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Abstract

Aphids are a species rich group comprising many important pests. However, species identi-

fication can be very difficult for aphids due to their morphological ambiguity. DNA barcoding

has been widely adopted for rapid and reliable species identification as well as cryptic spe-

cies detection. In this study, we investigated cryptic diversity in the subfamily Calaphidinae

(Hemiptera: Aphididae) based on 899 sequences of cytochrome c oxidase I (COI) for 115

morphospecies (78 species collected in this study and sequences of 73 species down-

loaded from Genbank). Among these 115 morphospecies, DNA barcoding results of 90

(78.3%) species were identical to results of morphological identification. However, 25

(21.7%) morphospecies showed discrepancies between DNA barcoding and traditional tax-

onomy. Among these 25 discordances, a total of 15 cryptic species were identified from 12

morphospecies. We also found three morphologically distinct species pairs that sharing

DNA barcoding. Based on molecular operational taxonomic unit (MOTU) estimation, we

discussed on species delimitation threshold value for these taxa. Our findings confirm that

Calaphidinae has high cryptic diversity even though aphids are relatively well-studied.

Introduction

Detecting cryptic species is essential for precise species diversity estimation [1]. With the avail-

ability of DNA barcoding methods, recognition of cryptic species has been increased over the

past decades [1]. To date, DNA sequences of approximately 10% of all described species (ca.

160,000) are deposited in open access databases such as Barcode of Life Data Systems (BOLD)

and the National Center for Biotechnology Information (NCBI) [2–3]. More recently, some

researchers have suggested that DNA-sequenced-based taxonomic description alone is not
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only enough for species identification but also can be used as an alternative to classical taxon-

omy [4]. Indeed, DNA barcoding has been contributed to resolve morphological ambiguity in

various taxa [5–9] with identification accuracy rate of 97% [10–13]. Therefore, DNA barcoding

enables the detection of cryptic species and reassessment of species diversity.

Aphids are small and soft-bodied plant sap sucking insects. Over 5,000 of aphid species

have been described worldwide [14], including many important pests in agriculture, forestry,

and species of quarantine importance [15–19]. However, the lack of taxonomically informative

characters and morphological plasticity of aphids make species recognition challenging [20].

Notably, in the complex life cycle of aphids, multiple morphs within one species can occur due

to seasonal changes [21]. Numerous biotic factors such as host-plant relationships [22–23],

natural enemies [24], ant attendance [25], maternal effects [26], endosymbionts [27], and

infectious microorganisms [28] can affect intraspecific plasticity of aphids. Various abiotic fac-

tors, such as climate, temperature and photoperiod [29] also have effects on their intraspecific

plasticity. Conversely, extremely similar or even morphologically indistinguishable species can

occur among aphids [30–32]. The utility of DNA barcoding for aphid species identification

has been demonstrated at family level [7, 13, 30]. It is also useful for some subfamilies such as

Eriosomatinae [33], Greenideinae [34], and Lachninae [35]. According to these studies, DNA

barcoding can provide rapid and reliable identification results for aphids. However, no assess-

ment has been attempted for the subfamily Calaphidinae.

The subfamily Calaphidinae (Hemiptera: Aphididae) is the second largest subfamily in fam-

ily Aphididae. About 398 valid species belonging to 59 genera have been described in the

world [14, 36–37]. Most calaphidine aphids feed on woody angiosperms belonging to 16 plant

families such as Betulaceae, Fagaceae, Juglandaceae, Lythraceae, Myricaceae, and Ulmaceae

although some species feed on herbaceous plants belonging to Fabaceae and Poaceae [37–38].

Many aphid species belonging to this subfamily are economically important pests, causing

injury and transmitting viral diseases to cultivated plants such as leguminous crops, fruit, and

landscape trees [39–40]. For example, Therioaphis trifolii (Monell, 1882), Melanocallis caryefo-
liae (Davis, 1910) and Monellia caryella (Fitch, 1855) are notorious aphid pest have caused

large agricultural economic losses [41–43]. Some aphid pest, such as Sarucallis kahawaluoka-
lani (Kirkaldy, 1907), Shivaphis celti Das, 1918 and Tinocallis spp. have been dispersed from

their geographic origins to different continents [18, 44–46]. However, assessing calaphidine

species can be difficult and time consuming since their considerable morphological variation

based on seasonal changes and various biotic factors [25, 37]. The application of DNA barcod-

ing would assist in rapid and accurate identification of species in this subfamily. It can also aid

the detection of cryptic diversity.

In this study, we provided the first comprehensive assessment of DNA barcodes for the sub-

family Calaphidinae. A total of 501 Cytochrome oxidase I (COI) sequences of 78 morphospecies

collected in Korea and other countries from 2001 to 2015 were analyzed. The objectives of this

study were i) to clarify delimiting species boundaries in morphologically ambiguous taxa, ii) to

test the effectiveness of DNA barcoding in this taxa, and ultimately iii) to detect hidden species

diversity.

Materials and methods

Ethics statement

No permission was required for sampling at the sites studied. No endangered or protected spe-

cies are included in this study.

High cryptic diversity of Calaphidinae (Hemiptera: Aphididae)
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Taxon sampling

A total of 501 aphid individuals of 78 species were collected in Asia: Korea (382 specimens of

52 species), China (20 specimens of 8 species), Japan (23 specimens of 8 species) and Laos (2

specimens of 1 species); Europe: Czech Republic (15 specimens of 7 species), Poland (16 speci-

mens of 7 species) and UK (5 specimens of 1 species); North America: USA (29 specimens

of 14 species) and Oceania: New Zealand (9 specimens of 4 species) from 2001 to 2015 (S1

Table). Each specimen was preserved in 95–99% ethanol at -20˚C for genomic DNA

extraction.

