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Abstract

The promoter regions of many genes contain multiple binding sites for the same transcription factor (TF). One possibility is
that this multiplicity evolved through transitional forms showing redundant cis-regulation. To evaluate this hypothesis, we
must disentangle the relative contributions of different evolutionary mechanisms to the evolution of binding site
multiplicity. Here, we attempt to do this using a model of binding site evolution. Our model considers binding sequences
and their interactions with TFs explicitly, and allows us to cast the evolution of gene networks into a neutral network
framework. We then test some of the model’s predictions using data from yeast. Analysis of the model suggested three
candidate nonadaptive processes favoring the evolution of cis-regulatory element redundancy and multiplicity: neutral
evolution in long promoters, recombination and TF promiscuity. We find that recombination rate is positively associated
with binding site multiplicity in yeast. Our model also indicated that weak direct selection for multiplicity (partial
redundancy) can play a major role in organisms with large populations. Our data suggest that selection for changes in gene
expression level may have contributed to the evolution of multiple binding sites in yeast. We conclude that the evolution of
cis-regulatory element redundancy and multiplicity is impacted by many aspects of the biology of an organism: both
adaptive and nonadaptive processes, both changes in cis to binding sites and in trans to the TFs that interact with them,
both the functional setting of the promoter and the population genetic context of the individuals carrying them.
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Introduction

Promoters frequently contain multiple functional regulatory

elements [1]. For example, the regulatory region for stripe 2 of

even-skipped (eve) of the fruit fly Drosophila melanogaster comprises 17

binding sites for four transcription factors (TFs), including five

binding sites (B1–B5) for the activator bicoid (bcd) [2]. How does cis-

regulatory element multiplicity evolve? There are three possibil-

ities. First, perhaps ‘‘more is better’’ when it comes to TF binding

sites. Multiple binding sites may cause changes in the level of gene

expression or in its robustness against variation in TF concentra-

tions [1,3–5]. Second, multiplicity might be favored by selection,

but independently of its functional consequences. For example,

genotypes with many binding sites may be more likely to produce

viable offspring after mutation or recombination with genotypes

with fewer binding sites [6–9]. Third, cis-regulatory element

multiplicity may arise by nonadaptive processes [9–11]. Stone and

Wray [10] have shown that a population of 106 diploid individuals

could evolve two identical copies of a 6 base pair (bp) binding site

in a 200-bp promoter every 5:4|105 generations through random

mutation and genetic drift alone. The intergenic regions of

Saccharomyces cerevisiae are *400 bp long on average, whereas those

of multicellular eukaryotes can be orders of magnitude longer.

The common thread to all the evolutionary scenarios listed

above is redundancy, the ability of structurally identical elements

to contribute to the same function [12–16]. Redundancy is

thought to be widespread in biological systems. In eukaryotes, a

large proportion of genes are duplicates, and deletion of one copy

often has little or no phenotypic effect because the other copy can

compensate for the loss of function [17]. Functionality and

redundancy are more difficult to establish for the case of multiple

cis-regulatory elements [1]. The five bcd binding sites in eve the

stripe 2 enhancer are not fully redundant because loss-of-function

mutations to B1, B2 or B3 cause reduced eve stripe 2 expression

and gain-of-function mutations to B4 and B5 lead to increased

expression [2,18]. However, redundancy was likely important in

the evolution of these sites. When Ludwig and colleagues [3]

compared the stripe 2 enhancers of different species of Drosophila,

they found that some of them lacked the B3 site (Figure 1). This

observation implies that the B3 site evolved recently in the lineage

leading to the last common ancestor of D. melanogaster and D.

simulans. Furthermore, the B3 site was probably redundant when it

first appeared because the stripe 2 enhancers of three species

lacking the B3 binding site were able to drive expression of a

reporter gene in D. melanogaster embryos coincident with native eve

stripe 2 (Figure 1). Thus, redundant transitional forms can, in

principle, play an important role in the evolution of cis-regulatory

element multiplicity [1,19]. In this paper we develop a model of

binding site evolution and use it to evaluate the plausibility of

different scenarios for the evolution of cis-regulatory element

redundancy and multiplicity. We then test predictions obtained

from our model using data from yeast.
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Model
Here we introduce a model of binding site evolution. The model

extends earlier phenomenological models of the evolution of cis-

regulatory element redundancy [7,9,11,13,16] in that it considers

binding sequences and their interactions with TFs explicitly, albeit

in a simplified manner [4]. We also build upon recent attempts to

apply the mutational network approach [20,21] to the study of

gene regulatory networks [22–24]. We then use our model to

investigate the conditions favoring the evolution of multiple TF

binding sites.

Gene regulation
A target gene has a promoter containing cis-regulatory sites for a

number of TFs. Sij denotes the jth binding site for TFi. The TFs

regulate expression of the target gene according to the following

rules:

1. TFi binds preferentially to a canonical sequence ŜSi of length n.

2. The effect of a transcriptional activator TFi on target gene

expression through the jth binding site is given by xifi(mij),
where xi is the expression level of TFi, and fi is a

monotonically decreasing function of the number of mismatch-

es mij between Sij and ŜSi (i.e., the Hamming distance between

the sequences), such that fi(0)w0 and fi(n)~0. See Figure S1

for examples of f functions.

3. If TFi is a repressor then fi is a monotonically increasing

function of m, such that fi(0)v0 and fi(n)~0.

4. The total effect of TFi on gene expression is given by:

Fi~
X

j

xifi(mij) ð1Þ

Fi will be positive for a transcriptional activator, and negative

for a repressor.

5. Target gene activity is a monotonically increasing function ofP
i Fi.

Rules #2 and #3 are compatible with the two-state model for

TF binding [4,25–27]. Unless otherwise stated, our model deals

with the evolution of the binding sites for a single transcriptional

activator. For a discussion of how our model can be extended to

repressors see ‘Generalizations and caveats’.

