Figure 7 but we have
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Figure 13. Selecting a score to optimise positive predictions. For DNA se-
quence comparison, the positive-only or ‘positives’ and the all-scores his-
tograms are summed over the scores, from 0.0 to 1.0 (up to 2.0 for Man-
hattan), to calculate the cumulative score frequencies. They are plotted as
black lines (solid and dots, respectively). The ‘difference’ line in red is the
difference between these two curves. The peak of this curve suggests a score
(given in the graph titles), such that the majority of true positive scores lie
below this value, while true negatives tend to lie above it. The k-mer length
has been set to 4 bp, the query length to 25.6 kb, and these results are based
on the L-unequal data set. Four different metrics are shown.

reduced the parameter set to only consider a k-mer length
of 4 bp, a query length of 25.6 kb, and the L-unequal data
set. Results are shown for four different metrics. In addi-
tion to the optimal scores, the figure indicates the different
shaped distributions produced by different metrics.

Similar to Figures 8 and 14 shows the trade-off between
applying a cut-off score to obtain more accurate taxonomic
predictions, at the expensive of obtaining less predictions
overall. The black curves show the fraction of correct pre-
dictions for different cut-off scores, whilst the red curves
show how many correct predictions are excluded by apply-
ing increasingly stringent cut-off scores. The black curves
may be used to map scores to probability values.

The importance of biological context is highlighted in
Figure 14. There are two black curves because the similar-
ity scores have been evaluated in two different contexts with
two different objective functions i.e. predictions of either the
species or the genus taxonomic level. The same set of scores
is used in both cases, but the probability of a correct pre-
diction, as represented by the black curves in the figure, is
significantly different.

A recent software tool for phylogeny analysis (58,59)
performs calibration using test data, with some similarity
to what we have proposed here. Rather than explicitly in-
cluding objective functions as we have done, however, in
this application the objective function is implicitly embed-
ded within the application. The objective is to predict the
alignment-based identity score (percentage of identical nu-
cleotides between two optimally aligned sequences). This is

Figure 14. Mapping scores to fractions of correct predictions, to derive
likelihoods or probabilities. The black curves show the fraction of correct
predictions when different cut-off scores are applied, while the red curves
show how many correct predictions are excluded by applying the cut-off
score. Here DNA taxonomy prediction has been performed at two differ-
ent levels (species and genus) with the Manhattan metric and k-mer lengths
4 bp. In each case, the scores are the same, but the objective function ap-
plied to determine true positives (i.e. the fraction correct) is different. Note
two very similar red curves are plotted, corresponding to each taxonomic
level.

performed with self-supervised general linear models that
use k-mer statistics derived from a variety of alignment-free
methods. A strength of this method is that it combines mul-
tiple alignment-free approaches. However, given that it re-
produces alignment-based statistics, it is not clear that it can
address niches of interest where alignment-based methods
perform poorly, such as the application we have presented
here.

Performance of the KAST software

As mentioned previously, we developed KAST because
we were unaware of other alignment-free software pack-
ages that provided comparable functionality. In evaluating
KAST, our analysis is therefore limited in terms of compar-
isons to other codes. Those that are available are restricted
to DNA sequence.

Two other alignment-free codes that are designed for ef-
ficiency using C/C++, include CAFE (60) and ALF (61).
CAFE is designed as a graphical application accessed via a
GUI, although it can also be accessed via a command line
interface. Like KAST, ALF is based on the SeqAn toolkit
(43) but it was designed to look at a more limited set of dis-
tance measures than KAST. In addition, KAST offers addi-
tional functionality not present in CAFE and ALF, includ-
ing parallel execution and scoring methods for amino-acid
sequences.

For reference, we have provided some example KAST
timings for protein comparison, using k-mers in the range
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Table 3. KAST speed-up when run on a x86 64 AMD system with 64
cores (2299 MHz) and 529 GB memory. The number of cores used are
given in the top row. These results are based on the yeasts system (protein
sequence). There was no advantage in running KAST with K = 1 and K =
2 beyond two cores: the speed-up remains much the same as for two cores

K-mer 16 8 4 2 1 Time

K = 1 – – – ×1.1 ×1.0 2.56 (min)
K = 2 – – – ×2.2 ×1.0 5.33 (min)
K = 3 ×6.3 ×6.0 ×3.7 ×1.8 ×1.0 45.08 (min)
K = 4 ×7.2 ×7.0 ×3.1 ×1.7 ×1.0 16.08 (h)