Species identification

501 individuals were mounted in Canada balsam following the method of Blackman & Eastop

[16] and Martin [47]. Measurements for each specimen were taken from digital images by

using image analysis software (Active measure ver. 3.0.3 from Mitani Co. Ltd, Japan). Digital

images were taken by a digital camera attached to a microscope (Leica 400B, Leica Microsys-

tems, Germany). All slide specimens were deposited in the College of Agriculture and Life sci-

ences, Seoul National University (CALS SNU), the Republic of Korea.

DNA extraction and DNA barcoding

Genomic DNA was extracted from each sample selected from each colony by using the

DNeasy Blood & Tissue kit (Qiagen, Dusseldorf, Germany) according to the modified manu-

facturer’s protocols. To confirm morphological features, we used a nondestructive method:

each whole-bodied specimen was put into a mixture of 90μl of ATL buffer and 10 μl of protein-

ase K incubated without pulverization. After 24 h incubation, 90μl AL buffer was added and

incubated for another 10 min. The solution was gently pipetted into a mini spin column leav-

ing the cuticle of the specimen which was slide mounted.

A 658 bp of COI gene region, generally called as ‘barcoding region’ was amplified using a

universal primer set: LCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ and HCO2198

5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ [48]. Polymerase chain reaction (PCR) was

conducted with AccuPower PCR PreMix (Bioneer, Daejeon, Korea) in 20 ml reaction mixtures

under the following conditions: initial denaturation at 94˚C for 3 min; followed by 35 cycles at

94˚C for 30s, an annealing temperature of 45.2˚C for 30s, an extension at 72˚C for 1min; and

the final extension at 72˚C for 5min. All PCR products were assessed 1.5% agarose gel electro-

phoresis. Successfully amplified samples were purified using a QIAquick PCR purification kit

(Qiagen, Inc.), and then sequenced directly using an automated sequencer (ABI PrismH 3730

XL DNA Analyzer) at Macrogen Inc. (Seoul, Korea).

Molecular analyses

All sequences to be analyzed were initially assembled and examined using Seqman pro ver.

7.1.0 (DNA star, Inc., Madison, Wisconsin, USA). Poor quality sequences with ambiguous

peaks were removed. We used the molecular identification criteria of putative orthologues and

paralogues according to Moulton et al. [49] and Fontaneto et al. [50], to prevent misleading by

nuclear mitochondrial pseudogenes (Numts) and heteroplasmy. A total of 501 COI sequences

of 78 species including previously unknown sequences of 42 species were newly generated for

the molecular analyses. Additionally, 398 COI sequences of 73 species were downloaded from

Genbank using keyword ‘COI’ and ‘Calaphidinae’ (S2 Table). As a result, the final dataset con-

sisted of 899 sequences of 115 species (S1 and S2 Tables).
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These data was aligned using online utility MAFFT ver. 7 alignment package [51] and

MEGA 6 [52]. In this step, we removed uncertain anterior and posterior regions were

removed. Fnally,� 546 bp was used for analyses. For the aligned dataset, a neighbor-joining

analysis was conducted using MEGA 6 based on Kimura-2-Parameter (K2P) model [53], the

best for species level analysis, particularly for those with low distances [54]. Intra- and inter-

specific distances in different taxonomic levels were calculated using pairwise distance method

based on the K2P model [53] using MEGA 6.

To infer species delimitation criteria based on a partial COI gene in this subfamily, we per-

formed molecular operational taxonomic units (MOTUs) estimation by using two effective

tools to delimit molecular species. First, Automatic Barcode Gap Discovery (ABGD) analysis

was conducted to automatically delimit sequences into hypothetical molecular species [55]

(http://wwwabi.snv.jussieu.fr/public/abgd) by contrasting inter- and intra-specific distances.

Standard settings were used with two values of relative gap width (X = 1 and X = 1.5) based on

Kimura K80 model. Additionally, Bayesian Poisson Tree Processes (bPTP) analysis as imple-

mented on the Exelixis Lab web-server (http://species.h-its.org/ptp/) was performed. This

method delimits species based on the phylogenetic species concept [56]. Compared to the gen-

eralized mixed Yule coalescent (GMYC) model, bPTP model is a more robust and simpler

method [57]. The required rooted phylogenetic input tree was drawn using RAxML [58] with

GTR+G+I substitution model.

Results

Genetic variation of morphospecies

A total of 501 COI sequences (� 546 bp) from 78 morphospecies belonging to 36 genera of

four subtribes, Calaphidina, Monaphidina, Myzocallidina and Panaphidina were newly gener-

ated in this study (S1 Table). All sequences are deposited in Genbank (KY306805-KY307305).

Results of genetic divergence at different taxonomic levels are summarized in Table 1.

The overall mean distance was 13.2% for the final dataset of 899 sequences of 115 species.

The mean interspecific distance ranged from 4.19% to 13.3% at genus level. The mean genetic

distance between genera ranged from 11.92% to 14.51% at subtribe level.

Intraspecific genetic distance was calculated for the 100 of 115 morphospecies. For the

remaining 15 species, intraspecific distances could not be calculated because there was only

one individual representing each species. The mean intraspecific distance ranged from 0 to

6.0% in each species. Among these 100 morphospecies, 78 species showed very low to moder-

ate genetic divergences (below 1.5%, Fig 1). Another 4 species showed ambiguous intraspecific

distances ranging from 1.7% to 1.9% (Fig 1). However, the remaining 18 species showed rela-

tively high intraspecific distances ranging from 2.9% to 16.6% (Fig 1, Table 2). Such a high

level of intraspecific distance indicate that there might be potential cryptic species and/or mis-

identified sequences in these of 18 species (Table 2).

Table 1. Genetic divergences in different taxonomic level within Calaphdinae.

