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Abstract, The majority of skeletal muscle fibers are 
generated through the process of secondary myogene- 
sis. Cell adhesion molecules such as NCAM are thought 
to be intricately involved in the cell-cell interactions 
between developing secondary and primary myotubes. 
During secondary myogenesis, the expression of 
NCAM in skeletal muscle is under strict spatial and 
temporal control. To investigate the role of NCAM in 
the regulation of primary-secondary myotube interac- 
tions and muscle fusion in vivo, we have examined mus- 
cle development in transgenic mice expressing the 
125-kD muscle-specific, glycosylphosphatidylinositol- 
anchored isoform of human NCAM, under the control 
of a human skeletal muscle a-actin promoter that is ac- 
tive from about embryonic day 15 onward. Analysis of 
developing muscle from transgenic animals revealed a 
significantly lower number of myofibers encased by 

basal lamina at postnatal day 1 compared with non- 
transgenic littermates, although the total number of de- 
veloping myofibers was similar. An increase in muscle 
fiber size and decreased numbers of VCAM-l-positive 
secondary myoblasts at postnatal day 1 was also found, 
indicating enhanced secondary myoblast fusion in the 
transgenic animals. There was also a significant de- 
crease in myofiber number but no increase in overall 
muscle size in adult transgenic animals; other measure- 
ments such as the number of nuclei per fiber and the 
size of individual muscle fibers were significantly in- 
creased, again suggesting increased secondary myoblast 
fusion. Thus the level of NCAM in the sarcolemma is a 
key regulator of cell-cell interactions occurring during 
secondary myogenesis in vivo and fulfills the prediction 
derived from transfection studies in vitro that the 125- 
kD NCAM isoform can enhance myoblast fusion. 

V 
ERTEBRATE skeletal myogenesis occurs in at least 
two distinct steps. Myoblasts align and fuse syn- 
chronously to form primary myotubes (Kelly and 

Zacks, 1969; Ontell and Kozeka, 1984a,b). Secondary myo- 
tubes then begin to form under the basal lamina of pri- 
mary myotubes. With time, secondary myotubes become 
indistinguishable from primary myotubes, as they separate 
and acquire their own basal lamina. Primary myotubes then 
act as a scaffold for further rounds of myogenesis. In this 
way the majority of adult muscle fibers are composed of 
secondary myotubes. 

A number of cell adhesion molecule (CAM) 1 families 
have been implicated in myoblast fusion and myotube in- 
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teractions (Walsh and Doherty, 1994). These include vari- 
ous members of the cadherin family of calcium-dependent 
adhesion molecules (Knudsen, 1990; Donalies et al. 1991; 
Takeichi, 1991; Hahn and Covault, 1992; Mege et al., 1992; 
Moore and Walsh, 1993; Zeschnigk et al., 1995), the inte- 
grin family of cell-cell and cell-matrix adhesion molecules 
(Menko and Boettiger, 1987; Rosen et al., 1992), and neu- 
ral cell adhesion molecule (NCAM) (Covault and Sanes, 
1986; Dickson et al., 1990; Knudsen et al., 1990; Tassin et 
al., 1991; Peck and Walsh, 1993). 

NCAM is a member of the immunoglobulin superfamily 
of adhesion molecules. Use of alternative splicing gives 
rise to the main NCAM protein isoforms of 180, 140, and 
120 kD (Walsh and Doherty, 1991). These differ in the 
length of their intracellular domains such that the trans- 
membrane 180-kD isoform has a larger domain than the 
140-kd isoform, while the 120-kd size class are attached to 
the cell membrane via a glycosylphosphatidylinositol (GPI) 
anchor. Additional diversity in structure is found in the ex- 
tracellular portion of NCAM including the muscle specific 
domain (MSD) producing a 125-kd isoform of NCAM that 
is preferentially expressed in skeletal muscle (Dickson et 
al., 1987; Thompson et al., 1989), and a 10-amino acid 
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exon between exons 7 and 8, called VASE (Small and 
Akeson, 1990; Walsh et al., 1992). 

NCAM expression in skeletal muscle is developmentally 
regulated. The 180- and 140-kd isoforms are expressed in 
the myotome (Thiery et al., 1982; Lyons et al., 1992). After 
fusion the expression of these isoforms is repressed and 
the GPI-linked isoform (125 kD) is uniformly expressed 
on the surface of primary myotubes. As secondary myo- 
genesis begins, however, NCAM is found concentrated at 
the site of membrane apposition of primary and secondary 
myotubes (Covault and Sanes, 1986), possibly indicating a 
role for NCAM in the control of secondary myogenesis. 
NCAM expression increases in parallel with myotube for- 
mation (Moore et al., 1987) and is subsequently down-reg- 
ulated in the adult (Moore and Walsh, 1985; Covault and 
Sanes, 1986). Perturbation of neuromuscular activity in 
the chick, by in vivo injection of botulinum toxin, leads to 
changes in the normal pattern of expression of NCAM and 
N-cadherin and is also accompanied by an arrest of sec- 
ondary myogenesis (Fredette et al., 1993). A direct corre- 
lation between the changes in CAM expression and the ef- 
fects on myogenesis cannot, however, be made since 
blockade of neuromuscular activity may have a number of 
other unknown consequences. 

