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Abstract: The use of growth-promoting antibiotics in livestock faces increasing scrutiny and oppo-
sition due to concerns about the increased occurrence of antibiotic-resistant bacteria. Alternative
solutions are being sought, and plants of Lamiaceae may provide an alternative to synthetic antibi-
otics in animal nutrition. In this study, we extracted essential oil from Monarda didyma, a member of
the Lamiaceae family. We examined the chemical composition of the essential oil and then evaluated
the antibacterial, antioxidant, and anti-inflammatory activities of M. didyma essential oil and its main
compounds in vitro. We then evaluated the effectiveness of M. didyma essential oil in regard to growth
performance, feed efficiency, and mortality in both mice and broilers. Carvacrol (49.03%) was the
dominant compound in the essential oil extracts. M. didyma essential oil demonstrated antibacterial
properties against Escherichia coli (MIC = 87 µg·mL−1), Staphylococcus aureus (MIC = 47 µg·mL−1),
and Clostridium perfringens (MIC = 35 µg·mL−1). Supplementing the diet of mice with essential oil at
a concentration of 0.1% significantly increased body weight (+5.4%) and feed efficiency (+18.85%). In
broilers, M. didyma essential oil significantly improved body weight gain (2.64%). Our results suggest
that adding M. didyma essential oil to the diet of broilers offers a potential substitute for antibiotic
growth promoters.
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1. Introduction

Antibiotic growth promoters (AGPs) have long been used in animal nutrition to re-
duce mortality and increase the feed conversion ratio and body weight gain, especially
for broilers and swine [1–5]. The AGPs given for animal nutrition and agents used for
treatment against bacterial infection in humans often belong to the same classes of an-
tibiotics; this heightens the risk of bacteria developing resistance to antibiotics [6]. The
enhanced resistance and the issues surrounding the excessive use of in-feed AGPs have led
researchers to search out more natural alternatives. In Europe, AGPs have been prohibited
for use in animal nutrition since 2006 [3].

In Canada, poultry production involves more than 2600 regulated chicken producers
who have access to several AGPs approved as feed additives for poultry [6]. The use
of AGPs in Canada is still permitted; however, since 2014, producers have been forced
to remove those antibiotics considered as the most important for human health. This
important restriction is part of a strategy involving the responsible use of antibiotics by
producers and the search for new alternatives. A similar strategy for controlling antibiotic
resistance is used in the United States, although there are some differences in regard to
their classification of antibiotics compared to the Canadian and World Health Organization
(WHO) classifications.
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The drive for alternatives to standard AGPs involves finding compounds that ensure
poultry health and decrease bacterial resistance while maintaining producer profitability.
Public pressure and concerns about food and environmental safety have led to an active
search for alternative approaches that could eliminate or decrease the use of antibiotics,
such as the use of essential oil, probiotics, prebiotics, and acidifiers in diets. As natural and
multi-active agents, plant extracts and plant-derived products offer an interesting potential
as substitutes for synthetic antibiotics and inorganic chemicals. Essential oil has some
advantages over the others, by (1) improving growth performance and nutrient digestibility
through antioxidative and anti-inflammatory activity, and (2) improving intestinal and
general health of the broiler via antibacterial and coccidiostatic effects [7–10]. Both the
food industry and animal producers have increased their interest in the use of essential oils
(EOs, volatile plant compounds). The positive effects of EO in the digestive tract of animals
include the stabilizing of gut microbiota; this benefit could lead to further practices that
improve intestinal health, digestion, and growth performance of livestock [6].

Some EOs have already been investigated in animal nutrition studies [11–16]. Plants
from the Lamiaceae family are particularly promising [15–19]; for example, Denli et al. [20]
added thyme essential oil to the diet of quail, resulting in significantly increased body
weight gain and better feed efficiency relative to a control group. A member of the
Lamiaceae, Monarda didyma L., has been used for millennia by indigenous people in North
America to treat colic, flatulence, colds, and flu. This plant is also used in infusions for
intestinal and stomach problems [21], and is particularly useful for treating digestive
disorders [22].

