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A B S T R A C T   

Objective: To develop a predictive model of incidence of traumatic spinal cord injury (TSCI). 
Methods: The data for training the model included both the incidence data and the covariates. The incidence data 
were extracted from systematic reviews and the covariates were extracted from data available in the interna-
tional road federation database. Then the feature processing measures were taken. First we defined a hyper- 
parameter, missing-value threshold, in order to eliminate features that exceed this threshold. To tackle the 
problem of overfitting of model we determined the Pearson correlation of features and excluded those with more 
than 0.7 correlation. After feature selection three different models including simple linear regression, support 
vector regression, and multi-layer perceptron were examined to fit the purposes of this study. Finally, we 
evaluated the model based on three standard metrics: Mean Absolute Error, Root Mean Square Error, and R2. 
Results: Our machine-learning based model could predict the incidence rate of TSCI with the mean absolute error 
of 4.66. Our model found “Vehicles in use, Total vehicles/Km of roads”, “Injury accidents/100 Million Veh-Km”, 
“Vehicles in use, Vans, Pick-ups, Lorries, Road Tractors”, “Inland surface Passengers Transport (Mio Passenger- 
Km), Rail”, and "% paved” as top predictors of transport-related TSCI (TRTSCI). 
Conclusions: Our model is proved to have a high accuracy to predict the incidence rate of TSCI for countries, 
especially where the main etiology of TSCI is related to road traffic injuries. Using this model, we can help the 
policymakers for resource allocation and evaluation of preventive measures.   

1. Introduction 

Traumatic spinal cord injury (TSCI) is a traumatic event that harms 
the normal sensory, motor, or autonomic functions of patients. TSCI 
poses significant health and social impact worldwide, with an incidence 
of between 10.4 and 59.0 injured individuals per million inhabitants per 
year.1,2 The management of TSCIs requires substantial health care re-
sources, with its annual health care costs being up to six times more 
expensive than that of other chronic diseases.3 These costs are largely 
related to the need for a high-level acute care in the short term. TSCI 
associated long-term secondary complications further increase the cost 

for patients family and health system.4 

The available information on the epidemiology of TSCI is very 
limited worldwide, especially in developing countries. A 2023 study by 
Jazayeri et al5 on the worldwide epidemiology of spinal cord injury 
found that only 49 predominantly developed countries had data 
regarding the prevalence and incidence of TSCI, and there lies a huge 
gap in the epidemiology of TSCI in other countries. It’s clear that such 
information is of great importance for government planning and finan-
cial resource allocating purposes. Developed countries are planning and 
reducing the number of casualties and its caused damage, while the rate 
of injuries and damage is increasing in developing countries.6 On this 
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account, developing a valid model that is able to predict TSCI incidence 
could help countries to plan and allocate budgets to reduce the incidence 
of TSCI. 

Predicting the incidence or prevalence of a disease based on the 
variables affecting it (covariates) is increasingly being done by machine 
learning methods. Machine learning models, computational algorithms 
that can identify hidden relationships between covariates and the 
outcome, hold many advantages against traditional methods which 
relied on predefined rules. Thus, unlike rule-based systems, machine 
learning automatically gives appropriate weight to predictors based on 
the observed pattern in data, and therefore it does not require prior 
knowledge of predictors’ importance.7,8 Also, certain machine learning 
models, such as support vector machines (SVMs), and artificial neural 
networks (ANNs), have the ability to extract complex non-linear re-
lationships within the dataset and thus, provide better predictions 
compared to linear models.9 These capacities to unveil intricate con-
nections in data make machine learning particularly well-suited for the 
prediction and estimation of incidence and prevalence data. Herein, we 
aim to develop a regional-based predictive model of the incidence of 
traumatic spinal cord injury using machine learning algorithms. 