Many studies on the role of CAMs in muscle develop- 
ment have involved the use of in vitro cell culture systems 
(Dickson et al., 1990; Knudsen et al., 1990; Tassin et al., 
1991; Hahn and Covault, 1992; Mege et al., 1992; Peck and 
Walsh, 1993). For NCAM, transfeetion-based studies us- 
ing the C2 muscle cell line have provided data that show a 
role in the regulation of myoblast fusion (Peck and Walsh, 
1993). Expression of the 125-kd, GPI-anchored NCAM 
isoform in particular led to a dramatic enhancement of fu- 
sion. It clearly would be of interest to be able to test 
whether CAMs have a similar role to play in vivo. There 
are presently a number of possible strategies for directly 
assessing the function of molecules in vivo. Homologous 
recombination can be used to generate animals unable to 
make the proteins of interest. Alternatively, ectopic ex- 
pression of a molecule, or modified forms of it, may give 
insights into its function. We chose the second strategy to 
test the hypothesis that the levels of NCAM in developing 
myotubes may regulate primary-secondary myotube in- 
teractions, which is an important step in the development 
of the full complement of myofibers and myoblast fusion. 
As myofiber interactions likely involve the operation of a 
number of adhesion molecules including VCAM-1 and 
VLA4 (Rosen et al., 1992) and different cadherins such as 
N-cadherin (Hahn and Covault, 1992) and M-cadherin 
(Donalies et al., 1991; Moore and Walsh, 1993, Zeschnigk 
et al., 1995), it seemed unlikely that removal of NCAM ex- 
pression by homologous recombination methods would 
have dramatic functional consequences. Also, since NCAM 
is expressed in the developing and adult nervous system 
and heart, any observed skeletal muscle phenotype in ani- 
mals lacking a functional NCAM gene may be secondary 
to perturbations at other sites. Mice in which the NCAM 
gene has been inactivated using homologous recombina- 
tion have been produced (Cremer et al., 1994), but analy- 
sis of myogenesis has not yet been reported. 

Expression of the 125-kd isoform of human NCAM 
(hNCAM), under the control of the skeletal c~-actin pro- 

rooter, recapitulates some aspects of the developmental 
profile of expression of the endogenous isoform. Both the 
transgene and the endogenous isoform are expressed and 
colocalize in developing myotubes. While the expression 
of the transgene persists into adulthood, endogenous 
NCAM expression is down-regulated postnatally associ- 
ated with the development of neuromuscular interactions 
(Moore and Walsh, 1985; Covault and Sanes, 1986). Mus- 
cles in adult transgenic animals were found to have a sig- 
nificantly reduced number of myofibers but myofiber size 
and the number of nuclei per fiber were increased. The re- 
duction in muscle fiber number in the adult was found to 
be the result of an impairment of secondary myotube sep- 
aration from primary myotubes beginning at PND1. A sig- 
nificant depletion in VCAM-l-posi t ive secondary myo- 
blasts was also found at this age which, taken together with 
the increase in myofiber size and the number of nuclei per 
fiber, was indicative of enhanced fusion induced by ex- 
pression of the transgene. 

Material and Methods 

Generation of Transgenic Animals 
The SV-40 't ' intron was cloned into the Bluescript vector (pBSK II+: 
Stratagene, La Jolla, CA), the multiple cloning site of which had been pre- 
viously modified to aid construction (pBSV40). A cDNA for the 125-kd, 
GPI-anchored isoform of hNCAM (with ]line AV21] or without ]lines 
AN5 and 14] the VASE exon ]Barton et al., 1988; Small and Akeson, 
1990]) was then directionally cloned into pBSV40. The human skeletal 
muscle-specific a-actin promoter (-2.2kbHSA-CAT, a gift from Dr. Edna 
Hardeman, Children's Medical Research Institute, Sydney, Australia; 
Brennan and Hardeman, 1993), containing 2.2 kb of the 5' region of the 
gene, was cloned upstream of the NCAM cDNA (pACT125; see Fig. 1). 
The fragment for microinjection was released with BssHIl and purified by 
gel electrophoresis and glass milk extraction (Qiaex; QIAGEN, Hilden, 
Germany). DNA was injected into a pronucleus of fertilized oocytes of 
C57B1/10 x CBA/J at 1-2 ng/l~l, and the eggs cultured overnight. Two cell 
embryos were then implanted into pseudopregnant recipients and the Go 
progeny were analyzed by PCR and Southern blotting of genomic DNA, 
as described below. 

Polymerase Chain Reaction 
PCR analysis was routinely used to detect the presence of the transgene. 
PCR was performed using 5 'AACCCGCTCCTTCT' ITGGTCAACG 3' 

Figure 1. Schemat ic  r e p r e s e n t a t i o n  of  the  express ion  casse t te  
used  for gene ra t i on  of  t r ansgen ic  animals .  N C A M  c D N A  encod-  
ing the GPI-anchored isoform including the MSD region and ei- 
ther with or without the VASE exon were cloned downstream of 
the 2.2-kb ct-actin promoter, in a modified pBSK II+ vector 
(Stratagene). The construct also includes the SV-40 't' intron and 
polyadenylation signals. The fragment used for injection was lib- 
erated by digestion with BssHII. Arrows indicate the position of 
the forward (+) and reverse ( - )  primers used for PCR analysis 
of genomic DNA. Southern analysis was performed on Bglll- 
digested genomic DNA, resulting in a 1-kb product specific to the 
transgene. 
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as forward primer corresponding to position -466 to -442 in the ct-actin 
promoter (Brennan and Hardeman, 1993) and 5'CCCTGGCTGGGA- 
ACAATATCCACC 3' as the reverse primer corresponding to +226 to 
+202 in the NCAM cDNA (see Fig. 1 A), giving a product of 692 bp (data 
not shown). For use in Northern blot analysis (see below), a DNA frag- 
ment was obtained by reverse transcriptase PCR (Cavicchioli et al., 
1991) of mouse muscle RNA extracted using the NP-40 lysis method 
(Sambrook et al., 1989). Primers complementary to positions 406-429 
(forward: 5 'CCATCTACAACGCCAACATCGACG 3') and 1613-1639 
(reverse: 5'AATTCCAAGGACTCCTGTCCAATA 3') of mouse NCAM 
cDNA encoding the GPI-anchored, 120-kd isoform (Barbas et al., 1988) 
were used. 