At present, there are no studies on the bioactivity of M. didyma EO. Nonetheless,
compounds such as thymol and carvacrol—often present in the EO of Monarda species [22]—
have marked antibacterial and anti-inflammatory activities [23–25]. Moreover, Ertas et al. [26]
showed that thymol and carvacrol help stimulate digestion by affecting pathogenic microor-
ganisms in the gut of broilers, thereby increasing their food conversion rate and weight.
The protection and reinforcement of the intestinal microbiome in broilers is critical for
maintaining the overall health and optimal absorption of nutrients in these animals [27].

In this study, steam distillation was used to extract M. didyma EO, and GC-MS and
GC-FID were used to analyze the composition of the EO. The antibacterial, antioxidant, and
anti-inflammatory activities of M. didyma EO in vitro was assessed and results compared
with the positive control Thymus vulgaris [24]. The objective of this study was to substitute
standard antibiotics with M. didyma essential oil, although the main compounds responsible
for the biological activities were identified and the effects of M. didyma EO on the growth
performance, feed intake, and feed efficiency of mice and broilers were then evaluated.

2. Results and Discussion

M. didyma EO, isolated by steam distillation, comprised mainly monoterpenes, which
represented approximately 98% of the total, and some sesquiterpenes (1.24%). M. didyma EO
contained a high level of carvacrol (49.03%). The other main compounds were γ-terpinene
(16.90%), p-cymene (7.60%), thymol (6.17%), carvacrol methyl ether (4.18%), 1-octen-3-ol
(3.07%), α-terpinene (2.79%), myrcene (2.33%), α-thujene (1.39%), and limonene (1.03%) (Ta-
ble 1). In total, 23 compounds were identified; all compounds had already been described
in the scientific literature [28].

These compound concentrations showed some differences to previous research on
EO extracts from M. didyma. In contrast to our observation of the highest compound
levels being for carvacrol [29], analysis of EO from M. didyma cultivated in central Italy
found thymol (59.3%) to be the most dominant compound, followed by p-cymene (10.3%),
terpinolene (9.2%), delta-3-carene (4.4%), myrcene (3.7%), and camphene (3.4%). In 1967,
Scora [30], using M. didyma EO from California, found γ-terpinene (27.36%) as the most
important compound, followed by d-limonene (12.93%), 1,8 cineole (12.24%), bornyl acetate
(7.74%), ketone (5.50%), β-myrcene (4.88%), linalyl acetate (5.06%), α-terpinol (4.20%), and
α-pinene (3.10%). Scora [30] did not observe thymol or carvacrol in their EO samples;
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they concluded that the oil from the inflorescences contained smaller amounts of terpene
components. Finally, Carron et al. [31] analyzed several North American Monarda species.
They found thymol and carvacrol to vary markedly between taxa, ranging from 8.5%
thymol and 2.9% carvacrol in M. didyma (red bergamot variety) to 46.6% thymol and 19.2%
carvacrol in M. fistulosa (Richters variety).

Table 1. Composition of M. didyma L. essential oil.

Identified Compounds Relative
Concentration (%)RI Name Identification 1

930 α-thujene MS, RI 1.39
938 α-pinene MS, RI 0.43
976 1-octen-3-ol MS, RI 3.07
992 myrcene MS, RI 2.33

1010 α-phellandrene MS, RI 0.36
1016 δ-3-carene MS, RI 0.16
1022 α-terpinene MS, RI 2.79
1030 p-cymene MS, RI 7.60
1034 limonene MS, RI 1.03
1064 γ-terpinene MS, RI 16.90
1072 cis-sabinene-hydrate MS, RI 0.25
1094 linalool MS, RI 0.15
1174 terpinen-4-ol MS, RI 0.11
1185 α-terpineol MS, RI 0.79
1232 thymol methyl ether MS, RI 0.86
1248 carvacrol methyl ether MS, RI 4.18
1294 thymol MS, RI 6.17
1306 carvacrol MS, RI 49.03
1435 β-caryophyllene MS, RI 0.89
1488 germacrene D MS, RI 0.12
1511 γ-cadinene MS, RI 0.23

Total 98.84
1 MS: Identification by GC-MS; RI: Compounds were identified by comparison of GC retention indices relative
to retention times of a series of n-alkanes (C7–C36) and compared with literature data. Compounds ≤ 0.1% are
not reported.