An example set of KAST parameters with 1 core and k-mer length 1 are:
kast -c 1 -k 1 -q yeastSC.fa -r fissionYeast.fa -t ngd -s aa -n 0 -f blastlike -o
out.kast.

of 1 to 4 amino-acids, the NGD metric, and outputting the
scores for all comparisons (-n 0 option in KAST). These re-
sults are based on the two yeasts system S. pombe and S.
cerevisiae (as the reference and query sequences in KAST,
respectively), and comprises 34,491,394 protein sequence
comparisons. The speed-ups available when using multiple
cores are given in Table 3, and can be seen to be 7.0 times
faster when 8 cores are used. There was some further in-
crease when 16 cores were used but it was marginal. The
lack of scaling here is likely related to issues described by
other authors, with concerns including thread synchroniza-
tion and Non-Uniform Memory Access (NUMA) (62,63).
The use of k-mer length 4 amino acids can be particularly
demanding on computational resources, both for time and
RAM (running with 8-cores required 47 Gb of RAM).

We have compared execution times of KAST against
ALF and CAFE, with the results shown in Table 4. For this
comparison, we used the DNA sequences in the query data
set with fragment length 25.6 kb. We performed an all ver-
sus all comparison of the sequences in this data set (3250
× 3250 comparisons) due to the more limited input options
available with ALF and CAFE. Some adjustment of the in-
put files was required because certain characters in the se-
quence files were not accepted, including the NCBI format
of the headers (for CAFE), and in the DNA sequences ALF
only accepts the characters ACGTN but not R. Moreover,
CAFE requires each FASTA record to be in a separate file,
which is not ideal when there are 1000s of sequences to pro-
cess. Although these issues are relatively minor, they high-
light the need for a robust and flexible implementation like
KAST that is suitable for general use.

KAST is similar but slightly slower in execution speed
when compared to ALF with 1 core, but just over 7 times
faster when 16 cores are used. It is also has a slightly lower
RAM requirement when used with multiple cores as com-
pared to ALF. CAFE is more than 10 times slower than
ALF, and more than 70 times slower than KAST when used
with 16 cores. It does, however, use about 25% of the RAM
of KAST and ALF.

Further optimisations of the KAST code are possible.
We aimed to investigate alignment-free methods based on
k-mer counts converted to frequencies. We therefore iter-
ate over all possible k-mers. When using k-mers of 4 amino
acids, 160 000 k-mers are possible, and the vast majority of
these will have counts (and therefore frequencies) of zero. It
would be possible to modify metrics to take advantage of

Table 4. KAST comparison to CAFE and ALF when run on a Intel(R)
Xeon(R) CPU E5-2640 v3 at 2.60GHz with 32 cores and 64 Gb of RAM
available. KAST was run with 1 and 16 cores (-c 1 and -c 16, respectively).
CAFE has two modes, an initial run that does k-mer counting with jelly-
fish and writes files containing the counts that may then be used by subse-
quent runs. We have given times for the initial CAFE run. Both wall clock
times (minutes:seconds) and RAM used (Gb) are given in pairs for each
software package. Note that for most applications we would recommend
using DNA k-mers in 3–5 bp range. The larger k-mers are shown here for
reference purposes only

K-mer KAST -c 1 KAST -c 16 ALF CAFE

K = 3 0:07 0.2 0:09 0.2 0:09 0.3 10.20 1.0
K = 5 0:13 0.2 0:09 0.2 0:12 0.3 10:54 1.0
K = 7 1:43 0.4 0:18 0.4 1:27 0.4 21:42 1.0
K = 9 25:06 4.3 3:17 3.5 22:42 4.2 250:26 1.0

this. It is also possible to take advantage of the strategies
implemented in other codes (20,63,64).

CONCLUSION

Many different metrics are described in the literature, and
recent studies that bench-mark the metrics are an important
step towards assessing their performance (14,15). These
studies are very useful when deciding which alignment-free
methods to use. Nonetheless, it is still difficult to understand
the factors that lead to good performance, and there is still
considerable uncertainty when tackling new application ar-
eas.

To complement the wide breadth of these studies, we have
narrowed the focus and attempted to develop a more de-
tailed understanding of a small number of more promising
metrics. We have focused on two application areas, involving
protein and DNA sequence, where we have large data sets
that allow us to robustly characterise the similarity score
distributions with different parameters and search scenar-
ios. In particular, our DNA example is characteristic of an
application where alignment-based approaches are likely to
be ineffective. Here we attempt to recognise fragments from
bacterial genomes based on their genome signatures: a re-
curring, fractal-like pattern of nucleotides that is used to
encode disparate proteins (50,51,54). Two fragments from
the same bacteria genome would not normally align against
each other because they usually have no coding sequences in
common – there are therefore no long continuous blocks of
conserved sequence that can align. The frequency of usage
of small k-mers, however, is still very similar in the two frag-
ments, and to a lesser extent in other sequences that share
the same taxonomic classifications (65). This provides a sig-
nal that alignment-free approaches are uniquely able to de-
tect.