Comparison within Mean (%) Minimum (%) Maximum (%)

Species 0.7 0 16.6

Genus 21.1 0 9.5

Subtribe 13.4 3.4 22.8

Tribe 13.8 3.4 23.1

https://doi.org/10.1371/journal.pone.0176582.t001
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MOTUs estimation

The number of MOTUs determined by ABGD differed slightly depending on the value of the

relative gap width (Fig 2). When p value was set at 0.0129, the number of MOTUs was 133 at

relative gap width X = 1 or X = 1.5 (Fig 2). Based on ABGD result, 16 species were divided into

2–4 inner-groups in each species group (Fig 3). Three morphologically distinct species pairs: i)

Pterocallis alnijaponicae and P. nigrostriata, ii) Tiliaphis pseudoshinae and T. shinae and iii)

Tuberculatus (Orientuberculoides) capitatus and T. (O.) fangi were clustered together as a single

MOTU, respectively (Table 3).

The bPTP model recognized a total of 136 MOTUs except for outgroup based on the maxi-

mum likelihood method. Among 115 morphospecies, 19 species were subdivided into 2–4

inner-groups in each species group (Fig 3). This result was similar not only based on the num-

ber of MOTUs, but also based on MOTU compositions obtained from ABGD (Fig 3). Overall,

the bPTP model tended to be more sensitive to MOTU delimitation. ABGD and bPTP resulted

Fig 1. Maximum intraspecific distances (%) based on Kimura-2-parameter (K2P) for 100 morphospecies.

https://doi.org/10.1371/journal.pone.0176582.g001
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in different estimates for 8 morphospecies (Fig 3). For example, 4 morphospecies, Takecallis
arundinariae, Tuberculatus (Nippocallis) kuricola, Tuberculatus (Arakawana) stigmatus and

Myzocallis (Lineomyzocallis) bellus, were subdivided into two groups each in the bPTP results.

However, no subdivision was detected for these 4 species based on ABGD results (Fig 3). On

the contrary, Tiliaphis shinae and T. pseudoshinae pair was clustered together as a single

MOTU in the bPTP model (Fig 3).

Neighbor joining analysis: Case of species delimitation

The Neighbor joining tree (NJ tree) was derived for these 899 COI sequences of the 115 species

(S1 Fig). For majority of cases, sequence clusters in the NJ tree showed high congruence with

morphological identification results. Practically, 90 species (78.3%) of all species could be

clearly identified by COI sequence. However, for the remaining 25 species (21.7%), discrepan-

cies between morphology and barcode based identification were detected. DNA barcoding

analyses revealed the following: i) 15 cryptic species from 12 morphospecies, ii) six possible

cryptic or potential misidentified sequences in the Genbank, iii) three morphologically distinct

species pairs that sharing a single MOTU, and iv) four species with ambiguous inter- and

intra-specific distances. Detailed results for these four cases are described as follows.

Case I: Discovering cryptic species. A total of 15 cryptic species from 12 morphospecies

were found based on original description and other information of each morphospecies such

as host-plant association and distributional information. Because in any case, it is impossible

to identify DNA barcode for type materials. For each case, comparison between original and

cryptic species was discussed.

A total of 66 individuals of 5 species belonging to genus Calaphis were analyzed in this

study. DNA barcoding detected 2 cryptic species in Calaphis flava (Fig 4). Between group 1

and group 2, intergroup divergence was 2.9–4.0% (Fig 4). Group 3 consisted of 7 Canadian

Table 2. 19 Cases of having high intraspecific distances.

Subtribe Species No. of subgroups Max. Intraspecific distance

Calaphidina Calaphis flava 3 6.1%

Monaphidina Monaphis antennata 2 2.9%

Myzocallidina Myzocallis boerneri 2 8.2%

Myzocallis coryli 2 3.4%

Tuberculatus annulatus 2 5.5%

Tuberculatus higuchii 4 4.1%

Tuberculatus indicus 2 2.9%

Tuberculatus kashiwae 2 5.5%

Tuberculatus punctata 2 6.6%

Tuberculatus querceus 2 8.2%

Tuberculatus quercicola 2 6.0%

Tuberculatus yokoyamai 2 4.1%

Panaphidina Eucallipterus tiliae 2 2.9%

Mesocallis corylicola 2 7.1%

Shivaphis celti 2 16.6%

Takecallis arundicolens 3 10.4%

Therioaphis trifolli 2 1.9%

Tiliaphis shinae 2 10.3%

Tinocallis zelkowae 2 6.6%

https://doi.org/10.1371/journal.pone.0176582.t002
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Fig 2. Number of MOTUs by the prior intraspecific divergence using ABGD with two values of relative

gap width. (A) X = 1. (B) X = 1.5.

https://doi.org/10.1371/journal.pone.0176582.g002
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Fig 3. Maximum likelihood COI gene tree with deliminated MOTUs by ABGD and PTP analyses. (Red S)

Subdivided morphospecis. (Green C) combined morphologically different species. (Blue D) discordant between

ABGD and PTP results.

https://doi.org/10.1371/journal.pone.0176582.g003
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and 1 American individual was distinct from group 1 and group 2 with 4.5–6.1% of genetic

divergence (Fig 4). This species was originally distributed throughout Europe and East Asia.

Now it is regarded as a widespread species found in South Africa, Australia and North Amer-

ica. Thus, further studies are needed to compare European individuals of C. flava in the future

study to investigate whether this species is a real cosmopolitan species or a species complex.

A total of 23 individuals of Eucallipterus tiliae were collected from Europe: Czech Republic,

France, Italy and Poland, North America: Canada and USA, and Oceania: New Zealand.

ABGD, bPTP (Fig 3) and NJ tree revealed 1 cryptic species (group 2) of E. tiliae with about

2.9% of intergroup genetic divergence (Fig 5). Morphologically, individuals in group 1 and 2

are very similar. However, cryptic species (group 2) is distinguishable from typical E. tiliae
(group 1) by having longer length of 3rd–5th antennal segment and 2nd tarsal segment

Table 3. Case of sharing low genetic distances between morphologically distinct species pairs.