The high relative concentration of carvacrol and the presence of thymol suggested
a promising antibacterial activity for M. didyma EO. Our observations of the antibacte-
rial activity of M. didyma EO against E. coli (MIC = 87 µg·mL−1) and against S. aureus
(MIC = 47 µg·mL−1) confirmed this antibacterial potential. The positive control T. vul-
garis (Table S1) was also effective against E. coli (MIC = 109 µg·mL−1) and S. aureus
(MIC = 111 µg·mL−1). The antibacterial activity of M. didyma EO versus E. coli and S.
aureus was provided mainly by carvacrol, which had respective MIC values of 65 µg·mL−1

and 36 µg·mL−1, and thymol, which had respective MIC values of 110 µg·mL−1 and
130 µg·mL−1. M. didyma EO was also active versus C. perfringens, producing an MIC of
35 µg·mL−1; this antibacterial activity versus C. perfringens was provided mainly by car-
vacrol that had an MIC of 18 µg·mL−1, as well as thymol, having an MIC of 55 µg·mL−1,
and also limonene, which produced an MIC of 29 µg·mL−1 (Table 2).

M. didyma EO also demonstrated anti-inflammatory activity. A concentration of
35 µg·mL−1 inhibited fifty percent (IC50) of NO induced by LPS in RAW 264.7 macrophages.
Carvacrol (IC50 = 22.6 µg·mL−1) and p-cymene (IC50 = 25.5 µg·mL−1) appeared to be
responsible, in part, for this activity. Furthermore, a cell-based assay with an IC50 of
4.6 µg·mL−1 highlighted the EO antioxidant activity (Table 3).



Molecules 2021, 26, 3368 4 of 10

Table 2. Antibacterial activity of M. didyma and T. vulgaris (as positive control) essential oils and the
main compounds against selected bacterial strains.

Compounds
Antibacterial Activity MIC (µg·mL−1)

E. coli S. aureus C. perfringens

T. vulgaris EO 109 ± 10 111 ± 7 ND
M. didyma EO 87 ± 8 47 ± 8 35 ± 4

Thymol 110 ± 7 130 ± 10 55 ± 3
Carvacrol 65 ± 5 36 ± 1 18 ± 1
α-terpinene >200 >200 ND
γ-terpinene >200 >200 ND
p-cymene >200 >200 ND
Limonene >200 >200 29 ± 1
Myrcene >200 >200 ND

ND: Not determined; data are representative of three different experiments; mean ± standard deviation, n = 3;
MIC is defined as the lowest concentration inhibiting 95% of bacterial growth.

Table 3. Antioxidant and anti-inflammatory activity of M. didyma and T. vulgaris (as positive control)
essential oils and the main compounds.

Compounds

Antioxidant Anti-Inflammatory

Cell-Based Assay ORAC IC50 (µg·mL−1)

IC50 (µg·mL−1) µmol Trolox·mg−1

T. vulgaris EO 11 ± 9 0.4 ± 0.2 64 ± 6
M. didyma EO 4.6 ± 0.3 0.52 ± 0.01 35 ± 4

Thymol >200 1.34 ± 0.03 >200
Carvacrol 54 ± 9 2.3 ± 0.3 22.6 ± 0.2
α-terpinene 3.4 ± 0.2 0.17 ± 0.05 >200
γ-terpinene ND ND >200
p-cymene >200 0.02 ± 0.01 25.5 ± 0.9
Limonene 6.2 ± 0.5 0.08 ± 0.02 22 ± 7
Myrcene 92 ± 4 0.04 ± 0.01 >200

Trolox ND 9 ± 1 ND
ND: Not determined; data are representative of three different experiments; mean ± standard deviation, n = 3.