Alignment-free methods appear to be simple––but the under-
lying biology is complex

One of the appealing features of alignment free methods is
their speed and simplicity. Our investigation has highlighted
that this simplicity arises because these methods remove bi-
ological context, with the result that a pair of sequences is
reduced to a number, the similarity score. While the scores
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allow a number of sequences to be ranked by relative sim-
ilarity, more sophisticated and objective interpretations of
the scores require biological context to be restored in some
form.

Moreover, our results have shown that different parame-
ters, and different data sets, can lead to markedly different
score distributions, and thus to different rankings of simi-
larity. Even if the score distributions appear similar, small
differences in the tail of the distribution can have a signif-
icant influence on performance. Additionally, different bi-
ological questions require different interpretations of those
distributions: the concept of similarity as measured by dif-
ferent alignment-free methods does not readily map onto a
researcher’s expectation of what similarity should measure.

The simplicity of alignment-free methods is therefore de-
ceptive and it is important not to underestimate the chal-
lenge of interpreting the alignment-free scores in the con-
text of the underlying biology, which is often complex, and
further complicated by the subjective concerns of the re-
searcher.

Objective functions provide a flexible framework for the in-
terpretation of alignment-free scores

We have proposed the role of an objective function in pro-
viding biological context that is required to evaluate the
scores. Our objective functions involve mapping sequence
identifiers to external knowledge bases in order to retrieve
the missing biological context.

We have shown that a set of scores output from
an alignment-free approach may be interpreted in dif-
ferent ways according to the objective function se-
lected and the biological context it encodes. Flexible ap-
proaches are therefore important when interpreting similar-
ity scores––alignment-free methods are based on a relative
ranking, and there is no single objective measure that can
be used to interpret this.

Although the concept of an objective function is key
to interpreting and calibrating alignment-free analyses, we
have not seen it discussed in a general manner in the
alignment-free literature. Instead the presence of the objec-
tive function is usually implicitly assumed in applications
developed with a single objective in mind.

We believe a greater consideration of the objective func-
tion’s role would help in understanding the practical appli-
cation of alignment-free analysis. The advantage of explic-
itly incorporating the objective function is that it frees up
software tools, allowing them to be more easily adapted to
different search priorities, data sets, and applications. We
have demonstrated that our approach is simple and flexible
enough to work for both protein and DNA sequences

Alignment-free scores may correlate significantly with the
mean sequence length

In practice, for effective search strategies, our results show
that an important consideration is the variability in the
length of sequences. Whilst other authors have recently ex-
plored sequences that vary considerably in length (15), it
is not clear if they have only investigated DNA sequence
pairs of equal length, rather than the mismatched sequence

lengths that naturally arise in many data sets, including
those we have explored here (both DNA and protein). We
have shown that alignment-free metrics may output scores
that correlate significantly with the mean length of the se-
quence pair: we have not seen this reported before in the
literature.

Different metrics have different sensitivity to length dif-
ferences. Some metrics (NGD, BC and Canberra in some
circumstances) consider sequence pairs that differ in length
to be significantly dissimilar, not because of the content of
those sequences, but simply because the sequences are of
different lengths. While this is well known for the BC met-
ric due to its established use in ecology (30), it is not so clear
for the other metrics.

When predicting protein orthologs this sensitivity to rel-
ative sequence length may not be a problem, because re-
ported orthologs often, but not always, have similar lengths:
indeed, NGD and BC do very well in these cases. However,
this behaviour is certainly problematic when considering
the taxonomic classification of fragments of whole genome
DNA, for instance from a genome or metagenome assem-
bly, that may differ in length by orders of magnitude.

Some alignment-free metrics give poor performance when
most k-mer frequencies equal zero

We have attempted to focus on the concept of k-mer fre-
quencies in alignment-free analysis applied to both DNA
and protein sequence. Some care is required concerning how
frequencies are implemented in practice. Strictly speaking, a
frequency should be a continuous rather than a binary vari-
able. Ideally, this means that each k-mer should have counts
much greater than zero in each sequence––and this requires
relatively short k-mers and relatively long sequences. While
this is often achievable for DNA sequences, it is much more
difficult with protein sequence due to its larger alphabet and
shorter sequences.