Functionality, multiplicity and redundancy
The target gene is considered functional if, given normal levels

of expression of its transcriptional regulators (xi), it is active above

a threshold level, arbitrarily set to
P

i Fi~1 in this paper.

Consider a promoter that contains Kw0 binding sites for TFi and

is capable of sustaining gene function. A particular site Sij is

considered functional if binding to the site has an effect on gene

expression, that is, if fi(mij)=0. Multiple binding sites (K§2) are

considered redundant if at least one of them can be deleted without

affecting gene function. Full redundancy occurs when the viability

of redundant and nonredundant genotypes is the same; partial

redundancy occurs when the viability of redundant genotypes is

higher than that of nonredundant ones [12,15] (see also ‘Natural

selection’ below). Note that, according to the above definitions,

multiplicity does not imply redundancy (full or partial).

Mutation
In our model, the total effect of TFi on the expression of a gene

(Fi, Equation 1) can change in three ways: a mutation in a binding

site j that alters its mij (cis), a mutation in the coding sequence of

TFi that modifies the fi function directly (trans), and a change in

the concentration of TFi, xi. In the rest of the paper we consider

only the first two types of evolution. We begin by considering the

cis evolution of a single binding site.

One way to represent the evolution of a binding site is through

its mutational network [21]. Two genotypes are connected in a

mutational network if one genotype can be obtained from the

other through a single mutation. For example, the sequences

ACGCGC and ACGCAT are both connected to ACGCGT, but

not to each other, in the mutational network of all possible DNA

sequences of length n~6 base pairs (Figure 2A). If the mutation

rate per base pair per generation is m, then ACGCGT will mutate

into ACGCGC with a probability m=3. One difficulty with this

approach is that even the relatively short sequences of TF binding

Figure 1. Evolution of the bcd binding sites in the eve stripe 2
enhancer in Drosophila. Phylogenetic relationships among 6 species
of Drosophila [69] and bcd binding sites in their stripe 2 enhancers [3].
Squares represent the five binding sites (B1–B5) found in different
species. The darkness of the square represents the closeness of the
match between the binding site and the consensus bcd recognition
sequence [30]: black, 8/9 nucleotides; dark gray, 7/9; light gray, ƒ6/9.
The stripe 2 enhancers of species marked with an asterisk were able to
drive reporter gene expression in D. melanogaster embryos coincident
with native eve stripe 2 [3].
doi:10.1371/journal.pcbi.1000848.g001

Author Summary

TFs regulate gene expression by binding to specific
sequences in the promoter regions of their target genes.
Promoters often contain multiple copies of the same TF
binding sites. How does this multiplicity evolve? One
possibility is that individuals with multiple, redundant
binding sites have higher fitness. However, nonadaptive
processes are also likely to be important. Here, we develop
a mathematical model of the evolution of TF binding sites
to help us disentangle how different evolutionary mech-
anisms contribute to the evolution of binding site
redundancy and multiplicity. We show that recombination
is expected to promote the evolution of multiple binding
sites. This prediction is corroborated by genome-wide data
from yeast. Another important factor in the evolution of
multiplicity predicted in our analysis is TF promiscuity, that
is, the ability of a TF to bind to multiple sequences. In
addition, our analysis indicated that direct selection can
have large effects on the evolution of redundancy and
multiplicity. Data from yeast identified selection for
changes in expression level as a candidate mechanism
for the evolution of multiple binding sites. We conclude
that, although selection may play a major role in the
evolution of multiplicity in regulatory regions, nonadaptive
forces can also lead to high levels of multiplicity.

Regulatory Element Redundancy and Multiplicity
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sites (n&6 to 10 bp) define large mutational networks (e.g., the

network of DNA sequences of length n~6 has 4n~4096
sequences).

Given that binding site functionality in our model is determined

by the number of mismatches m relative to the canonical sequence,

we can simplify the mutational network of a binding site by

collapsing all sequences with a given m. This grouping of

genotypes is appropriate because every sequence contained within

a given m class has exactly the same number of mutational

neighbors, both within the m class (obtained by mutating already

mismatched sites) and in the neighboring m+1 classes. A similar

approach has been employed by others [4,27]. We call the

resulting network a condensed mutational network (Figure 2B). The

m condensed genotypic class includes 3m n
m

� �
sequences. For

example, if ACGCGT is the canonical sequence of the yeast TF

Mbp1 [28], then both ACGCGC and ACGCAT belong to the

m~1 condensed class. The condensed mutational network

representation is extremely compact, implying a reduction from

4n to nz1 states for a binding site of length n.

Now we introduce evolution over the condensed mutational

network. Consider an infinite-sized population of asexual, haploid

organisms. Each individual has a genotype at a binding site of

length n, such that the population is distributed over a condensed

mutational network. The state of the population is given by a

vector of frequencies~pp~(p0,p1, . . . pn), where pm is the proportion

of sequences in the population a Hamming distance m away from

the canonical sequence. The population reproduces asexually, in

discrete generations. Mutation causes the population to evolve

according to the equation:

~pptz1~~ppt
:Q ð2Þ

where ~ppt is the state of the population at time t, and Q is the

transition matrix such that qi,j is the probability that the offspring

from an individual with i mismatches has j mismatches. Assuming

that a sequence cannot acquire more than one mutation in a single

generation (appropriate for realistic values of m), the nonzero

elements of row i of Q are given by: qi,i{1~im=3 , qi,iz1~(n{i)m
and qi,i~1{qi,i{1{qi,iz1. For example, the probability that the

sequence ACGCGC from the m~1 condensed class will mutate

into the canonical sequence ACGCGT (m~0) is q1,0~m=3. The

probability that it will mutate into a sequence from class m~2 is

the probability that a mutation occurs at a site other than the

already mismatched site: q1,2~5m. And the probability that it will

remain in the m~1 class is the probability that either no mutation

occurs or that a mutation occurs at the mismatched site but does

not result in the canonical sequence (C?A or C?G, but not

C?T): q1,1~(1{nm)z2m=3~1{q1,0{q1,2. The transition

probabilities are the same for any other m~1 sequence, such as

ACGCAT.