The antibacterial and antioxidant activities of other members of the Lamiaceae family
have been observed, principally for T. vulgaris and Origanum vulgare [32–36]; however, the
biological activities of M. didyma are less well known. Fraternale et al. [22] used a DPPH and
lipid peroxidation test to demonstrate the elevated antioxidant activity of M. didyma EO.
Numerous studies have highlighted the antibacterial and antioxidant activities of EOs that
possess high levels of phenolic compounds such as thymol, carvacrol, and eugenol [9,24,25].
Thymol and carvacrol appear to be particularly effective against Gram-negative bacteria,
in part because these compounds act on the outer membrane, such as by provoking the
release of lipopolycaccharides, increasing the permeability of the cytoplasmic membrane,
and depolarizing the cytoplasmic membrane. Furthermore, hydroxyl groups are highly
reactive and form hydrogen bonds with active sites of target enzymes, inactivating them,
and consequently create a dysfunction or rupture of the cell membrane [25]. Similar to our
study, Guimarães et al. [25] also observed high and rapid thymol and carvacrol activity
against E. coli. Antioxidant and anti-inflammatory effects of the EO can produce a positive
effect in the gastrointestinal tract.

Given that M. didyma EO demonstrated in vitro activities, the effectiveness of different
concentrations of EO in the diet of mice on body weight gain (BW), feed intake (FI), and feed
efficiency (FE) was assessed. A significant difference between the treatment groups and the
negative control group for BW (p < 0.001), FI (p < 0.001), and FE (p < 0.001) was observed
(Table 4). Supplementing the mouse diet with EO increased mouse BW throughout the
experiment. EO concentrations of 0.1% M. didyma and 0.1% T. vulgaris markedly increased
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mouse BW (respectively 5.4% and 9.4%), compared with the untreated mice (average of
5.58 g). EO dietary supplements decreased overall FI (p < 0.001) for all EO concentrations,
especially for M. didyma 0.2% (145.24 g) and M. didyma 0.1% (141.58 g), compared to
untreated mice (164.83 g). Finally, M. didyma 0.1% and M. didyma 0.2% produced the lowest
FE ratios at 23.98 and 25.13, respectively. Therefore, diets supplemented with T. vulgaris
EO and M. didyma EO at levels of 0.2% and 0.1% improved mouse BW and FE compared to
the negative control.

Table 4. Comparison of mean body weight gain (g), feed intake (g), and feed efficiency of the
mouse treatments.

Treatments

Body Weight Gain
(g) (BW) Feed Intake (g) (FI) Feed Efficiency

(FI/BW)

0–80 Days 0–80 Days 0–80 Days

Control 5.58 ± 1.01 a 164.83 ± 1.55 a 29.55 a

T. vulgaris 0.2% 5.56 ± 1.41 b 154.96 ± 0.87 b 27.87 b

T. vulgaris 0.1% 6.16 ± 1.44 b 163.39 ± 14.21 c 26.54 c

M. didyma 0.2% 5.78 ± 1.40 c 145.24 ± 7.81 c 25.13 c

M. didyma 0.1% 5.90 ± 1.17 c 141.58 ± 2.78 c 23.98 c

Values with different letters in the same column (a–c) differ significantly (two-way analysis of variance, p < 0.05).

No studies have yet tested EO diet supplements in mice; however, Denli et al. [20]
observed that T. vulgaris EO caused BW gain and improved FE for quail. Platel et al. [37]
concluded that adding various spices in food enhanced either enzyme activity related to
digestion or increased the secretion of bile. Yang et al. [38] observed that EO supplemen-
tation during the growth period increased lipase, trypsin, and chymotrypsin activities
significantly. EO also increased the fecal digestibility of dry matter and the digestibility of
ether extract, fiber, fat, ash, and protein [18]. The improvement of BW and FE in our study
of mice was attributed to these processes.

When M. didyma EO was added to the diet of male broilers, during a growth period of
36 days, the treated broilers attained a BW of 2.65 kg with an average of 4.46 kg of FI by the
animals. Control broilers with standard antibiotics weighed 2.58 kg after an average FI of
4.51 kg. Broilers fed with the EO-supplemented diet therefore showed a BW increase of
2.64% compared to control animals fed using standard antibiotics (Table 5). A significant
difference was observed for BW between the control and M. didyma EO broilers in the first
10 days (268.5 g and 279 g, respectively). During the growth and finisher phases, broilers
fed with the EO diet were significantly heavier than the control broilers with antibiotics
and followed the same growth curve (Figure S1).