Southern Blotting 
Genomic DNA was obtained by proteinase K digestion of tail biopsies fol- 
lowed by phenol/chloroform extraction (Sambrook et al., 1989). 10 p,g of 
DNA was digested overnight with BglII, which liberates a 1-kb fragment 
specific to the transgene (see Fig. 2 A) and fractionated by agarose gel 
electrophoresis. DNA concentration was estimated spectrofluorometri- 
cally and equal loading of tracks was assessed by ethidium bromide stain- 
ing of the gel. After alkaline denaturation, the DNA was transferred to 
Biodyne A membranes (Pall, Portsmouth, UK) by capillary transfer and 
covalently bound to the membrane by UV irradiation. After prehybridiza- 
tion of membranes, a gel-purified BglII fragment internal to the hNCAM 
cDNA and labeled with [32p]dCTP by nick translation (Boehringer Mann- 
heim, Mannheim, Germany), was used for hybridization at 65°C over- 
night. The hybridization buffer was 6 × SSC, 5% Denhardt's, 0.5% SDS, 
and 100 ~g/ml herring sperm DNA. After hybridization, the membrane 
was washed three times with 1 × SSC and 0.5% SDS at 65°C. 

Northern Analysis 
mRNA from transgenic animals and control 7-d denervated and nonde- 
nervated hind leg muscles was obtained using the Fast Track mRNA puri- 
fication kit (Invitrogen, Leek, Holland). 1 I~g of mRNA was loaded on a 2.2 M 
formaldehyde agarose gel and transferred to Biodyne A membranes by 
capillary transfer (Sambrook et al., 1989). Equal loading of samples was 
checked by ethidium bromide staining of the gel. The remainder of the 

procedure was essentially the same as that for Southern blots, except for 
the hybridization probe which was generated by RT-PCR (see above). 

Western Blotting 
Tissue samples were homogenized in 10 mM Tris-HCL (pH 7.4), 1 mM 
EDTA, 1% NP-40 containing 5% aprotinin, and 1 mM PMSF. After incu- 
bation for 20 min at 4°C, the homogenate was spun at 14,000 g for 15 min. 
The supernatant was used for protein estimation (BCA; Pierce, Rockford, 
IL) and further analysis. SDS-PAGE and Western transfer were carried 
out using standard protocols. Briefly, proteins were fractionated on a 
7.5 % resolving gel and transferred to reinforced nitrocellulose membrane 
(Schleicher and Schuell, Dassel, Germany). Membranes were routinely 
stained with Ponceau S to ensure equal protein loading and transfer. 

The membrane was blocked in 4% (wt/vol) casein in PBS for 1 h, and 
then incubated with a primary antibody to hNCAM (NCC-Lu-243; 
Hirano et al., 1989) for 1 h. After washing, membranes were incubated 
with HRP-conjugated rabbit anti-mouse Ig (Bio-Rad Laboratories, Rich- 
mond, CA) for 1 h. Enhanced chemiluminescence (ECL; Amersham In- 
ternational, Amersham, UK) was used to visualize immunoreactive bands. 

Immunohistochemical Analysis of Muscle Sections 
Monoclonal antibodies A4.74 and N3.36 reacting with specific myosin 
heavy chains (gifts from Dr. Simon Hughes, Randall Institute, Kings Col- 
lege, London) were used to stain type IIa and all type II fibers, respec- 
tively (Hughes and Blau, 1992; Hughes et al., 1993). Conditioned culture 
media for both antibodies were used at a dilution of 1:10. NCAM expres- 
sion from the human transgene was visualized using the hNCAM-specific 
antibody ERIC1 (Bourne et al., 1991) at 1:100 on frozen sections and at 1: 
50 for paraffin-embedded sections pretreated by microwaving (McCor- 
mick et al., 1993). No reactivity was found on nontransgenic muscle under 
any circumstances. Monoclonal antibodies to laminin (Sigma Chemical 
Co., Poole, UK) were used at 1:1,500. Rat anti-mouse VCAM-1 and 
VLA-4 (Serotec, Bicester, UK) were used at 1:50 dilution. Polyclonal anti- 
body to mouse M-cadherin was generated by immunizing rabbits with a 
fusion protein corresponding to the amino-terminal region of the extracel- 
lular domain. It was used at a 1:100 dilution. Rabbit anti-rat and rabbit 