Natural selection
We introduce selection by assuming that target gene function is

required for viability. The population can only occupy states

within the viable portion of the condensed mutational network.

Every generation, mutant genotypes may appear in the inviable

part of the condensed mutational network, but they fail to

reproduce. The evolutionary dynamics of the population can be

described by restricting Equation 2 to the set of viable genotypes:

~pptz1~ ~ppt
:Qð Þ0~ww

w
ð3Þ

where ‘0’ means entry-by-entry multiplication of the two vectors, ~ww
is a vector of the viabilities of each genotypic class (1 and 0

correspond to viable and inviable, respectively) and

w~
P

i wi(~pp:Q)i is the mean viability of the population.

Equations 2 and 3 can be generalized for genotypes with any

number of binding sites K (Figures 3A, S2 and S3). This amounts

to considering that each possible binding site defines an axis in a K-

dimensional space, and that each point along that axis is the

Hamming distance between the site and the canonical binding

sequence of the corresponding TF. In the next four sections we

consider the K~2 case in detail (see ‘Number of segregating

binding sites’ for Kw2).

Full redundancy
We begin by considering one of the simplest situations that can

be represented in our model: an essential gene regulated by a

single constitutively expressed activator TFi. Gene function is

required for viability. A binding site for this TF, Sij , is functional

only if it matches the canonical binding sequence exactly (Sij~ŜSi):

fi(mij)~
1 , mij~0

0 , mijw0

�
ð4Þ

A single functional binding site is both necessary and sufficient to

sustain gene function; additional functional binding sites are fully

redundant.

The condensed mutational network for the case of K~2 sites is

shown in Figure 3A. The axes represent the Hamming distances of

each binding site relative to the canonical sequence. The viable

portion of the condensed mutational network comprises the

genotypic classes that have at least one functional site, and

corresponds to the left and bottom edges of the mutational

network in Figure 3A. There is only one redundant genotypic

class: that possessing two functional binding sites (open circle in

Figure 3A).

Not all genotypes within the viable portion of the condensed

mutational network have the same reproductive value, defined as

Figure 2. Condensed mutational network for a single binding
site. (A) Mutational network for the Mbp1 canonical binding site [28].
Two sequences are connected if they differ by one base pair and the
probability of any of these transitions is one-third of the mutation rate
per base pair per generation (m=3). (B) Condensed version of the
mutational network in (A). Genotypic classes were obtained by
grouping all sequences at the same Hamming distance (m) from the
canonical sequence. The probabilities of moving between genotypic
classes are shown (n is the length of the binding site).
doi:10.1371/journal.pcbi.1000848.g002
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the proportion of viable offspring they produce. The reproductive

value of condensed genotypic class i is given by: vi~
P

j qi,jwj .

The redundant genotype (0,0) has a reproductive value of

v(0,0)~(1{2nm)|1znm|1znm|1~1 because both of its

mutational neighbors, (0,1) and (1,0), are viable. All other viable

genotypes (with one functional binding site) have reproductive

value v(0,1���6)~v(1���6,0)~(1{2nm)|1znm|1znm|0~1{nm
(i.e., half of its mutational neighbors are inviable).

When the population reaches mutation-selection equilibrium it

is not evenly distributed over all viable genotypes. Rather, the

redundant genotype is approximately 2-fold overrepresented in

the population, relative to other (nonredundant) genotypes

(Figure 3B, squares). This finding is consistent with the prediction

[20] that more highly connected genotypes in a neutral network

should be overrepresented at equilibrium relative to a uniform

distribution. But although the redundant genotype is overrepre-

sented at equilibrium, redundancy cannot evolve easily in this

model. That is because the (noncondensed) set of viable genotypes

contains a single redundant genotype, but 8,190 nonredundant

ones, 83% of which include at least 4 mismatches in the

nonfunctional binding site. Thus, at equilibrium, the redundant

genotype constitutes a miniscule proportion of the population

(0.012%). This pattern is visible in the sum of the frequencies of all

genotypes in a viable condensed genotypic class (Figure 3B,

circles).

The model outlined above can be considered neutral with

respect to redundancy because redundant and nonredundant

genotypes have the same viability [9,20]. The interaction

between viability selection and the structure of the mutational

network in this model does create indirect selection for

multiplicity [20], but it is too weak to maintain a substantial

proportion of redundant genotypes in the population. The results

in this section are consistent with those obtained by Gerland and

Hwa using a similar model [4]. In the next three sections, we

build on this model by introducing different mechanisms

independently, one at a time, and investigating how they affect

the evolution of redundant genotypes.

Partial redundancy
Partial redundancy is thought to be more common than full

redundancy [12,15]. The presence of multiple binding sites might

be advantageous if, for example, it changes the expression level of

the target gene, or buffers expression against fluctuations in TF

concentration [1,3–5]. We model partial redundancy by setting

the viabilities of redundant and nonredundant genotypes to

w(0,0)~1 and w(0,1���6)~w(1���6,0)~1{s, respectively. The equilib-

rium frequency of the redundant genotype increases with the

strength of selection for redundancy (*s; Figure 4A). The effect of

selection on redundancy undergoes a phase transition around the

point where selection becomes strong relative to the rate of

mutation from redundant to nonredundant genotypes (s&nm): the

response to selection is small for weaker selection, but it increases

sharply for stronger selection.

Recombination
We incorporate recombination into our full redundancy model

by taking into account the probability that each genotype has

resulted from recombination between each available pair of

genotypes (see Protocol S1 for details). Recombination is only

allowed between binding sites, not within them. Recombination

changes the evolutionary dynamics because it allows long steps

across the mutational network. A modest amount of recombina-

tion between sites (r=m~1) leads to the evolution of a high level of

redundancy at mutation-recombination-selection equlibrium

(Figure 4B). Lynch obtained similar results using a simpler model

[9].