Although a metric may be designed for k-mer frequencies,
it is possible, through a combination of the k-mer length and
sequence length parameters, to inadvertently create a situa-
tion where the vast majority of k-mers are absent, those that
are present have very low counts, and the numbers of shared
k-mers between two sequences could be minimal. In these
cases, the k-mer frequencies would be represented as binary
values of presence or absence, rather than as more continu-
ous variables. This may not be obvious to the user and can
result in unexpected behaviour that significantly impairs the
performance of the metric.

The situation is likely related to what is known in ma-
chine learning as the ‘curse of high dimensionality’. With
such high dimensional data, the concept of distance may be
unclear because metrics behave differently to what seems in-
tuitive based on 3D space (66). In such cases the concept
of similarity may break down. Relating to our observations
with protein sequences, other authors have shown that the
Manhattan distance consistently performs better than the
Euclidian distance in high dimensional data sets (67).

For example, with the longer k-mers we have used with
protein sequences, the Canberra metric undergoes an unex-
pected drop in performance as the k-mer length increases,
and the dimensionality of the space increases. While Can-
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berra is a competitive metric for k-mer length 1, when k-
mer frequencies are almost all above zero and most are
shared between the sequence pair; it is at best random with
k-mers of 3 or more amino acids, when few k-mers are
shared between sequences, and those that are shared will
rarely have counts above 1. We have shown that in this situa-
tion its true positive scores are highly correlated (negatively)
with sequence length. The Euclidian and Chebyshev met-
rics also do poorly in these high-dimensional spaces, while
some metrics do well (NGD, BC, and for the larger k-mers,
Manhattan). Due to the smaller alphabet in DNA sequence,
k-mers of length 4 or 5 bp do not usually suffer from these
problems (unless perhaps the sequences are extremely short
in length).

Some authors have classified methods that use the binary,
presence or absence of k-mers differently from those based
on frequency-based distances (6,68). Indeed, one could ar-
gue that sufficiently long and rare k-mers are essentially
alignments, and as such, methods based on presence or ab-
sence of these k-mers should not be classified as alignment-
free methods at all.

Alignment-free scores can be annotated with probability val-
ues using objective functions and test data

We have calibrated alignment-free metrics using an empir-
ical approach with objective functions and test data. This
provides a relatively convenient way to generate score dis-
tributions corresponding to different parameter sets. In par-
ticular it allows us to isolate true positives and their score
distributions. An important outcome is that these distribu-
tions may be used to calculate probability values for predic-
tions made on unseen data sets with similar characteristics
to the test data.

Calibrating alignment-free metrics in this way is highly
advantageous for downstream processing. It provides a
direct indication about how effective the search or se-
quence comparison procedure will be. However, this may
not be straightforward: high quality test data can be time-
consuming to curate, and developing an objective function
to identify true positives may also require some time and
technical skill. Nonetheless, without calibration there is a
significant risk that the alignment-free metric and parame-
ters chosen may be sub-optimal or even inappropriate for
the purposes of the researcher.

KAST software

Finally, due to the lack of alternatives, we have developed
the KAST software as a general-purpose tool for fast and
efficient alignment-free sequence comparison. This is freely
available, along with various scripts, data sets and analyses
that we have used in this paper (see the Data Availability
section).

DATA AVAILABILITY

An example set of Linux and Python scripts, including data
and the KAST executable, that perform the main parts of
our analysis, are available at https://pure.aber.ac.uk/portal/
en/ (search with the title of this paper). There we have made

available the scripts we used to make figures in this paper,
including additional figures with different parameter sets
to those shown in the main body of the paper. Alterna-
tively, the DOI of the data set is: https://doi.org/10.20391/
3e9573af-363b-4ff7-9f27-72eb84440b68.

The data we have made available for the protein use-case
includes (a) FASTA files containing the protein sequences
for the yeasts system and the fly-worm system; (b) FASTA
files with the true orthologs presented as pairs of sequence
for use with the KAST interleaved format; and (c) the asso-
ciated DIOPT files with the ortholog mappings.

The data we have made available for the DNA use-case
includes (a) FASTA files containing the DNA sequences
for the strain (query) and species (reference) data sets; (b)
FASTA files with positive pairs for use with the KAST in-
terleaved format; and (c) the associated files with the NCBI
taxonomic mappings.