Figure 2. Analysis  o f  t ransgenic  status and express ion level o f  founder  mice. Three  founder  lines were  analyzed in this series of  experi-  
ments:  AN14,  AV21,  and AN5.  (A) Sou thern  blot analysis o f  these  lines revealed  that  lines AN14 and AV21 each conta ined  >100 cop- 
ies of  the  t ransgene,  whereas  line AN5 conta ined  ,--~30 copies.  The  ar row indicates the 1-kb f ragment  ob ta ined  by BglII digest ion of  10 
l~g of  genomic  D N A ,  • ~2 hybridized to a r andom pr imed  a-- P- labeled BgllI  f ragment  ob ta ined  by digest ion of  h N C A M  c D N A .  Copy num- 
bers  were  es t imated  by compar i son  of  hybridizat ion signal with a serial di lut ion of  the purif ied probe.  (B) Immunob lo t  analysis of  
h N C A M  express ion  in adult skeletal  muscle  ob ta ined  f rom each line. 40 Ixg prote in  was loaded in each well and pro te in  loads were  
checked  by Ponceau  S staining of  ni t rocel lulose m e m b r a n e s  before  ant ibody reaction.  Lines AN14 and AV21 express  approximate ly  
fivefold higher  levels of  h N C A M  (125 kD, arrow) than line AN5. The blot also demons t ra t e s  the lower  level of  express ion in a p redom-  
inantly slow muscle (SOL, S) c o m p a r e d  with an almost  exclusively fast muscle (EDL,  E).  The smaller  bands  observed  in some of  the 
samples  are likely to be degrada t ion  products .  (C) m R N A  levels in adult  quadriceps,  examined  by Nor the rn  blot analysis, show that 
lines AN14 and AN5 express  fivefold higher  and equal  levels o f  N C A M  than the endogenous  levels in 7-d dene rva t ed  (DN) nont rans-  
genic muscle.  O n e  major  m R N A  species of  ~3 .4  kb was de tec ted  in t ransgenic  muscle in contras t  to the  ~2 .7 -kb  band  in the nont rans-  
genic dene rva t ed  muscle.  No N C A M  m R N A  was de tec ted  in n o n d e n e r v a t e d  control  muscle (CON). 1 txg of  purif ied m R N A  was loaded 
onto  each lane and the m R N A  load examined  by e th id ium bromide  staining of  the gel. The  blot was hybridized to a mouse  p robe  ob-  
ta ined by R T - P C R  of  mouse  RNA, giving a f ragment  equivalent  to the BgllI  f ragment  used for Sou thern  blotting. 
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anti-mouse secondary antibodies conjugated with FITC (Dako, UK) were 
used at 1:50. 

For laminin staining of paraffin-embedded sections, the tissue was pre- 
digested with 0.1% trypsin in 0.1% calcium chloride at pH 7.8 at 37°C for 
20 min. Biotinylated class-specific secondary antibodies (Sigma Chemical 
Co.) were used to reduce nonspecific staining. Immunoreactivity was visu- 
alized using a streptavidin biotin-HRP system (ABC; Dako A/S, Copen- 
hagen, Denmark) followed by 1 mg/ml 3'3'-diaminobenzidine (DAB) as 
the chromogen. Sections stained for laminin were enhanced by addition of 
0.025% cobalt chloride and 0.02% nickel ammonium sulfate to the DAB 
reagent (DeJong et al., 1985). 

Morphometric Analysis of Adult Skeletal Muscle 
The whole hind limb of PND1 animals or extensor-digitorum longus 
(EDL) and soleus (SOL) muscles of adult transgenic and nontransgenic 
littermates were dissected, placed in Cryoembed (Bright, Huntingdon, 
UK), and frozen in liquid nitrogen cooled isopentane. 5-1xm cryostat sec- 
tions were obtained from the mid-belly region of each muscle and either 
processed for immunohistochemistry or stained with haematoxylin and 
eosin (H and E). The radii of 200 fibers per section were measured using a 
camera lucida arrangement in conjunction with a digitizer pad. A personal 
computer (86B; Hewlett-Packard Co., Palo Alto, CA) was used with an 
IMAGAN basic quantitation program. Mean fiber radii and maximum fi- 
ber diameter over the minor axis were computed from closed loop and 
line length measurements of laminin-stained, paraffin-embedded sections, 
respectively. The data were then ranked and a frequency histogram gener- 
ated. All analyses were double blind and confined to transgenic and non- 
transgenic littermates of the same sex. To reactivate endogenous NCAM 
gene expression, the hind limb was denervated by sectioning of the sciatic 
nerve. Muscle biopsies were obtained 7 d later, at which time the endoge- 
nous mouse NCAM expression is high (Covault and Sanes, 1985; Moore 
and Walsh, 1986). To estimate muscle size, the perimeter of each section 
was traced and the area was calculated. The total number of fibers in each 
muscle was calculated by counting the number of fibers in an area of 0.7 
mm 2, corresponding to the sum of the area of eight different regions cho- 
sen randomly, and extrapolated using the area of the muscle section. The 
number of nuclei in each section, stained with H and E, was estimated in a 
similar way. 

Results 

Expression of hNCAM in Transgenic Animals and 
Analysis of Transgene Expression 

We have used a human skeletal muscle a-actin promoter 
fused to a hNCAM cDNA encoding the 125-kd, GPI- 
anchored isoform (with and without the product of the 
VASE exon) to achieve high level expression of this iso- 
form in the skeletal muscle of transgenic mice. PCR analy- 
sis initially was used to detect the presence of the trans- 
gene in founder mice. The PCR primers were specific to 
the transgene, with the forward primer in the promoter re- 
gion and the reverse primer in the 5' region of the NCAM 
cDNA (Fig. 1). All founder mice were also verified to be 
transgenic by Southern blot analysis. Three founder lines 
were analyzed in this study: AN14, AV21, and AN5, and a 
representative Southern blot is shown (Fig. 2 A). 