Our result can be understood by considering recombination

between nonredundant genotypes containing different functional

binding sites, that is, (0,1 � � � 6)|(1 � � � 6,0) in Figure 3A. A

recombination event between the sites produces two genotypes:

one viable, with two functional binding sites (redundant), and

another inviable, without any functional sites. In contrast,

redundant genotypes always give rise to viable offspring, regardless

of the kind of genotype they recombine with. This leads to strong

selection against nonredundant genotypes. Stochastic simulations

Figure 3. Condensed mutational networks for a promoter with K~2 binding sites (both with length n~6). (A) Axes represent the
Hamming distance of each binding site from the canonical sequence (m1,m2). Each node represents a genotypic class. At each condensed genotypic

class (m1,m2) there are 3m1
n

m1

� �
3m2

n

m2

� �
genotypes. The magnitude of the probability of transition between two genotypic classes is denoted by

the length of the arrowheads. In this example, the promoter regulates an essential gene such that at least one canonical binding site is required for

activity (see Equation 4). The nodes in black define the viable portion of the condensed mutational network. The open circle denotes the redundant

genotype. The nodes in gray represent inviable genotypes. (B) Shows the equilibrium distribution over the viable portion of the condensed

mutational network. Squares (solid line, left axis) show the average frequencies of each genotype in a genotypic class; circles (dashed line, right axis)

show the sum of the frequencies of all genotypes in a genotypic class. The redundant genotype (0,0) is shown in an open symbol, all other

(nonredundant) genotypes are represented by closed symbols.
doi:10.1371/journal.pcbi.1000848.g003
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confirm that recombination can have a large effect on the

evolution of redundancy even in finite populations (Figure S4).

TF promiscuity
Many TFs are promiscuous, that is, they can bind to several

different sequences (Figure 1). Our model allows us to explore the

implications of different levels and kinds of TF promiscuity for the

evolution of redundancy (Figure S2B; also, see next section). We

consider two different ways of increasing the promiscuity of the TF

described in the basic full redundancy model (see Equation 4).

We begin by considering the ‘‘all or nothing’’ case where TFi

affects gene expression through a binding site Sij according to the

following relationship:

fi(mij)~
1 , mijƒh

0 , mijwh

�
ð5Þ

The binding site is functional only if its sequence differs from the

canonical sequence of TFi by no more than h mismatches

(Equation 4 is the special case for h~0). Thus, the greater the

value of h, the more promiscuous the TF. Increasing h expands

both the size of the viable portion of the condensed mutational

network and the number of redundant states. Figure 5 shows the

viable portions of the condensed mutational networks for a

stringent (a: h~0) and a promiscuous TF (b: h~1). The

promiscuous TF evolves an equilibrium frequency of redundant

genotypes two orders of magnitude greater than the stringent one.

Generally, mismatches reduce the binding affinity and,

therefore, the regulatory influence of a TF [1,26,29]. For example,

in the D. melanogaster eve stripe 2 enhancer, the different bcd binding

sites show different numbers of mismatches relative to the bcd

consensus recognition sequence, inferred from in vitro binding

assays [2,30] (Figure 1). The deletion of binding sites with lower

numbers of mismatches (B1 or B2, both with m~1) result in much

more severe reductions in stripe 2 expression, when compared to

deletions in sites with higher numbers of mismatches (B4 or B5,

both with m~3; B3, with m~2) [18,31]. In addition, when the

high-m sites B3–B5 were mutated into consensus sites (m~0), they

restored expression of a defective promoter lacking the B1 binding

site [18]. To incorporate this type of ‘‘graded’’ TF promiscuity in

our model, we defined fi as a decreasing function of mij (instead of

a step-function as in Equation 5). Figure 5 shows two examples (c,

d) that imply that graded promiscuity can promote the evolution of

redundant cis-regulation more strongly than the all or nothing

kind. The reason for this is that graded TF promiscuity can lead to

the appearance of nonredundant genotypes containing multiple

binding sites capable of sustaining gene function together but not

in isolation (gray, Figure 5). These results show that nonredundant

multiplicity can evolve from redundant transitional forms.

Number of segregating binding sites
Until now, our model has assumed that only alleles at K~2

binding sites segregate within a population at a given time. This

Figure 4. Effects of selection for multiplicity and recombination on the evolution of redundant cis-regulation. Each effect was added
separately to the model shown in Figure 3. Values are the total frequencies of the redundant genotype (0,0) at equilibrium under different scenarios.
(A) Direct selection for multiplicity (partial redundancy) under different mutation rates, m. (B) Recombination rate between binding sites, r. The
equilibrium distribution is invariant for a given r=m, but it is reached more quickly for higher values of m.
doi:10.1371/journal.pcbi.1000848.g004

Figure 5. TF promiscuity promotes the evolution of redundan-
cy. (a–d) Viable portions of the condensed mutational networks
corresponding to different kinds of TFs. Circles represent viable
genotypes. White circles denote redundant genotypes, with two
functional binding sites; gray circles denote nonredundant genotypes
with two binding site that are functional when acting together, but not
in isolation; black circles denote nonredundant genotypes with one
functional binding site. See Figure S1 for examples of f functions
consistent with these condensed mutational networks. The bars show
the equilibrium frequencies of redundant genotypes. The TF represent-
ed in (a) is the same as that shown in Figure 3 (non-promiscuous). (b)
Represents an ‘‘all or nothing’’ promiscuous TF that allows binding sites
with one mismatch without losing regulatory influence (h~1 in
Equation 5). (c) and (d) show examples of ‘‘graded’’ TF promiscuity. In
(c) two binding sites with m~1 mismatch are functional when acting
together, but not in isolation. In (d) two binding sites with m~2
mismatches are functional when acting together, but not in isolation.
All binding sites have length n~6.
doi:10.1371/journal.pcbi.1000848.g005

Regulatory Element Redundancy and Multiplicity
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assumption may not be met in reality. Long promoters provide the

opportunity for more sites to arise by chance in a population [10]

(Figure S2). Other factors that are expected to influence the

number of segregating binding site alleles include the length of the

site (n, Figure S2A), the match between the GC-content of the

promoter and that of the canonical binding sequence [10], the

promiscuity of the TF (m, Figure S2B; see previous section), the

mutation rate and the population size.