Subtribe Species 1 Species 2 Genetic distance

Myzocallidina Tuberculatus capitatus Tuberculatus fangi 0.5–1.3%

Panaphidina Pterocallis alnijaponicae Pterocallis nigrostriata 0.5%

Tiliaphis pseudoshinae Tiliaphis shinae 1.7–1.9%

https://doi.org/10.1371/journal.pone.0176582.t003

Fig 4. Neighbor-joining tree of COI partial gene sequences of Calaphis spp. (66 sequences of 5 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g004
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(S2 Fig). In genus Eucallipterus, only two species have been described in the world. E. tiliae is a

common species widely distributed throughout Europe across central Asia, and South-Africa.

It has also been introduced into North America and New Zealand [37]. Our results suggest

that this species might be a species complex rather than a cosmopolitan species.

ABGD and bPTP analyses on 45 individuals of four Korean species of Mesocallis disclosed

one cryptic species in M. corylicola (Figs 3 and 6). M. corylicola (group 1) and cryptic species

(group 2) showed 5.5–7.1% of genetic distance (Fig 6). In contrast to such a high level of

genetic distance, the cryptic species and M. corylicola are superficially similar in morphology.

Compared to M. corylicola, the cryptic species has a shorter siphunculi and longer length of

ultimate rostral segment (S3 Fig). Host-plant preference appeared to differ between the two

species. Most M. corylicola was collected on Corylus sieboldiana while most cryptic species

were collected on C. heterophylla (S1 Table). According to the original description, original

species was collected on Corylus sieboldiana [59]. Thus, the two groups have different COI
sequences, host-plant preference, and morphology.

Eight individuals of Monaphis antennata collected from Canada, Korea, and Poland were

analyzed with ABGD, bPTP (Fig 3), and NJ tree (Fig 7). Korean individuals formed a group

(group 1) distinct from Polish and Canadian individuals with 2.4–2.9% intergroup genetic

divergence (Fig 7). Monaphis is a monotypic genus originally described from Europe. This spe-

cies lives solitarily on Betula spp. In Korea, Monaphis is extremely rare. It has only been col-

lected on Betula schmidtii. In Europe and Japan, it has been collected on B. pendula [60–61], B.

maximowicziana and B. platyphylla var. japonica [59]. Although we could not perform mor-

phological comparisons on subgroups, the Korean cluster seems to be a distinct species based

on the molecular divergence level.

We analyzed 58 individuals of five Takecallis spp. collected from East Asia: China, Japan,

and Korea, Europe: Czech Republic, France, and Italy, and North America: Canada and USA.

According to both ABGD and bPTP analyses, T. arundicolens were separated into three groups

(Figs 3 and 8). Genetic divergence between group 1 and group 2+3 ranged from 7.6% to

10.4%. Genetic divergence between group 2 and group 3 was 2.5%. In each group, morphologi-

cal differences were only detected between alatoid nymphs. Alatoid nymphs in group 1 could

be distinguished by a dark colored cauda with short dorsal abdominal setae (S4 Fig). Group 2

and group 3 shared similar morphology. However, group 3 could be distinguished from group

2 by shorter siphunculi with long filiform setae on the body (S6 Fig 4). T. arundicolens is one

of common bamboo feeding species. Originally, this species was described from East Asia. It

Fig 5. Neighbor-joining tree of COI partial gene sequences of Eucallipterus spp. (23 sequences).

https://doi.org/10.1371/journal.pone.0176582.g005
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has been introduced into Europe and North America. Our results indicate that European pop-

ulations (group 2) might be species distinct from Asian species (group 1 and group 3).

A total of 48 individuals of nine Tinocallis spp. collected from East Asia: Korea and North

America: Canada and USA were analyzed. Both ABGD and bPTP analyses recognized two

subgroups (group 1 and group 2) among 22 individuals of T. zelkowae collected from Korea

(Fig 3). These groups showed genetic divergence of 5.5–6.5% (Fig 9). Morphologically,

Fig 6. Neighbor-joining tree of COI partial gene sequences of Mesocallis spp. (45 sequences of 4 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g006

Fig 7. Neighbor-joining tree of COI partial gene sequences of Monaphis antennata (8 sequences).

https://doi.org/10.1371/journal.pone.0176582.g007
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individuals of group 1 have longer ultimate rostral segments than those of group 2 with pig-

mented dorsal abdominal elevations (S5 Fig). Group 1 is relatively rare. It was only collected

on native Zelkova serrata (var. latifolia) growing in Korean mountain areas. T. zelkowae of the

group 2 is one of the most common species dwelling on Zelkova trees in urban area (mostly

the Japanese species Zelkova serrata (var. japonica)). Results of this study indicate that group 1

might be species separated from group 2 with different host-plant association.

In genus Tuberculatus, a total of seven cryptic species were discovered. Detailed results

for each subgenus are provided as follows. A total of 69 individuals of two species belonging

to the subgenus Acanthocallis collected from Japan and Korea were analyzed. Of 21 Korean

individuals of Tuberculatus (Acanthocallis) quercicola, 16 individuals formed group 3, dis-

tinct from Japanese and remaining 5 Korean individuals of T. (A.) quercicola (group 2) with

about 5.2% of intergroup genetic divergence (Figs 3 and 10). Individuals of group 3 were dif-

ferent from group 2 only by having shorter setae on 3rd antennal segment with more setae

on 4th–5th antennal segments (S6 Fig). Watanabe et al. [62] have reported that Acanthocallis
species tend to have high host specificity. It has been shown that Japanese T. (A.) quercicola
and T. (A.) macrotuberculatus have distinct host-plant associations with Quercus mongolica
spp. crispula and Q. dentate, respectively [62]. Likewise, three Korean species: T. (A.) querci-
cola in group 2, T. (A.) macrotuberculatus in group 1, and cryptic species in group 3 showed

distinct host-plant association with Q. mongolica, Q. dentate, and Q. aliena, respectively.