The level of protein expression in these lines, as deter- 
mined by Western blot analysis, is shown in Fig. 2 B. Im- 
munoblot analysis also showed differing levels of expres- 
sion in the three lines in individual muscle types. In the 
predominantly fast EDL muscle there was higher expres- 
sion than in the SOL which is a slow muscle. Fiber type 
differences in hNCAM expression can also be observed on 
immunostained sections of adult muscle (see below). 
Northern blotting revealed one major mRNA band in the 
AN14 and AN5 lines of ~3.4 kb, which is larger than that 
observed in the nontransgenic denervated muscle (~2.7 

Figure 3. Immunoblot analysis of hNCAM espression under the 
control of the skeletal muscle a-actin promoter in line AN14. (A) 
A predominant band of 125 kd was detected in NP-40 extracts of 
skeletal muscle (M) and to a much lesser extent in heart (H) and 
gut (G) tissue. No detectable expression was obtained in spleen 
(S), kidney (K), liver (L), and brain (B). Each lane was loaded 
with 40 I~g of total protein. (B) The developmental profile of 
hNCAM expression is similar to that obtained from the et-actin 
promoter detailed in previous reports (Brennan and Hardeman, 
1993). Expression is first detectable at El5 after which the ex- 
pression level increases (E17, PNDz). Each embryonic time point 
is represented by extracts of two embryos. Each lane was loaded 
with 40 Ixg of protein. The smaller bands present in some lanes 
are degradation products of the full-length hNCAM protein re- 
vealed by overloading to visualize the low levels of transgene 
expressed at embryonic stages. Adult (Ad) muscle was from 
PND 24. 

kb, Fig. 2 C). This difference is attributable to the splicing 
of the SV-40 't '  intron at the 3' end of the cDNA in the 
transgene (Fig. 1), which does not affect the size of the 
protein product but increases the RNA size. 

The level of hNCAM mRNA in line AN5 is approxi- 
mately equal to the level of endogenous NCAM mRNA in 
denervated adult muscle from nontransgenic animals (Fig. 
2 C); denervation has been previously shown to reactivate 
N-CAM gene expression (Covault and Sanes, 1985; Moore 
and Walsh, 1985, 1986; Daniloff et al., 1986). Comparison 
of protein expression levels in lines AN14 and AV21 with 
line AN5 (Fig. 2 B) indicates about a fivefold higher level 
of hNCAM in the former than in line AN5. Thus, lines 
AN14 and AV21 express approximately fivefold higher 
levels of NCAM protein than is found in denervated mus- 
cle from nontransgenic mice. The profile of hNCAM ex- 
pression in various tissues from adult animals of line AN14 
is shown in Fig. 3 A. The highest level of expression is in 
skeletal muscle, with heart and gut the only other tissues 
showing detectable expression. The developmental profile 
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of expression of the transgene in these lines (Fig. 3 B) re- 
vealed an increase in expression between PND1 and adult 
muscle such that at PND1 the expression level of the 
transgene in lines AN14 and AV21 is estimated to be ap- 
proximately equal to that of the endogenous protein. Our 
data are similar to the published profile and developmen- 
tal expression of the skeletal e~-actin promoter (Muscat 
and Kedes, 1987; Brennan and Hardeman, 1993). The ex- 
pression of the transgene remains high while the endoge- 
nous gene is switched off in adult innervated muscle 
(Moore and Walsh, 1985; Covault and Sanes, 1986). 

Immunohistochemical Analysis of  Muscle Cryosections 

Immunohistochemical analysis showed that hNCAM was 
detected at the sarcolemma on primary myotubes at E15 
(Fig. 4 A). During secondary myogenesis, hNCAM is also 
found expressed at higher levels at sites of primary-sec- 
ondary myotube apposition than on the rest of the sarco- 
lemma (Fig. 4 C). Fig. 4 also shows the expression of the 
endogenous mouse NCAM protein (Fig. 4, B and D) 
which colocalizes with the transgene. 

Adult EDL muscle from transgenic animals displayed 
clear fiber type variations in the expression of the trans- 
gene (Fig. 5). An antibody (A4.74) that recognizes MHC 
isoforms specific to type IIa fibers (Fig. 5 B) clearly indi- 

cates that these fibers have a reduced level of expression 
of hNCAM compared with l ib fibers (Fig. 5 A). We have 
calculated that the mouse EDL is composed almost exclu- 
sively of type II fibers, with a ratio of about 30:70 of IIa/IIb 
subtypes, In the SOL, which is composed of both type IIa 
and I fibers, a more uniform staining was observed (data 
not shown). Taken together with the results obtained from 
immunoblot analysis (Fig. 2 C), these observations indi- 
cate a higher expression level in type l ib fibers compared 
with type IIa or type I fibers. The apparent intracellular 
staining for hNCAM is similar to that of the endogenous 
protein in developing, denervated, or regenerating adult 
muscle (Moore and Walsh, 1986). 