As the number of segregating binding sites in the full

redundancy model increases, the dimensionality of the model

and the number of possible redundant genotypes also increase

(Figures S2C and S3). The increase in the number of available

redundant genotypes results in an increase in the total equilibrium

frequency of these genotypes (Figure S2D). But although the

number of redundant genotypes grows roughly exponentially with

the number of segregating binding site alleles, the equilibrium

frequency of redundant genotypes increases linearly, suggesting

that the number of segregating binding site alleles has only a

modest effect on the evolution of redundancy. The situation

changes when the expected binding site copy number in a

sequence is §2 (e.g., points above the dashed line in Figures S2A

and S2B). If that occurs, the maintenance of redundant cis-

regulation does not require a selective explanation.

Generalizations and caveats
All the results derived above for an individual transcriptional

activator can be generalized to two scenarios. First, to combina-

tions of different transcriptional activators following similar rules.

This would allow us to model the evolution of cis-regulatory

element degeneracy (the equivalent of redundancy for elements that

are structurally different [14]). Second, to transcriptional repres-

sors (considered individually or in combination), where the

function of the target gene is defined by its inactivity. Selection

for decreased gene expression is expected to influence the evolution

of the copy number of the binding sites of transcriptional repressors

in the same way that selection for increased gene expression affects

the evolution of the copy number of the binding sites of

transcriptional activators. A major challenge for future work is to

consider the simultaneous evolution of sites for activators and

repressors in the same promoter.

Our model includes many simplifying assumptions, such as that

the positions within a binding site influence TF binding uniformly

and additively, and that TFs act additively through multiple

binding sites. Additivity among the positions of a binding site

appears to be a reasonable approximation [29,32] and (together

with uniformity) serves as the basis for the widely used two-state

model [4,25–27]. The other assumptions are not particularly

realistic: synergistic effects among binding sites are commonplace

[33,34] and many TFs are not uniformly promiscuous (Table S1).

The extent to which changing the assumptions of our model would

modify our conclusions is not clear at present, and remains a

fundamental question for future modeling.

Results

Cis-regulatory element multiplicity in yeast
To evaluate the level of regulatory multiplicity in the yeast

genome, we have scanned all intergenic sequences depleted of

nucleosomes [35] upstream of a single protein-coding gene

(*3000 sequences, covering 8% of the genome) for 326 position

weight matrix (PWM) models of 179 TFs from the literature

[28,36–38] (see Methods; Tables S1 and S2). In what follows, we

analyse the 312 PWMs (corresponding to 176 TFs) predicted to

have at least two binding sites in total. For simplicity, we refer to

intergenic regions as promoters. On average, each promoter

contained 0.08 binding sites of each PWM (standard deviation,

s:d:~0:23).

We defined the amount of regulatory multiplicity (M) for a

PWM as the proportion of promoters having at least one binding

site that have two or more binding sites. On average, PWMs

showed 7.1% multiplicity (s:d:~11:8%; Table S3). The M

measure of multiplicity is partly confounded with overall binding

site copy number. To correct for this effect, we calculated the

expected value of M for each PWM under the assumption that

binding site copy number in a promoter region i of length Li

(nucleosome depleted) is Poisson distributed with expectation

li~Li(
P

j Kj)=(
P

j Lj), where Kj is the observed number of

binding sites in promoter j. Figure 6 shows that the observed cis-

regulatory element multiplicity was approximately 40% higher

than that expected under the null expectation (paired Wilcoxon

test of the hypothesis that MObs~MExp: Pv0:0001).

Evolutionary mechanisms
How did the excess multiplicity shown in Figure 6 evolve? Our

model and the literature suggest three possibilities [1,3–5,9]: 1)

recombination, 2) direct selection for increased robustness in gene

expression, or 3) direct selection for increased gene expression.

Each hypothesis makes a different prediction about promoters

displaying binding site multiplicity: they should experience 1)

higher recombination rates, or be upstream of genes showing 2) more

robust expression patterns, or 3) higher expression levels (for

activators; the opposite is expected for repressors). To test these

hypotheses, we looked for genome-wide associations between cis-

regulatory element multiplicity and a range of features of the

promoters and the genes downstream of those promoters.

Consider a genomic property x (e.g., promoter length). For each

PWM, we calculated an effect size d~(�xx2{�xx1)=s, where �xx1 (�xx2) is

the mean of x associated with promoters containing a single

(multiple) binding site(s), and s is an unbiased estimate of the

pooled standard deviation [39] (the effect size for binary traits,

such as gene essentiality, was estimated as the arcsine transformed

risk difference based on 2|2 tables). We then combined the effect

Figure 6. The yeast genome shows excess cis-regulatory
element multiplicity. Observed multiplicity (MObs) of the binding
site distribution corresponding to each PWM against the multiplicity
expected under a Poisson distribution (MExp) (data in Table S3). Axes
are log-transformed. Values of M vary between 0 (all binding sites found
in single copies in different intergenic regions) and 1 (all binding sites
found in multiple copies). The area of the circles is proportional to the
log of the total binding site count for the PWM. The bold line shows the
expectation MObs~MExp ; the dashed line shows the median excess
multiplicity (MObs=MExp~1:4). Vertical lines denote cases where
MObs~0.
doi:10.1371/journal.pcbi.1000848.g006

Regulatory Element Redundancy and Multiplicity

PLoS Computational Biology | www.ploscompbiol.org 6 July 2010 | Volume 6 | Issue 7 | e1000848



sizes and respective variances corresponding to different PWMs in

a random-effects meta-analytic model. The results are summarized

in Figure 7.