Table 5. Comparison of mean body weight gain (g), feed intake (g), and feed efficiency of the broiler treatments.

Treatments
Body Weight Gain (g) (BW) Feed Intake (g) (FI) Feed Efficiency (FI/BW)

0–10 Days 0–36 Days 0–10 Days 0–36 Days 0–10 Days 0–36 Days

Antibiotics suppl. 269 ± 7 a 2578 ± 117 a 384.71 ¥ 4514.25 ¥ 1.43 ¥ 1.75 ¥

M. didyma suppl. 279 ± 8 b 2652 ± 121 b 360.36 ¥ 4455.81 ¥ 1.29 ¥ 1.68 ¥

¥ Values are available only at the end of the experiment; values in the same column with different letters (a–b) differ significantly (two-way
analysis of variance, p < 0.05).

Existing studies identify four different mechanisms that are important for EO action—
sensorial, metabolic, antioxidant, and antibacterial activities [13]. Hashemipour et al. [39]
demonstrated that supplementing a broiler diet with 100 mg/kg and 200 mg/kg of thymol
and carvacrol, respectively, produced no effect on FI, but significantly increased BW gain
and improved the feed conversion ratio. Antibiotics in animals improve the BW by 5–6%
and the FE by 3–4%, with the most pronounced effects observed in young animals [6].
Khattak et al. [15], supplementing the diets of broilers with a natural blend of EO (including
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thyme and oregano), observed no significant difference in growth performance during the
starter period. Although higher mortality rates could be expected in the EO test group due
to the lack of antibiotic use, Khattak et al. [15] found no significant difference between the
mortality of broilers having the EO-supplemented diet and that of the control broilers.

3. Materials and Methods
3.1. Chemicals

Standard compounds used for GC analyses and biological testing were obtained
from Sigma-Aldrich (St. Louis, MO, USA); the compounds included thymol, carvacrol,
γ-terpinene, p-cymene, α-terpinene, myrcene, and limonene.

3.2. Plant Material and Extraction of Essential Oils

M. didyma L. EO was extracted by steam distillation for three hours from freshly harvested
aerial parts (refractive index = 1.4977; density = 0.939 g·mL−1; yield (%) = 0.49). The plant
came from Saint-Fulgence, Québec and was harvested at the beginning of August (Voucher
QFA0625784). Thymus vulgaris L. EO (refractive index = 1.4797; density = 0.923 g·mL−1) was
purchased from Aliksir (Grondines, QC, Canada). The EO yield from extraction depended on
the total amount of the raw material. The EO was then stored in the dark at a temperature of
4 ◦C until needed.

3.3. GC-FID and GC-MS Analysis

All chromatographic analyses were run on an Agilent 6890N GC (Agilent Technologies,
Santa Clara, CA, USA) equipped with a non-polar DB-5 column and a polar SolGel-Wax
column (30 m × 0.25 mm × 0.25 mm) as well as two flame ionization detectors (FIDs)
(Agilent Technologies, Santa Clara, CA, USA). The oils were injected in an undiluted (0.1 µL
injection volume, split 1:235) and undried state (Figure S2). The temperature program
began at 40 ◦C for 2 min, then rose 2 ◦C·min−1 up to 210 ◦C. The temperature was then
held at 210 ◦C for 13 min. Samples were also injected into an Agilent 7890A GC (Agilent
Technologies, Santa Clara, CA, USA) coupled to an Agilent 5975C InertXL EI/CI mass
spectrometer (MS) equipped with a DB-5MS column using the same temperature program
as above and a split of 1:1000. Compounds were identified from their retention indexes
as calculated from even-numbered C7 to C36 alkane standards and from Wiley 6N, MS
databases (NIST08) and standard injection when available (LASEVE, UQAC, Chicoutimi,
QC, Canada). Quantification was derived from the FID response on the DB-5 column
without any correction factor.