Therefore, different host associations between species can be used for species identification

in this group.

A total of 26 individuals of four species belonging to subgenus Acanthotuberculatus were

analyzed. As shown in Figs 3 and 11, 14 specimens of Tuberculatus (Acanthotuberculatus) indi-
cus were split into two subgroups with intergroup genetic divergence ranging from 2.4% to

2.9%. Nine specimens collected from Korea were identical to undescribed species Tuberculatus
sp. E (Yao, unpublished, COI sequence Genbank accession no. AB861448). Tuberculatus (A.)

Fig 8. Neighbor-joining tree of COI partial gene sequences of Takecallis spp. (58 sequences of 5 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g008

High cryptic diversity of Calaphidinae (Hemiptera: Aphididae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0176582 April 27, 2017 12 / 30

https://doi.org/10.1371/journal.pone.0176582.g008
https://doi.org/10.1371/journal.pone.0176582


japonicus and undescribed species, Tuberculatus sp. IY-C [63], showed inter-specific distance

of 4.5% to 5.1%. No morphological comparisons was undertaken.

DNA barcoding uncovered five cryptic species among 86 specimens of seven species in sub-

genus Orientuberculoides (Fig 3). Tuberculatus (Orientuberculoides) higuchii was subdivided

Fig 9. Neighbor-joining tree of COI partial gene sequences of Tinocallis spp. (48 sequences of 9 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g009
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into four subgroups, including previously detected species T. (O.) higuchii A (group 1) and T.

(O.) higuchii B (group 3) [63] and two newly detected subgroups (Fig 12). For convenience,

these newly detected subgroups were named as T. (O.) higuchii C (group 2) and T. (O.) higuchii
D (group 4). Among those four subgroups, intergroup genetic divergence of 2.8% to 4.1% was

observed (Fig 12). T. (O.) higuchii A has shorter 2nd–4th antennal segments in comparison

with other subgroups (S7 Fig). T. (O.) higuchii B is distinct from other subgroups by having

shorter siphunculi (S7 Fig). T. (O.) higuchii C has slightly longer second tarsal segments and

cauda (S7 Fig). T. (O.) higuchii D is distinguished from others by having more secondary sen-

soria on the 3rd antennal segment (S7 Fig).

Fig 10. Neighbor-joining tree of COI partial gene sequences of subgenus Acanthocallis spp. (69 sequences of 2 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g010

Fig 11. Neighbor-joining tree of COI partial gene sequences of subgenus Acanthotuberculatus spp. (26 sequences of 4

morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g011
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Fourteen specimens of Tuberculatus (Orientuberculoides) kashiwae collected from Japan

and Korea were divided into two subgroups with intergroup genetic divergence of 5.1% to

5.5% (Fig 12), confirming earlier suggestion by Yao [63]. All Korean specimens were clustered

together with T. (O.) kashiwae B [63]. Only two sequences from Japan formed group 1 (T. (O.)

kashiwae A).

A total of 25 individuals of Tuberculatus (Orientuberculoides) yokoyamai collected from

Japan and Korea were analyzed. Results are shown in Fig 12. ABGD and bPTP analyses

detected two cryptic species within T. (O.) yokoyamai, showing genetic divergence of 3.5% to

4.1% (Fig 12). Thirteen specimens collected from Japan and Korea formed group 1 together

Fig 12. Neighbor-joining tree of COI partial gene sequences of subgenus Orientuberculoides spp. (86 sequences of 7

morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g012
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with Tuberculatus sp. D Yao (unpublished, COI sequence Genbank accession no. AB861455).

Morphologically, group 1 was distinguished from group 2 by having longer length of 5th

antennal segment, siphunculi, and cauda (S8 Fig). There was no host-plant difference between

the two groups.

COI sequences of 19 specimens of three species in the subgenus Tuberculoides revealed two

groups within Tuberculatus (Tuberculoides) annulatus (Figs 3 and 13) with genetic divergence

of 5.1–5.5%. All 10 individuals of group 1 were collected from Europe: France, Poland and

UK. Group 2 comprised of 7 North American specimens, 3 New Zealand specimens, and one

French specimen. One French specimen in group 2 has been regarded as an outlier in a previ-

ous study of Coeur d’Acier et al. [64]. However, this haplotype was present in North America

and New Zealand. Morphological features of the two subgroups (group 1 and group 2) of T.

(T.) annulatus were compared. Group 2 is distinguishable from group 1 by shorter antennae

and smaller cauda knob with longer setae (S9 Fig). Based on molecular and morphological dif-

ferences, group 1 and group 2 might be distinct species. It has been widely assumed that T. (T.)

annulatus is introduced into North America, South America, Australia, and New Zealand

from Europe [38]. However, such assumption need to be examined in future studies.

Case II: Discovering possible cryptic or misidentified sequences in NCBI. A total of

398 COI sequences of 73 species were downloaded from Genbank and used in this study. The

following statements are only suggestions since specimen morphology could not be examined

in this study.

In genus Myzocallis, a total of three possible discrepancies compared to current species con-

cepts were identified. Detailed results of each subgenus are described as follows. We analyzed

26 sequences of four species belonging to subgenus Myzocallis collected from Europe: Czech

Republic, France, Italy and Poland; North America: Canada and USA; and Oceania: New Zea-

land. ABGD and bPTP analyses revealed two subgroups in Myzocallis (Myzocallis) coryli.
Group 1 and group 2 showed intergroup genetic divergence of 2.9–3.4% (Fig 14). Group 1 of

M. (M.) coryli formed a sister group of M. (M.) carpini with genetic divergence of 2.7–3.1%.

Group 1 mostly comprised of North American specimens except for one French specimen

(Genabank accession no. KF639545) while all specimens of group 2 were from France. Coeur

d’Acier et al. [64] have reported that M. (M.) coryli show exceptionally high intraspecific diver-

gence due to the outlier. However, the outlier was the most common haplotype of M. (M.)