Promoters with higher numbers of crossovers [40] showed

significantly higher levels of binding site multiplicity (Z~9:18,

Pv0:0001; Figure 7), which is consistent with the recombination

hypothesis. This association is explained in part by promoter

length (Spearman’s rank correlation coefficient: r~0:211,

Pv0:0001). However, we believe that our data provide strong

backing for the recombination hypothesis for three reasons. First,

promoter length alone cannot explain the excess multiplicity

illustrated in Figure 6 because it was considered in the calculation

of MExp. When the analysis was restricted to the subset of PWMs

displaying excess multiplicity (MObs=MExpw1:4), the effect size of

crossover number was unchanged (Z~6:46, Pv0:0001). Second,

the effect size of the residual crossover number from a Poisson log-

linear regression model with log-transformed promoter length as

an explanatory variable decreased (0:074%+0:017%), but re-

mained statistically significant (Z~4:40, Pv0:0001). Third, a

measure of frequency of meiotic double-strand breaks (DSBs) per

bp [41] was also elevated in promoters showing cis-regulatory

element multiplicity (Z~6:43, Pv0:0001; Figure 7).

Promoters showing binding site multiplicity tended to be

upstream of genes showing low robustness in gene expression to

various trans-perturbations [42] (all Zv{4, Pv0:0001), which

contradicts the hypothesis that redundancy has evolved as a result

of selection for robustness in gene expression. Although promoters with

multiple binding sites were also more likely to contain a TATA

box [43] (Z~11:2, P~0:002), the results shown in Figure 7 did

not change qualitatively when the analyses were repeated

separately for genes with and without TATA boxes (not shown).

Furthermore, multiplicity was not associated with protein

expression noise [44] (Z~0:07, P~0:95). Genes downstream of

promoters with multiple binding sites tended to have higher

expression levels (both protein and mRNA: Zw7, Pv0:0001),

which is consistent with the selection for expression hypothesis for

activators, but not repressors.

Cis-regulatory element multiplicity was associated with several

correlates of gene functionality (Figure 7). Promoters containing

multiple sites tended to evolve more slowly [45] (divergence:

Z~{4:01, Pv0:0001), and the genes downstream of these

promoters tended to show higher levels of selective constraint [45]

(Ka=Ks: Z~{4:26, Pv0:0001) and to be involved in interactions

with a greater number of other genes [46] (degree centrality:

Z~5:88, Pv0:0001). Genes with duplicates elsewhere in the

genome were more likely to show binding site multiplicity [47]

(Z~6:03, Pv0:0001). Several gene ontology terms were

significantly enriched in genes downstream of promoters contain-

ing multiple sites, including: plasma membrane, transporter

activity, transcription regulator activity, DNA binding and

transport (Table S5).

Discussion

Partial redundancy
Our mathematical model suggests that selection for multiple

binding sites, that is, partial redundancy, can influence the

evolution of cis-regulatory element multiplicity, provided that the

redundant genotype has a selective advantage s&nm. Mutation

rates per base pair in DNA-based organisms are of the order of

10{10 [48]. Therefore, weak selection can play a major role in the

evolution of cis-regulatory element multiplicity, provided that the

effective population size is also large enough (Ne&1=s) to render

genetic drift negligible [4,49].

We found a positive association in yeast between the presence of

multiple binding sites for a TF and expression level of the

downstream gene. This association is unlikely to have evolved

neutrally or as a correlated response to the increases in multiplicity

generated by recombination (see below) because gene expression

patterns are under intense stabilizing selection [50,51] and increases

in gene expression are energetically costly [52]; also, the effect sizes

of crossover number are not significantly correlated with those of

either mRNA or protein abundance (both Pw0:5). Rather, the

association between multiplicity and gene expression is consistent

with an adaptive origin of cis-regulatory element multiplicity.

Increasing the number of binding sites for transcriptional activators

(inhibitors) in a promoter typically increases (decreases) gene

expression [34,53]. Since transcriptional activators are thought to

be *3| more common than repressors in yeast, and many TFs

can perform either role [54], selection for different levels of

expression of certain genes in certain environments could, over

time, generate a positive association between cis-regulatory element

multiplicity and expression level (provided that there is no strong

overall bias towards selection for reduced expression). This adaptive

scenario for the evolution of binding site multiplicity is consistent

with the observation that functional TF binding sites have been

frequently gained or lost in a lineage-specific manner among three

closely related species of yeast [55,56].

Figure 7. Cis-regulatory element multiplicity is associated with
recombination and other genomic features. Relationship be-
tween regulatory multiplicity and different genomic features. Bars show
the mean and 95% confidence intervals for the effect sizes of the
difference between promoters with multiple and single binding sites
[39]. The estimates were obtained from a random-effects meta-analytic
model fitted using REML. Blue and red bars denote features of the
promoter regions and of the genes downstream of these regions,
respectively (see Methods for details). Positive values indicate that
promoters showing multiple binding site multiplicity tend to show high
values of the feature. Promoter length was log-transformed. The
dendrogram summarizes the pattern of correlations between different
features and was constructed by applying Ward’s hierarchical clustering
algorithm to a dissimilarity matrix composed of 1{DrD, where r is
Spearman’s correlation coefficient (see Table S4). Negative signs in the
branches leading to a certain feature (e.g., TATA box) indicate that that
feature is negatively correlated (r) with other features belonging to a
cluster defined by the dashed line.
doi:10.1371/journal.pcbi.1000848.g007
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Our finding that cis-regulatory element multiplicity was

associated with lower robustness in gene expression to various

trans-perturbations contradicts the hypothesis that redundant

genotypes benefit from being more robust [1,5]. An earlier study

reported a positive association between the number of binding sites

for any TF—a possible correlate of both redundancy and

degeneracy [14]—and variation in gene expression in yeast using

different data from ours [57]. Our evidence is, of course,

correlative: a more direct test would be to compare the robustness

in expression of genes downstream of promoters containing

multiple binding sites with that of the same genes with various

combinations of sites mutated or deleted. Nevertheless, the

observed relationships between multiplicity and robustness are

also consistent with selection for changes in expression level. If the

main consequence of gaining binding sites is to increase the effect

of a TF on gene expression (DFi D in Equation 1), then changes in the

levels of TFs, such as those caused by viable knockout mutations

[42], are expected to lead to greater variance in these effects in

promoters containing multiple sites, compared to promoters

containing a single binding site.