3.4. In Vitro Activity of Essential Oil
3.4.1. Cell Culture

Healthy human skin fibroblasts WS1 (ATCC CRL-1502) and the murine macrophage
RAW 264.7 (ATCC TIB-71) were obtained from the American Type Culture Collection
(Manassas, VA, USA). Cells were grown in a humidified atmosphere at 37 ◦C in 5% CO2, in
Dulbecco’s minimum essential medium supplemented with 10% fetal calf serum (Hyclone,
Logan, UT, USA), 1 × solution of sodium pyruvate, 1 × vitamins, 1 × non-essential amino
acids, 100 IU of penicillin, and 100 µg·mL−1 streptomycin (Cellgro®, Mediatech, Manassas,
VA, USA).

3.4.2. Bacterial Strains

The in vitro antimicrobial activity of M. didyma EO was tested against Gram-negative
Escherichia coli (ATCC 25922), Gram-positive Staphylococcus aureus (ATCC 25923), and Gram-
positive Clostridium perfringens provided by the Chicoutimi Hospital, Saguenay, Canada.
Bacteria were grown in a humidified atmosphere at 37 ◦C.
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3.4.3. Culture Methods

Bacteria were stored at −80 ◦C until use. For culturing the bacteria, all bacteria were
placed in a nutrient broth base (Difco) for 16–18 h at 37 ◦C; C. perfringens was grown in
an anaerobic vial. The cellular density of the inoculum was measured via optical density
at 600 nm for E. coli [40], 660 nm for S. aureus [41], and 450 nm for C. perfringens using
a Multiskan™ GO Spectrophotometer (Thermo Fisher Scientific). The inoculum was re-
diluted in the nutrient broth to obtain the required bacterial concentration.

3.4.4. Measurement of Anti-Inflammatory Activity

The inhibition of nitric oxide (NO) production by M. didyma EO and compounds was
evaluated following Legault et al. [42]. Control L-NAME was used as a positive control. The
murine macrophage RAW 264.7 cells were incubated with EO or dissolved compounds in
DMSO, then stimulated using 100 ng·mL−1 LPS and incubated at 37 ◦C. After 24 h, the cell-
free supernatant was collected and the NO concentration immediately determined using
the Griess reaction. The absorbance was read at 540 nm using an automated Varioskan
Ascent plate reader, and the presence of nitrite was quantified by comparing with a NaNO2

standard curve, and IC50 expressed 50% of NO inhibition.

3.4.5. Evaluation of Antioxidant Activity Using Cell-Based Assays

The antioxidant activity was evaluated using the DCFH-DA assay as described by
Girard-Lalancette et al. [43]. Human skin fibroblasts WS1 were incubated for 1 h with a
growing concentration of EO or dissolved compounds in DMSO. One hundred microliters
of 200 µM tert-butylhydroperoxide was then added and fluorescence immediately mea-
sured, and again after 90 min. Measurements were made on an automated plate reader
(Fluoroskan Ascent FL, Labsystems, Milford, MA, USA) using an excitation wavelength of
485 nm and an emission wavelength of 530 nm. Antioxidant activity was expressed as the
concentration of extract inhibiting 50% (IC50) of DCFH oxidation.

3.4.6. Evaluation of Antioxidant Activity Using ORAC

The method described by Ou et al. [44] with some modifications was followed. Briefly,
the ORAC assay was carried out in black 384-well microplates (Nunc) on a Fluoroskan
Ascent FL™ plate reader (Labsystems) equipped with an automated injector. Four con-
centrations of Trolox (the control standard) (1.56, 3.13, 6.25, and 12.5 µM) were used in
quadruplicate, and a gradient of 16 concentrations of the samples (compounds dissolved
in DMSO or pure EO) was prepared without replication. The experiment was conducted
at 37.5 ◦C and in a pH 7.4 phosphate buffer with a blank sample run in parallel. The
fluorimeter was programmed to record the fluorescence (λ ex.: 485 nm/em: 530 nm) of
fluorescein every minute after the addition of 375 mM of 2,2′-azobis(2-amidinopropane)
dihydrochloride (AAPH), for a total of 60 min. The final values were calculated using the
net area under the curves of the sample concentrations for which a decrease of at least 95%
of fluorescence was observed at 60 min. ORAC values were expressed in micromoles of
Trolox equivalents (TE) per milligram (µmol TE·mL−1).