Fig 13. Neighbor-joining tree of COI partial gene sequences of subgenus Tuberculoides spp. (19 sequences of 3 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g013
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coryli in our dataset. M. (M.) coryli is widely known as a cosmopolitan species. However, our

results suggested that this species might be a species complex.

Myzocallis (Myzocallis) boerneri specimens collected from New Zealand and Italy showed

genetic divergence of 8.4% (Fig 14). This species was originally described from Europe and

introduced into New Zealand [65]. Assuming species identification of Italian M. (M.) boerneri
is correct. Our results suggested that European and New Zealand populations are distinct

species.

COI sequences of two Neosymydobius species, Myzocallis (Neosymydobius) asclepiadis and
M. (N.) punctata, revealed possible misidentified sequences of M. (N.) punctata (Fig 15). As a

result of ABGD and bPTP analyses, M. (N.) punctata was subdivided into two subgroups (Fig

3). Four sequences of M. (N.) punctata (Genbank accession no. EU701771, KR030925,

KR043984, and KR037948) were completely identical to those of M. (N.) asclepiadis rather

than to M. (N.) punctata with 100% support value (Fig 15). Our results suggested that 4 indi-

viduals (Genbank accession no. EU701771, KR030925, KR043984, and KR037948) of M. (N.)

punctata might be misidentification of M. (N.) asclepiadis.
Among 22 specimens of five Shivaphis spp., 7 individuals of Shivaphis celti showed

extremely high levels of intraspecific distance (16.1% to 16.6%) due to a single sequence (Gen-

bank accession no. JQ920934) (Fig 16). Such a high intraspecific distance suggests that this

specimen might be a misidentification or a cryptic species. Subsequent morphological re-

examination of the voucher specimen for this sequence (Genbank accession no. JQ920934) is

needed.

A total of 20 specimens of four Tiliaphis species were analyzed. We found a possible misiden-

tified sequence which was identified as Tiliaphis shinae (Genbank accession no. GU978821)

(Fig 17). Subsequently, we re-examined the voucher specimen of this sequence and found that

this specimen was in fact T. coreana.

Three sequences of Tuberculatus (Tuberculatus) querceus were divided into two subgroups

with divergence of 8.2% (Fig 18). This species is distributed through Europe to South-western

Fig 14. Neighbor-joining tree of COI partial gene sequences of subgenus Myzocallis spp. (26 sequences of 4 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g014
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Asia. It is also introduced into Canada [30, 38]. However, our results suggested that European

and Canadian specimens might be distinct species.

Case III: Low genetic distances between morphologically distinct species. Morphologi-

cally, Pterocallis alnijaponicae and P. nigrostriata are easily distinguishable species (Fig 19). As

Fig 15. Neighbor-joining tree of COI partial gene sequences of subgenus Neomyzocallis spp. (16 sequences of 2

morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g015

Fig 16. Neighbor-joining tree of COI partial gene sequences of Shivaphis spp. (22 sequences of 5 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g016
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shown in Fig 19, P. nigrostriata has 5–6 long and conspicuous dorsal abdominal tubercles and

forewing with unique marginal patch while P. alnijaponicae has 3–4 short dorsal abdominal

tubercles and forewing without marginal patches. Unexpectedly, low genetic divergence

(0.5%) between P. alnijaponicae and P. nigrostriata was found (Fig 20). ABGD and bPTP anal-

yses also supported these results by combining P. alnijaponicae and P. nigrostriata as a single

MOTU (Fig 3). Such discrepancies between morphological and DNA barcoding results raise a

question about the validity of these species.

Tiliaphis pseudoshinae and T. shinae are morphologically similar. However, T. pseudoshinae
can be distinguished from T. shinae by having longer ultimate rostral segment, shorter

Fig 17. Neighbor-joining tree of COI partial gene sequences of Tiliaphis spp. (20 sequences of 4 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g017

Fig 18. Neighbor-joining tree of COI partial gene sequences of Tuberculatus querceus (3 sequences).

https://doi.org/10.1371/journal.pone.0176582.g018
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antenna, and less secondary sensoria on the 3rd antennal segment (Fig 21). Between these two

species, sequence divergence of 2.1% to 2.5% was observed (Fig 17). Based on ABGD analysis,

T. pseudoshinae and T. shinae were separated into distinct MOTUs. However, bPTP analysis

grouped these two species as a single MOTU (Fig 3). Thus, comparing more specimens with

multiple generic markers is needed for better delimitation of these species.

Four individuals of Tuberculatus (Orientuberculoides) capitatus and nine individuals of T.

(O.) fangi were analyzed. T. (O.) capitatus and to T. (O.) fangi can be distinguished by having

different shapes and lengths of setae (Fig 22). However, their genetic divergence was only 0.5%

to 1.5% (Fig 12). In fact, different shapes, arrangement, and lengths of hairs are often can be

Fig 19. Alate vivipara of Pterocallis alnijapoinicae (A, C) and P. nigrostriata (B, D). (A-B) abdomen. (C-D) forewing (scale bars 0.5mm).

https://doi.org/10.1371/journal.pone.0176582.g019

Fig 20. Neighbor-joining tree of COI partial gene sequences of Pterocallis spp. (27 sequences of 6 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g020
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Fig 21. Alate vivipara of Tiliaphis pseudoshinae (A, C) and T. shinae (B, D). (A-B) antenna. (C-D) ultimate rostral segment (scale bars

0.1mm).

https://doi.org/10.1371/journal.pone.0176582.g021

Fig 22. Alate vivipara of Tuberculaphis (Orientuberculoides) capitatus (A, C, E, G) and T. (O.) fangi (B, D, F, H). (A-B) head. (C-D)

setae on thorax. (E-F) abdominal dorsal tubercles. (G-H) 4th abdominal marginal tubercle (scale bars, 0.1mm).

https://doi.org/10.1371/journal.pone.0176582.g022
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critical characteristics for aphid species delimitation. A review of the variations within and

between these species is still required.