2. Material and methods 

2.1. Data collection and preprocessing 

The data for covariates are extracted from International Road 
Federation (IRF) world road statistics millennium data for 2000–2015.10 

The IRF is a global not-for-profit organization that publishes annual 
reports regarding world road statistics utilizing multiple sources 
including national statistics, transport-related administrations and Na-
tional Police reports on road traffic crashes.11,12 The 2015 version of IRF 
contains 207 features pertaining road infrastructure and safety for 205 
countries. We used the following indicators from IRF millennium data to 
train our model: (1) Country profiles: country name, income group and 
region, (2) Road network: Length of the road network in kilometer (Km) 
including motorways/highways, national roads, % paved and unpaved 
roads. (3) Road traffic: Traffic volume in million (Mio) Vehicle-Km unit. 
(4) Multimodal traffic comparisons in passenger-km unit. (5) Vehicles in 
use: total number of passenger cars, buses, motor coaches, vans and 
pick-ups, lorries and road Tractors, motorcycles & mopeds. (6) Road 
accidents: number of crashes with at least one person killed or injured, 
number of person injured, and number of persons killed/fatality. (7) 
Road expenditures: Expenditure on constructions/investments, main-
tenance, administrative costs, research and other recurrent costs and (8) 
CO2 emission as a measure of transport activities. In order to gather 
incidence data, we extracted data from two previously published sys-
tematic reviews.13,14 

Before applying any model to the collected data, we needed to clean 
data, deal with the missing values, select the most important features to 
prevent over-fitting, and normalize them to speed up the convergence of 
the model. 

All datapoints from different sources were aggregated in a single 
table with 168 rows (the number of instances), and 70 columns, where 
68 of them were IRF indicators, one of them specified the year, and the 
other determined the name of the country. We added another column 
that represented the incidence rates we were trying to predict. In this 
study, we included national and sub-national incidences. For each entry 
in the table, we first searched for the national incidence rate, and only if 
there was no national incidence in our data sets, we put sub-national 
incidence in its corresponding row. It is important to note, that we 
excluded incidences that were the mean values across several years since 
we witnessed that including these incidences would distort the data, and 
worsen our final results. 

Many of our features had undefined values in some rows; hence, we 
had to tackle the missing values problem to be able to run a model on the 
data. We defined a parameter, missing-value threshold, which ranged 

from 0 to 1. This parameter specified what percentage of a feature can be 
undefined at most, and still remain included. Those features with 
missing data percentages exceeding this threshold were removed. In our 
analysis, we set the missing-value threshold 0.4, as it had the best per-
formance. It means that if more than 40% of values of a feature are 
missing, the feature is eliminated. Using this threshold, out of 68 in-
dicators, 12 of them were removed, with a threshold of 0.4. For other 
missing values, we imputed them using the Python implementation of 
MICE.15 

One common pitfall of applying machine learning to problems which 
have few datapoints but many features, is over-fitting. In short, over- 
fitting means that the model is so powerful that it captures not only 
the underlying pattern in data, but also noise and random fluctuations. 
As a rule of thumb, the number of training datapoints should be ~5–10x 
more than the number of features. As we had 168 datapoints and 56 
features, we were also faced with over-fitting. To mitigate this, we 
removed highly correlated features. Concretely, we computed the 
Pearson correlation matrix of all 56 features, and among two features 
with a correlation more than a specific threshold (another hyper- 
parameter), only one got selected. In this study, this threshold was 
empirically chosen as 0.7. After this feature selection phase, 23 features 
remained. 

Finally, as some features, e.g. total highways in Km, were several 
orders of magnitude larger than others, e.g. national currency per dollar, 
we needed to normalize features. We performed standard normalization 
so that each feature has a standard deviation of 1 and a mean of 0. 

2.2. Models 

In this paper, three different regression models have been proposed 
to predict the incidence rate based on the given features: simple linear 
regression, support vector regression (SVR), and multi-layer perceptron 
(MLP). Linear regression model has the advantage of being simple to 
implement and being easily interpretable, however its assumption that 
the covariates and target variable are linearly dependent can reduce its 
power. On the other hand, SVR can learn non-linear functions among 
features, but is less interpretable. In this paper we use ϵ-SVR which is 
more robust against noisy input. Finally, MLP is the most powerful 
model of the three which can learn highly complex patterns in the data, 
and can automatically discard irrelevant features. However, the down-
side of MLPs is being a black box, meaning that it is not trivial to 
interpret why a certain prediction was made. Here, we utilized an MLP 
with 3 hidden layers, containing 10, 20, and 10 nodes in each layer with 
the ReLU activation function. Fig. 1 depicts the architecture of the 
proposed neural network. All models were implemented by the Scikit- 
Learn package.16 The details of each model are presented in Appendix 1. 