3.4.7. Evaluation of Antibacterial Activity

The antibacterial activity of M. didyma EO and compounds was tested using the an-
tibacterial hydrophobic assay as described by Côté et al. [45]. Briefly, after micro-organisms
passed 16–18 h at 37 ◦C in a nutrient broth base (Difco), 20 µL methanol containing growing
concentrations of EO and compounds (3.1 to 200 µg·mL−1) was transferred onto nutrient
agar in 96-well plates. Bacterial strains having a concentration of 2.5 × 105 colony-forming
units (CFU) were then added per mL of nutrient broth. Bacterial suspension without
treatment was used as a negative control, and bacterial suspension plus solvent were tested
in parallel to demonstrate the absence of solvent toxicity. The blank consisted of a culture
medium only and was subtracted from all subsequent measurements of each well. The
96-well plates were then incubated at 37 ◦C for 5 h to foster bacterial growth. One hundred
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microliters of resazurin sodium salt solution with a concentration of 50 µg·mL−1 (Sigma
R-2127, St-Louis, MO, USA) was then added to each well. Fluorescence was read on an
automated Fluoroskan Ascent FLTM plate reader (Labsystems, Milford, MA, USA) after
2 h for S. aureus and 3 h for E. coli and C. perfringens. The MIC was determined as the lowest
concentration resulting in 95% inhibition of bacterial growth.

3.5. Experimental Design in Mice

Mice were fed with a mouse diet specifically designed to support the growth and
maintenance of animals (LabDiet 5015; 20% protein, 25% fat, 55% carbohydrate). The
treatments were prepared by adding concentrations of M. didyma and T. vulgaris (used as
the positive control) EO at 0.2% and 0.1%, to the original control diet. The food containing
EO was prepared every week to ensure its freshness and quality. Our experiment was
assessed for its ethical acceptability and was approved by the APC (Animal Protection
Committee of UQAC, Université du Québec à Chicoutimi). Mice were housed in cages
in an environmentally controlled room, having 12 h of darkness followed by a period of
12 h of light during the entire run of the experiment. Each cage was provided with a single
feed and water system to provide ad libitum access. Fifty (50) mice (five-week-old Charles
River males) were placed in cages; each cage contained five randomly selected mice (two
replicates). Each cage was assigned to one of five dietary treatments (four EO treatments
and one negative control), giving a total of ten (10) experimental cages. The study was
completed after 80 days of treatment. BW was measured twice a week and average FI
determined on a weekly basis. For each week, the FE per cage was calculated based on the
average BW and FI per mouse.

3.6. Experimental Design for Broilers

Male broilers (n = 8216) were divided into four treatment groups: two control
(n = 2054 each) and two treatment (n = 2054 each). The broilers were installed in an
insulated room with facilities for control temperature, light, and humidity according to
industry standards. Broilers were fed with the Nutrinor standard diet for poultry. The
feeding program consisted of a starter (1–10 d), growth (11–20 d), and finisher (21–35 d)
diet given to each broiler ad libitum. The treatment group received 0.5% M. didyma EO
in the starter diet, 0.1% EO in the growth diet, and 0.05% EO in the finisher diet. The
control group received standard antibiotics: MaxibanTM (0.5 kg/metric tons (MT)) and
Tylosine (0.25 kg/MT). Broilers were weighed daily using an automatic balance installed
in the hen house. Mortality was recorded daily and total FI was determined at the end of
the experiment.

3.7. Statistical Analysis

Analysis of variance (ANOVA) was run on all our collected data using the statistical
analysis system Sigma STAT. If appropriate, multiple comparison procedures were per-
formed with the Holm–Sidak method. Statements of statistical significance are based on
p < 0.05.

4. Conclusions

Our results confirmed the in vitro antibacterial, antioxidant, and anti-inflammatory
activities of M. didyma EO. A diet supplemented with M. didyma EO significantly increased
mouse BW and suggested good biological activity in broilers. EO has good potential as an
alternative to synthetic antibiotics used in animal nutrition. Future research must explore
M. didyma EO in vivo antibacterial activity against E. coli and C. perfringens. Nonetheless,
the different dosages of M. didyma EO in the starter, growth, and finisher phases of the
broiler diets remain to be tested to determine the optimal concentrations.
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