For both these use-cases, scripts are available that
run KAST, evaluate the output with an objective func-
tion, make score-frequency histograms, generate probabil-
ity scores from the histograms, and annotate KAST output
with the probability scores.

KAST source code is freely available via GitHub: https:
//github.com/martinjvickers/KAST. A manual is also pro-
vided: https://github.com/martinjvickers/KAST/wiki.

A docker container with KAST and a ‘lite’ version of
the scripts, so-called because they are missing some of the
larger data sets available from the DOI given above. This can
be accessed at https://hub.docker.com/r/biocontainers/kast.
Instructions for the commands to run this are found in the
KAST documentation.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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43. Döring,A., Weese,D., Rausch,T. and Reinert,K. (2008) SeqAn an
efficient, generic C++ library for sequence analysis. BMC
Bioinformatics, 9, 11.

44. Murphy,L.R., Wallqvist,A. and Levy,R.M. (2000) Simplified amino
acid alphabets for protein fold recognition and implications for
folding. Protein Eng., 13, 149–152.

45. Horwege,S., Lindner,S., Boden,M., Hatje,K., Kollmar,M.,
Leimeister,C.-A. and Morgenstern,B. (2014) Spaced words and
kmacs: fast alignment-free sequence comparison based on inexact
word matches. Nucleic Acids Res., 42, W7–W11.

46. Bromberg,R., Grishin,N.V. and Otwinowski,Z. (2016) Phylogeny
reconstruction with alignment-free method that corrects for
horizontal gene transfer. PLoS Comput. Biol., 12, e1004985.

47. Leimeister,C.-A., Sohrabi-Jahromi,S. and Morgenstern,B. (2017) Fast
and accurate phylogeny reconstruction using filtered spaced-word
matches. Bioinformatics, 33, 971–979.

48. Pride,D.T., Meinersmann,R.J., Wassenaar,T.M. and Blaser,M.J.
(2003) Evolutionary implications of microbial genome
tetranucleotide frequency biases. Genome Res., 13, 145–158.

49. Jeffrey,H.J. (1990) Chaos game representation of gene structure.
Nucleic Acids Res., 18, 2163–2170.

50. Arneodo,A., d’Aubenton Carafa,Y., Bacry,E., Graves,P., Muzy,J. and
Thermes,C. (1996) Wavelet based fractal analysis of DNA sequences.
Physica D: Nonlinear Phenomena, 96, 291–320.

51. Zu-Guo,Y., Anh,V., Zhi-Min,G. and Shun-Chao,L. (2002) Fractals in
DNA sequence analysis. Chinese Phys., 11, 1313.

52. Swain,M.T. (2013) Fast comparison of microbial genomes using the
Chaos Games Representation for metagenomic applications.
Procedia Comp. Sci., 18, 1372–1381.

https://powerxeditor.aptaracorp.com/oup/PXEEditor/Managers/Dialogs/doi.org/10.2202/1544-6115.1447
https://powerxeditor.aptaracorp.com/oup/PXEEditor/Managers/Dialogs/doi.org/10.2202/1544-6115.1724


22 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3

53. Lichtblau,D. (2019) Alignment-free genomic sequence comparison
using FCGR and signal processing. BMC Bioinformatics, 20, 742.

54. Almeida,J.S. (2014) Sequence analysis by iterated maps, a review.
Brief. Bioinform., 15, 369–375.

55. Deschavanne,P.J., Giron,A., Vilain,J., Fagot,G. and Fertil,B. (1999)
Genomic signature: characterization and classification of species
assessed by chaos game representation of sequences. Mol. Biol. Evol.,
16, 1391–1399.

56. Simon,H.Y., Siddle,K.J., Park,D.J. and Sabeti,P.C. (2019)
Benchmarking metagenomics tools for taxonomic classification. Cell,
178, 779–794.

57. Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic
sequence classification using exact alignments. Genome Biol., 15, R46.

58. James,B.T., Luczak,B.B. and Girgis,H.Z. (2018) MeShClust: an
intelligent tool for clustering DNA sequences. Nucleic Acids Res., 46,
e83.

59. Girgis,H.Z., James,B.T. and Luczak,B.B. (2021) Identity: rapid
alignment-free prediction of sequence alignment identity scores using
self-supervised general linear models. NAR Genom. Bioinf., 3,
lqab001.

60. Lu,Y.Y., Tang,K., Ren,J., Fuhrman,J.A., Waterman,M.S. and Sun,F.
(2017) CAFE: a C celerated A lignment-F r E e sequence analysis.
Nucleic Acids Res., 45, W554–W559.
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