Impaired Secondary Myogenesis in Transgenic Mice 

Fig. 6 shows examples of laminin-stained muscle fibers 
from transgenic (Fig. 6 A) versus nontransgenic (Fig. 6 B) 
animals. The results of fiber counts obtained from four 
sets of muscle samples from transgenic and nontransgenic 
littermates are shown in Fig. 6, C and D. At E19 both 
groups of animals were found to have similar numbers of 
laminin encased fibers (Fig. 6 C), and H and E-stained 
muscle fibers (Fig. 6 D). Thus, fiber numbers were 578 ___ 
23 for transgenic and 532 -+ 57 for nontransgenic animals 
for laminin and 577 _+ 52 and 531 _+ 41, respectively, for H 

Figure 4. Immunohistochem- 
ical detection of NCAM in 
developing muscle. Immuno- 
staining with human specific 
antibody ERIC1 revealed 
muscle-specific expression 
of the transgene at El5 (A). 
The endogenous isoform of 
NCAM (detected with anti- 
body H28) is also found ex- 
pressed in myotubes, but 
higher levels of NCAM are 
present in nerve (arrowhead, 
B). Immunostaining of 
PND1 EDL muscle with 
hNCAM-specific antibody 
(C) and mouse NCAM-spe- 
cific antibody (D) revealed a 
similar expression profile of 
the two isoforms in muscle. 
Both human and mouse 
NCAM are found concen- 
trated at sites of myotube ap- 
position (arrows). Bar (A 
and B), 100 ~m; (C and D), 
10 I~m. 
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Figure 5. hNCAM expression in transverse sections of EDL. (A) 
Immunostaining of the EDL muscle with hNCAM-specific anti- 
bodies demonstrates NCAM expression in myofibers of an adult 
transgenic mouse. (B) The expression of the transgene appears to 
be higher in type Ifb than in type Ila fibers (arrowheads), identi- 
fied using a type IIa MHC-specific antibody A4.74 (B). Note the 
presence of high levels of intramyofiber staining. Bar, 20 Ixm. 

and E. However,  by PND1 there was a clear decrease in 
the number  of laminin encased versus H and E-s ta ined fi- 
bers in the transgenic animals (930 +__ 86 versus 1198 + 43, 
respectively) when compared with nontransgenic litter- 
mates (1199 +__ 18 versus 1187 +__ 46, respectively). The de- 
crease in fibers surrounded by basal lamina indicates that 
in the transgenic animals at PND1, the last generation of 
secondary myotubes remain under the basal lamina of 
their primary parents. The number  of H and E-s ta ined fi- 
bers in PND1 transgenic E D L  muscle is similar to that 
found in E D L  from adult animals, indicating that second- 
ary myogenesis does not proceed beyond PND1. 

To examine whether the perturbation in secondary 
myogenesis may have resulted from alterations in the ex- 
pression of other CAMs implicated in this process, we 

Figure 6. Transgenic animals show arrested secondary myogene- 
sis in the EDL at PND1. Laminin staining of PND1 EDL muscle 
from transgenic and nontransgenic animals was used to examine 
secondary myogenesis. A comparison between the number of 
laminin-stained muscle fiber profiles in transgenic mice (A) with 
that of nontransgenic littermates (B) revealed a number of sec- 
ondary myotubes which have failed to separate from their pri- 
mary parent in the transgenic animals. Arrows show presumptive 
secondary:primary myotube interfaces. Counting the total num- 
ber of laminin-stained fiber profiles during development (C) re- 
vealed a significant reduction in transgenic animals (circles) com- 
pared with nontransgenics (squares) at PND1. Furthermore, 
there was a discrepancy in the number of laminin-stained fibers 
and the total number of (H and E stained) fibers at PND1 in the 
transgenic animals (D). Values are mean +_ SEM (n = 4). *P = 
0.05, **P = 0.01; t test. Bar, 50 Ixm. 

stained hind limb sections from PND1 transgenic and non- 
transgenic animals with VCAM-1 and V L A 4  antibodies. 
VCAM-1 is expressed on the surface of secondary myo- 
blasts and is thought to interact with VLA-4 expressed on 
primary myotubes and thus regulate secondary myogene- 
sis (Rosen et al., 1992). Fig. 7 shows immunofluorescence 
images from the E D L  muscle of transgenic (A and C) and 
nontransgenic (B and D) animals. The number of VCAM- 
1-stained secondary myoblasts was significantly lower in 
the transgenic sample (Fig. 7 A). Counting the number  of 
VCAM-l-pos i t ive  cells within the E D L  muscle showed 
17.5 --- 4.2 per muscle in transgenic versus 40.3 -2-_ 3.9 in 
control animals. There was no difference in the number of 
nuclei per field. VLA-4 staining (Fig. 7, C and D) failed to 
show any significant changes in expression levels of pri- 
mary myotubes  in the transgenic animals. Staining for 
M-cadherin, another CAM  that is believed to be involved 
in secondary myogenesis (Zeschnigk et al., 1995) failed to 
reveal any significant differences between transgenic and 
nontransgenic animals (Fig. 7, E and F). The reduction in 
the number  of VCAM-l-pos i t ive  myoblasts at PND1 is 
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Figure 7. Analysis of the expression of other CAMs in transgenic animals. During secondary myogenesis (PND1) VCAM-1 is expressed 
on secondary myoblasts in transgenic (A, arrows) and control (B, arrows) animals, but the number of VCAM-l-positive cells was lower 
in transgenic animals (,4). VLA4 was found on primary myotubes in transgenic (C) and control (D) mice at PND1. There were no signif- 
icant differences between the staining profile of M-cadherin in transgenic (E) and control animals (F) at PND1. Bar, 50 txm. 

likely due to an enhancement of myoblast fusion. We there- 
fore examined myofiber size in developing and adult muscles. 