Full redundancy
In addition, our model highlighted three candidate nonadaptive

mechanisms for the evolution of cis-regulatory element multiplicity

through fully redundant transitional forms. The first is the neutral

evolution of multiple binding sites in long promoters. Such

‘‘trivial’’ redundancy is expected to occur in a long promoter if

functional binding sites can occur over a large proportion of its

length. Although the latter condition is difficult to evaluate in real

organisms, intergenic regions longer than 104-bp are common in

several mammals, including humans. Therefore, many mamma-

lian promoters may be trivially redundant [9,10]. This could

explain the observation that approximately a third of human

functional TF binding sites are not functional in rodents [58].

However, we do not expect that trivial redundancy played a

dominant role in the evolution of multiplicity in organisms with

relatively shorter promoters and larger populations, such as yeast.

The second mechanism is recombination. Based on our model

we predict that recombination between binding sites on the order

of r=m 1 will promote the evolution of cis-regulatory element

redundancy. In yeast, a pair of sites 100-bp apart is expected to

experience r=m&106 [48,59]; if yeast only undergo sexual

reproduction once every 1,000 asexual generations [60] we

estimate r=m&103&1, suggesting that this process has operated

in yeast. We found a positive association between the presence of

multiple binding sites for a TF and recombination rate in yeast.

Estimates based on polymorphism data from 10 species of plants

and animals [49] give r=m&1:5 bp{1, indicating that recombi-

nation is likely to be a powerful force in the evolution of cis-

regulatory element multiplicity in other eukaryotes with relatively

large populations. Our findings are in agreement with recent work

showing that recombination selects for ‘‘mixable’’ genotypes [61],

which leads to the evolution of higher mutational robustness

[8,62–64]. Our model predicts that redundant genotypes are

robust to mutations in the binding sites, but this kind of mutational

robustness does not imply robustness in the expression pattern of

the downstream gene to trans-perturbations. In fact we found that

cis-regulatory element multiplicity was associated with reduced

robustness to perturbations in trans (see previous section).

The third nonadaptive mechanism indicated by our model is

that increases in TF promiscuity promote the evolution of cis-

regulatory element multiplicity. We could not test this prediction

directly with our yeast data because we made an implicit

assumption about the level of TF promiscuity when we scanned

for binding sites. However, Bilu and Barkai [57], using a different

data set from ours, reported that binding sites tended to be

‘‘fuzzier’’ (i.e., have lower PWM scores) when they appeared in

promoter regions containing other binding sites for any TF. This

observation is consistent with the prediction that graded TF

promiscuity allows the existence of viable genotypes containing

multiple binding sites, where each binding site is fuzzier than those

found in viable genotypes containing fewer binding sites. Graded

TF promiscuity is believed to be common [1,26,29], suggesting

that multiplicity will often evolve through transitional forms

showing redundant cis-regulation that then degenerate into

nonredundant forms. If this evolutionary scenario is common,

then lack of redundancy in extant genotypes containing multiple

binding sites will be a poor indicator of whether or not its ancestral

genotypes were redundant.

Conclusion
Our results suggest that redundant transitional forms can,

indeed, play an important role in the evolution of cis-regulatory

element multiplicity. Many aspects of the biology of an organism

affect the evolution of redundancy and multiplicity: both adaptive

and nonadaptive processes, both changes in cis to binding sites and

in trans to the TFs that interact with them, both the functional

setting of the promoter and the population genetic context of the

individuals carrying them. Thus, understanding how gene

networks evolve will require going beyond mere plausibility

arguments into rigorous testing of specific mechanisms [4,9]. We

believe that the approach developed here provides a valuable

framework to advance this research program.

Methods

Model analysis
The results reported in Figures 3–5 and were based on a

deterministic version of the model (i.e., assuming infinite

population size). The frequencies of different genotypic classes at

mutation-selection or mutation-recombination-selection equilibri-

um were calculated by iterating populations for as long as

necessary for genotypic class frequencies not to change by more

than 10{10 from one generation to the next.

TF binding site models
We used 326 PWMs summarizing the binding specificities of

179 putative yeast TFs reported in four studies [28,36–38] (Table

S1; see Protocol S1 for more details). Sequences scoring 95% or

higher of the highest possible score for a given PWM were

considered putative binding sites (on average, this allowed 1.23

mismatches, s.d. = 1.51). Each intergenic sequence was scanned

with a PWM and its reverse complement and the number of

matches were counted (simultaneous hits on exactly the same

sequence and its reverse complement +1 nucleotide were counted

as a single hit; otherwise, binding sites overlapping over vn{1
nucleotides were counted separately).

Other studies have attempted to distinguish between real and

‘‘impostor’’ binding sites by taking into account additional

information, such as the degree of conservation of putative sites

[36,37]. We did not follow this approach because promoter

sequence divergence is significantly correlated with many of the

genomic features shown in Figure 7 (Table S4; see next section).

Genomic features
We calculated the following quantities for each intergenic

region: 1) sequence length (including regions occupied by

nucleosomes); 2) proportion of sequence occupied by nucleosomes
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PLoS Computational Biology | www.ploscompbiol.org 8 July 2010 | Volume 6 | Issue 7 | e1000848



[35]; 3) whether it contains a TATA box [43]. 4) GC content of

the sequence; 5) a measure of the frequency of meiotic DSBs [41];

6) proportion of nucleotides that differ between S. cerevisiae and S.

paradoxus [45]. 7) number of crossover events [40]. We also

calculated the following quantities for the gene downstream of

these promoters: 1) three measures of robustness to trans-

perturbations [42], derived from measurements of the variance

in levels of gene expression (corrected for mean) across 167 viable

knockout mutations (genetic), 30 wild isolates (genetic back-

ground), and 35 environments (environmental robustness); 2)

essentiality, whether a homozygous knock-out of the gene was

lethal [65,66]; 3) whether the gene has a duplicate elsewhere in the

genome [47]; 4) Ka=Ks, the ratio between the rates of

nonsynonymous and synonymous site substitution based on the

comparison between S. cerevisiae and S. paradoxus [45]; 5) degree

centrality, the total number of interactions with other genes [46];

6) protein expression noise [44]; 7) mRNA and 10) protein

abundance [67,68]. See Protocol S1 for more details.