2.3. Evaluation metrics 

We evaluated the methods based on three standard metrics: Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. MAE 
measures average magnitude of the errors in a set of predictions. We can 
interpret MAE as the average difference of predicted points to the actual 
values. RMSE is similar to MAE, however, RMSE gives more weight to 
higher errors and less weight to lower errors. Meanwhile, R2 is intended 
to capture the proportion of variability in a dataset that is accounted for 
by the statistical model. It is always between 0 and 1. When R2 = 1 it 
means that all of the variability in data is explained and the model can 
very closely predict the actual values. Contrary, if R2 = 0 it means non of 
the variability is explained, and there is no relation between the pre-
dicted values and actual values. You can find the details of each metric in 
Appendix 1. 
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Fig. 1. Architecture of our neural network.  

Fig. 2. Mean Absolute Error of different methods.  
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3. Results 

3.1. Evaluation 

Figs. 2–4 show MAE, RMSE, and R2 results for train and test sets, 
respectively. As expected, MLP outperformed other models in all three 
metrics, in both train and test sets. We can examine that in the MAE 
metric; the cross-validation error of MLP is even smaller than the 
training error of linear regression and ϵ-SVR. The cross-validation MAE 
of the neural network is 4.66, meaning that on average each predicted 
incidence rate is only 4.66 off from the gold standard. Furthermore, R2 

of MLP is 0.73, which means that 73% of the variability is captured by 
the model. All models performed much better on the train sets, which 
highlights the necessity of having more clean data to infer a function 
with lower errors. 

The weights of features represent how much each feature contributes 
to the final prediction model. The bigger the absolute value of the weight 
of the feature is, the more important role that feature plays in the final 
output of the model. On ϵ-SVR and linear regression, we found features 
with the largest absolute weights to provide insight for the future. 
Features with positive coefficients result in higher incidence and vice 
versa. In ϵ-SVR the top five predictors were “Vehicles in use, Total ve-
hicles/Km of roads”, “Injury accidents/100 Million Veh-Km”, “Vehicles 
in use, Vans, Pick-ups, Lorries, Road Tractors”, “Inland surface Passen-
gers Transport (Mio Passenger-Km), Rail”, and "% paved”. The first four 
features contribute positively to the incidence rate prediction, "% 
paved” contributes negatively. For linear regression, the top five fea-
tures were “Vehicles in use, Vans, Pick-ups, Lorries, Road Tractors”, 
“Inland surface Passengers Transport (Mio Passenger-Km), Total 
“Million Vehicle-Km, annual, Passenger cars”, “Road sector energy 
consumption in the kilotonnes of oil equivalent (ktoe)", and “Injury 
accidents”. Surprisingly, in linear regression “Inland surface Passengers 
Transport, total” contributes negatively to the incidence rate, which is a 
reason that exacerbated the linear regression results. 

3.2. Outcome 

The mean value of incidence in each country was used to generate 
Fig. 5, showing higher incidence in West Pacific WHO region. The 
highest incidence was seen in Monaco (172.05 cases per million (cpm) 
population per year), Korea (154.79 cpm), Indonesia (139.45 cpm), and 
the United States of America (USA) (138.62 cpm) in 2015, while in 
2000, Japan (114.18 cpm), Tajikistan (111.56 cpm), and Bahamas 

(96.36 cmp) had the highest calculated rate. Regarding the lowest 
incidence rate, Qatar (4.77 cpm), and Netherlands (5.77 cpm) were the 
top countries in 2000 and by the year 2015 Botswana (1.09 cpm), Kenya 
(1.86 cpm), Saudi Arabia (2.22 cpm), and had the lowest incidence rate. 
During the 15-years period, Tajikistan (97.06%), Saudi Arabia 
(93.58%), and Botswana (93.21%) were top countries in terms of inci-
dence percent decrease, while Qatar (660.04%), China (576.35%), and 
Azerbaijan (431.47%) showed an increasing pattern. Detailed predicted 
incidence of TSCI in different countries based on WHO regions from 
2000 to 2015 are presented in Appendix 2. 