Increased Muscle Fiber Size in Transgenic Animals 

Analysis of EDL muscle at PND1 revealed that transgenic 
animals contained myofibers that were on average 16.7% 
larger than those in nontransgenic littermates (Fig. 8 A). 
EDL and SOL muscle from adult transgenic and nontrans- 

genic animals also showed a significant increase in myofi- 
ber size (Fig. 8, C-E). Analysis of identified fiber types 
showed that type IIb, IIa, and I fibers all exhibited a statis- 
tically significant increase in myofiber radius compared 
with control muscle. However, this increase was paralleled 
by the level of expression of the transgene in these fiber 
subtypes, with the increase in type I/IIa fiber radius (Fig. 8, 
B and C) being smaller than the increase in type IIb fibers 
(Fig. 8 D). Changes in the distribution and relative propor- 
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Figure 8. Changes in myofiber size in transgenic animals. (A) A significant increase in the mean perimeter of myofibers was detected in 
PND1 EDL muscle of transgenic animals from line AN14 (clear bar) compared with nontransgenic (hatched bar) littermates (n = 4 _+ 
SEM). (B-D) Fiber radius measurements from adult muscle (200 fibers per muscle) were ranked and the mean of each quartile calcu- 
lated (n = 6 +_ sem). Type I fiber radii (B) were measured in the SOL, whereas measurement on type IIa and lib fibers (C and D, re- 
spectively) were obtained from the EDL. In each case transgenic animals display an increase in mean fiber radius at each quartile. The 
increase in type IIb fibers, however, is larger than that in type IIa and I fibers. This differential increase is correlated with the fiber type 
difference in the level of expression of the transgene. Similar results were obtained in line AV21. *P = 0.05, **P = 0.01, ***P = 0.001; t 
test. Q, transgenic; II, nontransgenic. 

tion of fiber types were not detected, indicating the ab- 
sence of any pathological processes. 

An analysis of the total number of myofibers in EDL 
and SOL muscles showed a significant reduction in adult 
transgenic animals compared with nontransgenic litter- 
mates (Fig. 9 A), the effect being more pronounced in the 
EDL in the two lines examined (Fig. 6, C and D). A count 
of all nuclei in muscle sections, however, revealed no sig- 
nificant differences between transgenic and control 
groups. The number of nuclei per myofiber was signifi- 
cantly higher than that in nontransgenic littermates (0.88 +- 
0.07 and 0.59 ± 0.05, respectively; n = 5 +- SEM), and the 
overall muscle size in adult transgenic animals was not sig- 
nificantly altered (Fig. 9 B) in EDL or SOL in the two 
transgenic lines. This is in agreement with increased myo- 
blast fusion in transgenic animals. 

Discussion 
During muscle development myoblasts divide and fuse un- 
der the basal lamina of primary myotubes to give rise to 
secondary myotubes (Ontell and Kozeka, 1984a,b). These 

secondary myotubes then separate and acquire their own 
basal lamina and further rounds of secondary myogenesis 
occur. A comparison of the number of fibers in adult mus- 
cle with the number of primary myotubes at El5  clearly 
demonstrates that ~85% of fibers are generated by sec- 
ondary myogenesis (this study; see also Ross et al., 1987; 
Duxson et al., 1989). The specific mechanism by which sec- 
ondary myoblasts align alongside primary myotubes and 
subsequently fuse is unknown. However, a number of 
studies have implicated a role for CAMs (Menko and 
Boettiger et al., 1987; Knudsen, 1990; Knudsen et al., 1990; 
Donalies et al., 1991; Tassin et al., 1991; Mege et al., 1992; 
Rosen et al., 1992; Moore and Walsh, 1993; Zeschnigk et al., 
1995). In the present study we have extended our in vitro 
analysis of the involvement of CAMs in muscle develop- 
ment by examining the role of NCAM during secondary 
myogenesis and myoblast fusion in vivo using a transgenic 
approach. One attractive hypothesis is that the level of ex- 
pression of CAMs is a critical determinant of the fusion 
and alignment of secondary myoblasts and myotubes 
alongside primary myotubes. We generated transgenic an- 
imals using expression constructs containing 2.2 kb of the 
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Figure 9. Adult transgenic mice have unaltered muscle size, but 
fewer fibers. (A) The total number of myofibers in each muscle 
section was counted by extrapolation from the number of fibers 
in 0.7 mm 2 of each section, using cross-sectional area measure- 
ments. A significant reduction in the number of myofibers was 
found in the EDL of adult transgenic mice of both lines AN14 
and AV21. A smaller reduction was also observed in the soleus 
(Sol). These data parallel the differences in expression level 
found in the two muscles. (B) Measurements of the cross-sec- 
tional area of muscle sections from transgenic (solid bars) and 
nontransgenic (hatched bars) mice revealed no significant differ- 
ence between the two groups (n = 6, -+ SEM for all measure- 
ments). *P = 0.05, **P = 0.01; t test. I ,  transgenic; ~], nontrans- 
genic. 

regulatory region of the human skeletal muscle tx-actin 
gene fused to hNCAM cDNA encoding a 125-kd, GPI- 
linked isoform of NCAM. The NCAM cDNA also con- 
tained the MSD region and either included or excluded 
the product of the VASE exon. The tx-actin promoter has 
some advantages for this type of work since it directs spe- 
cific high level expression in myotubes and not myoblasts. 
Furthermore, the expression level from this promoter 
gradually increases between El5 and postnatal week 2 re- 
suiting in high level transgene expression at times of devel- 
opment and plasticity of skeletal muscle. 