Case IV: Ambiguous genetic distances. In this study, six individuals of three species in

subgenus Lineomyzocallis belonging to genus Myzocallis were analyzed. DNA barcoding

showed 1.7% intraspecific distance between two Canadian and one American specimen of

Myzocallis (L.) bellus (Fig 23). ABGD analysis detected them as a single MOTU. However,

bPTP analysis separated these Canadian and American specimens as distinct MOTUs. This sit-

uation requires further morphological and molecular analysis.

A total of 57 specimens belonging to 3 species of Therioaphis were analyzed in this study.

As shown in Fig 24, 43 specimens of Therioaphis (Pterocallidium) trifolii were subdivided into

two subgroups with intergroup barcode divergence of 1.9% (Fig 24). Group 1 comprised of

American, Canadian, and Korean specimens while group 2 only contained Canadian speci-

mens. However, both groups formed a single MOTU according to both ABGD and bPTP anal-

yses. There are four subspecies, T. (P.) trifolii albae, T. (P.) trifolii maculata, T. (P.) trifolii
trifolii and T. (P.) trifolii ventromaculata in of T. (P.) trifolii [14, 38]. Detailed molecular studies

have not been conducted on this group of taxa. Thus, comparing worldwide samples of T. (P.)

trifolii spp. is needed in future studies.

Within Tuberculatus (Arakawana) stigmatus, two distinct subgroups were detected based

on NJ tree and bPTP analyses with genetic divergence of 1.5% to 1.9% (Figs 3 and 25). Individ-

uals in group 1 and group 2 showed distinct morphological features (S10 Fig). Group 2 has

shorter siphunculi and small abdominal marginal tubercles without marginal tubercle on the

5th abdominal segment (S10 Fig). Based on their morphological differences, group 1 and

group 2 might be distinct species despite the relatively low divergence level between these two

subgroups.

Among 38 individuals of Tuberculatus (Nippocallis) kuricola, two subgroups (group 1 and

group 2) were detected based on NJ tree and bPTP analysis (Fig 3). Genetic divergence

between the two groups was 1.9% (Fig 26). Morphologically, the two groups are superficially

similar. However, group 2 can be recognized by having 3–4 setae on each dorsal abdominal

tubercle (rather than 2 in group 1) with a shorter ultimate rostral segment (S11 Fig). Takahashi

(1936) has described subspecies T. (N.) kuricola cantoensis. However, it is currently unclear

whether T. (N.) kuricola cantoensis and T. (N.) kuricola kuricola correspond to these two genet-

ically divided subgroups.

Fig 23. Neighbor-joining tree of COI partial gene sequences of subgenus Lineomyzocallis spp. (6 sequences).

https://doi.org/10.1371/journal.pone.0176582.g023
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Discussion

This study demonstrates that DNA barcoding can be used to reliably identify aphid species in

the subfamily Calaphidinae. DNA barcoding of 115 morphospecies (899 sequences) revealed

25 discordances between DNA barcoding results and morphology results. These conflicts

involved 18 cases of exceptionally high intraspecific distances, three morphologically distinct

species pairs with low genetic distances and four cases of ambiguous intraspecific distances.

Except for four undeterminable cases, a total of 15 cryptic species were identified from 12 mor-

phospecies. Among these cases, slight morphological differences were detected in seven species

complexes. In the most cases, morphological differences were due to different lengths of vari-

ous body parts rather than a different shapes or numerical characters. Slight length differences

Fig 24. Neighbor-joining tree of COI partial gene sequences of genus Therioaphis spp. (57 sequences of 3 morphospecies).

https://doi.org/10.1371/journal.pone.0176582.g024

Fig 25. Neighbor-joining tree of COI partial gene sequences of Tuberculatus (Arakawana) stigmatus (15 sequences).

https://doi.org/10.1371/journal.pone.0176582.g025
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are easy to be overlooked. They can be obscured by intraspecific variations. From these results,

we can infer the presence of cryptic diversity in Calaphidinae.

In this study, distinct host-plant associations were revealed in three species complexes:

Mesocallis corylicola, Tinocallis (Tinocallis) zelkowae and Tuberculatus (Acanthocallis) querci-
cola. Differences in host-plant associations are often critical for aphid species identification.

Host-plant shifts and subsequent genetic differentiation can lead to speciation (ecological spe-

cies concept) [66–69]. These ecological differences between cryptic species emphasize the

necessity to reexamine different host-plant associated populations in a single species.

We also confirmed that species with a wide distribution could have more possibilities to

include cryptic species. Some species assessed in this study demonstrated this assumption. For

example, Calaphis flava, which has been known as invasive species with cosmopolitan distribu-

tion, included subgroups with each restricted collection area. However, most previous DNA

barcoding studies in aphids targeted samples only collected within restricted area [7, 35, 64].

Our results suggest that multiregional sampling would be very important to recognize cryptic

diversity.

However, we also found deep intraspecific divergence within species complexes without

obvious host-plant and geographic difference. In fact, groups within Takecallis arundicolens
and Tuberculatus (Nippocallis) kuricola were found together within the same individual colony,

respectively. In particular, viviparous females of T. arundicolens (group 1 and group 3) were

not distinguishable by morphology. Considering that both bamboo and chestnut trees are

urban landscape plants, the phenomenon (genetically distinct groups occur in the same col-

ony) might indicate that human mediated transportation might have played a role in subse-

quent colony merging.