4. Discussion 

In recent years, modeling by machine learning methods has become 
popular in medicine. A huge part of this popularity is due to the increase 
in accessibility of data and their complexity, which makes statistical 
modeling for this data nearly impossible. Using machine learning as a 
modeling tool enables us to predict complex outcomes using a set of 
basic data, each with a different level of impact on the predicted 
outcome. Predicting these outputs is important in terms of political 
planning and resource allocating. In this project, we have extracted, for 
the first time, the covariates that may be directly or indirectly related to 
the occurrence of TRTSCI, from different countries and used them to 
create a model with the help of machine learning methods to predict the 
incidence of TRTSCI. Choosing these covariates was done carefully with 
the consultation of experts. In developing countries, the main etiology of 
TSCI is road traffic injuries in contrast to the developed countries in 
which falling is the main etiology.13 We used 23 covariates that are 
mostly related to road traffic incidence (Table 1). After modeling and 
modifications, our model could predict TRTSCI incidence with a MAE of 
4.66 based on the selected covariates. ML models using MAE as measure 
of model performance are promising tools in predicting road acci-
dents.17 It is known that Machine learning models that utilize MAE as a 
performance metric show great potential in forecasting road 
accidents.17,18 

We found a positive correlation between number of vehicles, number 
of injuries, number of passengers and negative correlation with % paved 
with incidence of TRTSCI. We used aggregated IRF data to design our 
model. Other studies have also used IRF data to predict different out-
comes.19,20 For example Ahmed and colleagues extracted road density 
and road network information from IRF along with data of 40 Asian 
countries to design a predictive regression model for road crash fatal-
ities, and found a significant negative correlation between road density 
and road crash fatalities but no correlation for number of registered 

Fig. 3. Root Mean Square Error of different methods.  
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vehicles, were found.20 Similar to our findings a recent study found that 
the number of vehicles in a country is a predictive feature for both minor 
and fatal road crashes.21 In addition, some studies have shown that more 
severe accidents occur in rural and urban areas where the %pavement is 
lower compared with motor highways, a finding which is in line with 
our model.22,23 

We observed a high incidence of TSCI in some of the developed 
countries like Japan and the USA. High TSCI incidence in Japan could be 
partly due to the fact that half of the population are aged over 50 years 
old and are more prone to SCI in cases of trauma. High TSCI incidence in 
the USA might be explained by more accurate recording in national 

registries or higher survival rates in case of severe traffic injuries.24 

Earlier, the Global Burden of Diseases, Injuries, and Risk Factors (GBD) 
study reported the incidence and prevalence of traumatic brain injury 
and spinal cord injury from 1990 to 2016 and later updated it to include 
2019 data.24,25 Our estimates are lower compared with rates given by 
the GBD studies. In the mentioned studies, TSCI incidence is estimated 
indirectly by collecting data on different etiologies associated with SCI 
and calculating the proportion of each cause leading to SCI, adding up to 
form an overall SCI incidence rate in a country or defined region. They 
used DisMod II tool for their model. Also, they have included 
pre-hospital deaths while we have only recognized cases from literature 

Fig. 4. R-squared of different methods.  

Fig. 5. World map view of average generated TSCI incidence by our model from 2000 to 2015.  
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with a definitive diagnosis of SCI in the hospital. Also, it should be 
mentioned that we only used road traffic covariates to design our model 
and therefore our model can be used to evaluate transport-related TSCI 
not all-cause TSCI. These differences could explain the differences of this 
study rates with the GBD studies. 

Our study has some limitations that should be highlighted. First, 
there are many other factors that could impact SCI incidence and its 
related data were either not accessible for us or did not exist for many 
countries. Our raw data was only limited to the years 2000–2015 and 
most of the countries had some gaps, this obligated us to impute 40% of 
the data. Using more covariates and more complete data could make our 
result far more accurate. Since we only used covariates related to road 
traffic injury we could not predict SCI in developing countries accu-
rately. By adding covariates related to falling we can have a better 
prediction of SCI incidence in developed countries in the future. Also, 
since we have not considered pre-hospital death due to spinal cord in-
juries and this may contribute to underestimation in our results. 

5. Conclusion 

We have developed a model based on a machine learning method 
that can predict the incidence rate of TSCI with the mean absolute error 
of 4.66. This means that our model can be used with high accuracy to 
predict the incidence rate of TSCI for countries, especially where the 
main etiology of TSCI is related to road traffic injuries. Using this model 
can help the policymakers for resource allocation and evaluation of 
preventive measures. Future models should use a more comprehensive 
set of covariates that contain data regarding falls and other etiologies of 
SCI in developed countries. 
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