Software
The model was analysed using Mathematica 6 (http://www.

wolfram.com/mathematica/). Sequence and statistical analyses

were done using R 2.9.0 (http://www.r-project.org/) and

Bioconductor 2.4 (http://www.bioconductor.org/).

Supporting Information

Protocol S1 Supplementary Methods. Sections: modeling re-

combination; yeast data; software.

Found at: doi:10.1371/journal.pcbi.1000848.s001 (0.09 MB PDF)

Figure S1 Examples of f functions consistent with the viable

portions of the condensed mutational networks in Figure 5. The

dashed line indicates the threshold for driving gene expression.

Found at: doi:10.1371/journal.pcbi.1000848.s002 (0.06 MB PDF)

Figure S2 Redundancy is more likely to evolve if there are more

segregating binding site alleles. (A) Expected number of exact

matches to canonical binding sequences of different lengths (n) in

promoters of different lengths (L). (B) Expected number of matches

to an 8-bp canonical binding sequence allowing for different

numbers of mismatches (m) in promoters of different L. The value

of m models different levels of TF promiscuity. In (A) and (B) values

are means and 95% confidence intervals of 10 independent sets of

104 random sequences with the same average GC content as yeast

intergenic regions (except for n = 8, m = 0 and L#200, where 60

sets of sequences were used). Dashed lines mark an expected

number of 2 binding sites. (C) Number of redundant genotypes

and (D) total equilibrium frequency of redundant genotypes for

different numbers of segregating binding sites (K). For K = 2, the

model is that shown in Figure 2. See Figure S3 for K = 3.

Found at: doi:10.1371/journal.pcbi.1000848.s003 (0.09 MB PDF)

Figure S3 Condensed mutational networks for a promoter with

K = 3 binding sites (all with length n = 6). (A) Diagram of gene

with three binding sites. (B) Condensed mutational network. Axes

represent the numbers of mismatches of each binding site relative

to the canonical sequence. Each node represents a genotypic class.

As in Figure 2, the promoter regulates an essential gene such that

at least one canonical binding site is required for activity. The

nodes shown in black define the viable portion of the condensed

mutational network. The nodes in gray represent inviable

genotypes. (C) Shows only the viable portion of the condensed

mutational network. The genotypes highlighted in gray are

redundant.

Found at: doi:10.1371/journal.pcbi.1000848.s004 (0.17 MB

PDF)

Figure S4 Stochastic simulations of the effect of recombination.

Populations of different sizes (N) are initialized at mutation-

selection equilibrium. (A) r/m = 0.1, (B) r/m = 1, and (C) r/m =

10. In all cases, we used m = 0.1, an unrealistically high value.

Values are medians of the frequencies of redundant genotypes for

500 replicate populations. In populations of both sizes redundancy

evolves quickly, but is then lost by drift. Dotted lines show the

deterministic expectation (see Figure 3B).

Found at: doi:10.1371/journal.pcbi.1000848.s005 (0.08 MB PDF)

Table S1 Binding site PWM models used in our study. Values

are the length (8.7 6 2.6 bp, mean 6 standard deviation), GC

content (0.53 6 0.19) and mean information content (I) per

position (1.33 6 0.29) of each PWM (after processing as described

in Protocol S1). The value of I can vary between 0 and 2, and is a

measure of the energy contribution of a position to TF binding.

Each PWM is summarized by its canonical sequence: ‘‘.’’ indicates

a position with I = 0; ‘‘[ / ]’’ indicates bases with the same weight

at a given position. Letters in parentheses after TF names indicate

the study from which we took the PWM data: B, Badis et al.

(2008); H, Harbison et al. (2004); M, MacIsaac et al. (2006); Zhu

et al. (2009).

Found at: doi:10.1371/journal.pcbi.1000848.s006 (0.06 MB PDF)

Table S2 Binding site PWM models not considered in our study.

These PWMs were excluded because they were almost identical to

the PWMs listed in the ‘Equivalent’ column, shown in Table S1.

Letters in parentheses after TF names indicate the study from

which we took the PWM data: B, Badis et al. (2008); H, Harbison

et al. (2004); M, MacIsaac et al. (2006); Zhu et al. (2009).

Found at: doi:10.1371/journal.pcbi.1000848.s007 (0.04 MB

PDF)

Table S3 Data used to construct Figure 6. The data are sorted

by decreasing MObs/MExp. The second and third columns show

the Total number of binding sites revealed in a scan across the

number of promoter regions in the ‘Prom’ column (the numbers

vary because the minimum promoter length considered in each

scan is twice the length of the PWM). Letters in parentheses after

TF names indicate the study from which we took the PWM data:

B, Badis et al. (2008); H, Harbison et al. (2004); M, MacIsaac et al.

(2006); Zhu et al. (2009).

Found at: doi:10.1371/journal.pcbi.1000848.s008 (0.05 MB PDF)

Table S4 Matrix of correlations between genomic features.

Values are Spearman’s rank correlation coefficients (r). Data used

for the cluster analysis in Figure 7.

Found at: doi:10.1371/journal.pcbi.1000848.s009 (0.04 MB PDF)

Table S5 Association between multiplicity and GO slim terms

from each domain. Significance levels after correction for multiple

comparisons using the Holm method: *, P,0.01; **, P,0.001;

***, P,0.0001.

Found at: doi:10.1371/journal.pcbi.1000848.s010 (0.06 MB PDF)
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