There are presently no specific markers of secondary 
myotubes that would allow their unequivocal identifica- 
tion. However, we took advantage of the fact that second- 
ary myotubes develop under the basal lamina of their 
"parent" primary myotubes. The number of laminin en- 
cased fibers was therefore compared with the number of 
fibers counted on H and E-stained sections of developing 
EDL muscle. Fibers enclosed in basal lamina are either 

primary myotubes with or without an associated second- 
ary myotube or are separated secondary myotubes. Thus, 
if secondary myotube separation was hindered, a discrep- 
ancy should occur between the total number of fibers (H 
and E sections) and the number of fibers enclosed by basal 
lamina as defined by laminin staining. There was a signifi- 
cant decrease in the number of fibers surrounded by basal 
lamina in the transgenic animals at PND1, whereas the to- 
tal number of fibers was unaltered. The expression levels 
of a number of other CAMs believed to be involved in sec- 
ondary myogenesis, such as VCAM-1, VLA-4, and M-cad- 
herin, were also studied in the hNCAM-expressing trans- 
genic animals. No change was found in the distribution or 
the level of expression of VLA-4 and M-cadherin. How- 
ever, there was a decreased number of VCAM-l-posi t ive 
secondary myoblasts at PND1, indicating a depletion of 
this population of cells. These findings thus indicate that 
the precise control of NCAM expression levels at primary- 
secondary myotube appositions is likely to be an impor- 
tant step in the regulation of secondary myoblast fusion 
and myotube separation. The hNCAM-expressing trans- 
genic animals showed no obvious signs of muscular dys- 
function and an examination of various muscles showed 
no obvious abnormalities. Cryosections of EDL and SOL 
muscles from transgenic and nontransgenic animals were 
compared by morphometric analysis. Adult animals from 
lines AV21 and AN14 revealed a significant decrease in 
the total number of fibers in each muscle examined. This 
was accompanied by an overall increase in myofiber size 
first detected at PND1. This increase is likely due to en- 
hanced fusion of secondary myoblasts into secondary 
myotubes, as a result of the increased expression of 
NCAM on myotube surfaces, and the observation of a 
lower number of secondary myoblasts in transgenic ani- 
mals from VCAM-1 analysis is in agreement with this 
conclusion. It has been found previously, using a transfec- 
tion-based approach, that overexpression of the 125-kd 
hNCAM isoform in C2 muscle cells results in enhanced fu- 
sion (Dickson et al., 1990; Peck and Walsh, 1993). Thus, 
the present data confirm the in vitro observations. 

Detailed analysis of line AN14 showed that the decrease 
in fiber number and the increased fiber size were associ- 
ated with fiber type variations in hNCAM expression. The 
fast EDL muscle is composed of 70% type l ib fibers and 
these showed the highest transgene expression. These fi- 
bers were found to exhibit a larger change in fiber number 
and size compared with the predominantly slow SOL mus- 
cle, which showed a lower expression of the transgene. Fi- 
ber type variations in hNCAM expression levels were evi- 
dent as early as El8. 

AV21 animals express an alternative isoform of hNCAM, 
namely one that contains the 10-amino acid product of the 
alternatively spliced VASE exon in its extracellular do- 
main. This transcript is thought to be specific to cardiac 
and neuronal tissues, although low levels of VASE con- 
taining NCAM isoforms have been detected in skeletal 
muscle (Anderson et al., 1993). The adhesive function of 
NCAM is not markedly influenced by the presence of the 
VASE exon (Doherty et al., 1992), though NCAM tran- 
scripts containing the VASE exon have been shown to be 
less effective in promoting neurite outgrowth in vitro 
(Doherty et al., 1992). Indeed, this isoform of NCAM is 
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thought to be partly responsible for the developmental 
loss of responsiveness of neurons to NCAM. Recent ob- 
servations have also indicated that, in neuronal cells, intra- 
cellular signaling by NCAM (without VASE)  is at least 
partly through the activation of the FGF receptor (Will- 
iams et al., 1994). NCAM transcripts containing the VASE 
exon appear to be unable to activate this pathway. There 
was no difference between the muscle phenotype of ani- 
mals overexpressing NCAM, irrespective of whether they 
contained the VASE exon or not. 

In summary, we have found that increased expression of 
the 125-kd, GPI-anchored form of NCAM in skeletal mus- 
cle under the control of the skeletal muscle c~-actin pro- 
moter results in a developmental perturbation of second- 
ary myogenesis first in that they do not effectively 
separate from primary myotubes, and second there is an 
enhancement of secondary myoblast fusion. The data indi- 
cate that the expression of NCAM in the sarcolemma, 
along with other CAMs, plays an important role during 
skeletal myogenesis. The strategy developed here will be 
useful in examining the role of other CAMs in myogenesis. 
In particular, members of the cadherin family such as N- and 
M-cadherin are of interest as truncated (dominant nega- 
tive) forms would most likely affect myoblast fusion. 
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