We found three morphologically distinct species pairs with relatively low genetic distances:

Pterocallis alnijaponicae and P. nigrostriata, Tiliaphis pseudoshinae and T. shinae and Tubercu-
latus (Orientuberculoides) capitatus and T. (O.) fangi. This could be due to many reasons such

as rapid radiation, balanced polymorphism and introgressive hybridization [70]. In the three

DNA barcode sharing species pairs, it was common that each pair of species was collected

together on the same host-plants and geographical regions. Considering that, there can be

opportunities of hybridization between species pair during sexual reproduction on the same

Fig 26. Neighbor-joining tree of COI partial gene sequences of Tuberculatus (Nippocallis) kuricola (38 sequences).

https://doi.org/10.1371/journal.pone.0176582.g026

High cryptic diversity of Calaphidinae (Hemiptera: Aphididae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0176582 April 27, 2017 24 / 30

https://doi.org/10.1371/journal.pone.0176582.g026
https://doi.org/10.1371/journal.pone.0176582


host-plant. Such phenomenon has been frequently reported in several taxa of aphids [71–73].

However, conducting additional ecological and molecular research is needed to verify whether

barcode sharing is due to hybridization.

In insects, species delimitation threshold value from 2 to 5% of divergence, depending on

the group, is generally accepted as a means to estimate species boundaries. For example, 2%

intraspecific divergence may indicate the existence of hidden species in Lepidoptera [11, 74].

However, within Diptera, this level of divergence only represents an intraspecific difference

[75–77]. In the suborder Heteroptera, threshold value of 2.2% has been applied for DNA bar-

code based species delimitation [78–79]. In this study, about 2.5% of species delimitation value

could be applied for most of species. However, there is clear limits applying certain species

delimitation threshold value in every case. In this study, we found highly varied interspecific

genetic variation for COI, from 0.5% to 20.1% between congeneric species of Calaphidinae.

These results suggested that applying a single threshold value might not work for all members

in this group. To get more accurate species delimitation results, combination of additional

information such as different genetic markers, morphological characters, and ecological differ-

ences is required. For example, in the present study, morphological re-examination of two

species, Tuberculatus (Arakawana) stigmatus and Tuberculatus (Nippocallis) kuricola, with

intraspecific divergence of 1.9% resulted in the detection of morphological differences, sug-

gesting that additional species are present.

Some aphid species are important pest of various crop and ornamental plants. They play a

critical role in ecosystems. Although DNA barcoding has been carried out several times for

aphids before, most studies have been mainly focused on the largest subfamily Aphidinae with

less emphasis on other subfamilies [7, 13, 30, 64]. DNA barcodes produced in this study are of

value in aiding in the identification of species of Calaphidinae. Further, remarkable cryptic

diversity and suspicious cases such as barcode sharing species pairs are detected in this study.

Our findings suggest that many more cryptic diversity are not yet been uncovered in aphids.

For more accurate and higher resolution of possibly overlooked species diversity investigation,

future studies should focus on well-designed sampling plan to reflect morphological, ecological

and distributional diversities within species.

Supporting information

S1 Fig. Neighbor-joinig tree for the 899 individuals of 115 morphospecies based on COI
barcoding region.

(TIF)

S2 Fig. Alate vivipara of 2 subgroups of Eucallipterus tiliae group 1 (A-B) and group 2

(C-D). (A, C) antenna. (B, D) 2nd segment of hind tarsi (scale bars, 0.1mm).

(TIF)

S3 Fig. Alate vivipara of 2 subgroups of Mesocallis corylicola group 1 (A, C) and group 2

(B, D). (A-B) siphunculi. (C-D) ultimate rostral segment (scale bars, 0.05mm).

(TIF)

S4 Fig. Alatoid nymph of 3 subgroups of Takecallis arundicolens group 1 (A), group 2 (B)

and group 3 (C). (A-C) body (scale bars, 0.5mm).

(TIF)

S5 Fig. Alate vivipara of 2 subgroups of Tinocallis zelkowae group 1 (A, C) and group 2 (B,

D). (A-B) ultimate rostral segment. (C-D) abdomen.

(TIF)
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S6 Fig. Alate vivipara of 2 subgroups of Tuberculatus (Acanthocallis) quercicola group 2

(A) and group 3 (B). (A-B) antenna (scale bars 0.1mm).

(TIF)

S7 Fig. Alate vivipara of 4 subgroups of Tuberculatus (Orientuberculoides) higuchii group 1

(A, E, I, M), group 2 (B, F, J, N), group 3 (C, G, K, O) and group 4 (D, H, L, P). (A-D)

cauda. (E-H) siphunculi. (I-L) 2nd segment of hind tarsi. (M-P) antenna (scale bars 0.1mm).

(TIF)

S8 Fig. Alate vivipara of 2 subgroups of Tuberculatus (Orientuberculoides) yokoyamai
group 1 (A, C, E) and group 2 (B, D, F). (A-B) antanna. (C-D) cauda. (E-F) siphunculi (scale

bars 0.1mm).

(TIF)

S9 Fig. Alate vivipara of 2 subgroups of Tuberculatus (Tuberculoides) annulatus group 1

(A, C) and group 2 (B, D). (A-B) antenna. (C-D) cauda (scale bars, 0.1mm).

(TIF)

S10 Fig. Alate vivipara of 2 subgroups of Tuberculatus (Arakawana) stigmatus, group 1 (A,

C, E) and group 2 (B, D, F). (A-B) abdomen. (C-D) siphunculi. (E-F) antenna.

(TIF)

S11 Fig. Alate vivipara of 2 subgroups of Tuberculatus (Nippocallis) kuricola, group 1 (A,

C) and group 2 (B, D). (A-B) ultimate rostral segment. (C-D) abdomen.

(TIF)

S1 Table. Detailed collection information and Genbank accession numbers of species used

in this study.

(XLSX)

S2 Table. Detailed collection information and Genbank accession numbers of sequences

downloaded from Genbank.

(XLSX)
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