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The interferon-stimulating gene 15 (ISG15) protein is a ubiquitin-like protein induced by
interferons or pathogens. ISG15 can exist in free form or covalently bind to the target
protein through an enzymatic cascade reaction, which is called ISGylation. ISGylation has
been found to play an important role in the innate immune responses induced by type I
interferon, and is, thus, critical for the defense of host cells against RNA, DNA, and
retroviruses. Through covalent binding with the host and viral target proteins, ISG15
inhibits the release of viral particles, hinder viral replication, and regulates the incubation
period of viruses, thereby exerting strong antiviral effects. The SARS-CoV-2 papain-like
protease, a virus-encoded deubiquitinating enzyme, has demonstrated activity on both
ubiquitin and ISG15 chain conjugations, thus playing a suppressive role against the host
antiviral innate immune response. Here we review the recent research progress in
understanding ISG15-type ubiquitin-like modifications, with an emphasis on the
underlying molecular mechanisms. We provide comprehensive references for further
studies on the role of ISG15 in antiviral immunity, which may enable development of
new antiviral drugs.

Keywords: ISG15, isgylation, immune response, innate antiviral immunity, SARS PLpro

INTRODUCTION

Interferon-stimulated gene 15 (ISG15) is a member of the family of interferon-stimulating genes (ISGs)
(Takeuchi et al., 2019), which are fast and strong type I interferon (IFN)-stimulated reaction proteins
that inhibit viral replication, whose function against virus invasion has been fully investigated (Loeb
andHaas, 1992; Hermann and Bogunovic, 2017; Sooryanarain et al., 2017). Viral infection induces IFN
synthesis, and the secreted IFN acts on nearby uninfected cells to resist the infection. After the virus
enters the body, IFN binds to IFN receptors, which activate the Janus protein tyrosine kinase-signal
transducer and activator of transcription pathway to form the interferon-stimulating factor 3 complex,
which induces the expression of hundreds of ISGs, including ISG15, which can fight against the
replication and invasion of the virus (Yuan and Krug, 2001).

Recently, the function of ISG15 as a ubiquitin-like protein has attracted much attention. ISG15 is
the first identified ubiquitin-like protein, which contains two ubiquitin-like domains, and its amino
acid sequence shows 50% homology with ubiquitin (Dos Santos and Mansur, 2017). Under
physiological conditions, the ISG15 precursor protein can be cleaved into a mature 15-kDa
form, exposing the carboxyl-terminated LRLRGG motif, which recognizes and binds to substrate
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lysine residues, resulting in its ISGylation (Figure 1) (Potter et al.,
1999; Langevin et al., 2013; Zuo et al., 2016). Similar to ubiquitin
modification, ISG modification of the substrate is also catalyzed
by ubiquitin-activating enzyme E1, ubiquitin-binding enzyme E2,
and ubiquitin ligase E3 (Mustachio et al., 2018). The removal of
substrate ISGylation is catalyzed by deubiquitinases (DUB), and
ubiquitin-specific peptidase 18 (USP18; also called UBP43) is a
human-specific enzyme that removes ISG15 from conjugated
proteins (Malakhov et al., 2002; Basters et al., 2017; Basters et al.,
2018; Mustachio et al., 2018). Using ISG15 as bait, we obtained
more than 300 candidate ISG15 substrates using
immunoprecipitation-mass spectrometry. At present, more
than 100 proteins have been established as substrates of
ISG15, including p53, nuclear factor kappa B (NF-κB), KRAS,
cyclin D, PTEN protein, STAT1, and retinoic acid-induced gene I
(RIG-I) (Feng et al., 2008; Kim et al., 2008; Huang et al., 2014;
Ganesan et al., 2016; Park et al., 2016; Mustachio et al., 2018). In
this review, we discuss how ISG15 regulates viral replication,
inflammation, cell proliferation and differentiation, and tumor
genesis and development by modifying these proteins.

Currently, there are still many controversies regarding
whether ISG15 exerts a tumor-suppressing effect or a cancer-
promoting effect. Both unconjugated and conjugated ISG15 have
demonstrated tumor-suppressing and cancer-promoting
functions. Research results show that the tumor-suppressing
function of unconjugated ISG15 is mainly related to its
immune regulatory function (Desai, 2015). Yeung TL using
laser microdissection and sequencing analysis that free ISG15
was highly expressed in serous ovarian cancer with high

infiltration of CD8+ T cells (Yeung et al., 2018). In vitro
experiments indicated that free ISG15 can increase the ISG
modification of extracellular signal-regulated protein kinase
one and the viability of natural killer (NK) cells and CD8+

T cells and enhance immune surveillance (Burks et al., 2015).
Moreover, studies have shown that unconjugated ISG15 exerts a
cancer-promoting function by enhancing the stem
transformation and proliferation of tumor cells (Sainz et al.,
2014; Chen et al., 2016). The same effect occurs in conjugated
ISG15, which exerts a cancer-promoting effect by interacting with
carcinogens (Burks et al., 2014), and a tumor-suppressing effect
by regulating the function of p53 (Park et al., 2016; Jeon et al.,
2017). Therefore, ISG15 can perform distinct functions
depending on the cell type and physiological state, substrate,
and subcellular location.

ISG15 AND INNATE IMMUNITY

Studies have shown that fibroblasts, monocytes, lymphocytes,
neutrophils, plasma cells, and NK cells secrete small amounts of
ISG15 under physiological conditions (Bogunovic et al., 2012). In
addition, the expression of ISG15 can be affected by many factors.
Viral and bacterial infections, LPS, DNA damage and other
pathogenic stimuli can activate the expression of ISG15
(Malakhova et al., 2002; Pitha-Rowe et al., 2004). The free
form of ISG15 binds to the LFA1 receptor on the surface of
NK cells and T lymphocytes, increasing the release of type I and II
IFNs and activating natural and acquired immunity (Swaim et al.,

FIGURE 1 | The conjugation of ISG15. The binding process of ISG15 and substrate is similar to the three-step enzyme cascade reaction of ubiquitination. The
formation of thioester bond between E1 activating enzyme (UBE1L) and ISG15 depends on ATP, thereby activating ISG15. Next, SIG15 is transferred to the cysteine
active site of E2 ligase (UBCH8). Finally, E3 ligase binds to polysomes, thereby promoting the binding of ISG15 to the nascent target protein. The process of ISGylation is
reversible, and USP18 as a deubiquitinating enzyme can specifically remove ISG15 from the binding protein.
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2017). ISG15 can also induce the proliferation of NK cells, the
IFNγ production of NK cells and T cells, the maturation of
dendritic cells, and enhancement of antigen presentation and
function as a chemokine that promotes the enrichment of
neutrophils to inflammatory regions (Figure 2) (Morales et al.,
2015; D’Cunha et al., 1996; Padovan et al., 2002; Owhashi et al.,
2003; Recht et al., 1991).

Proteomic studies have identified that the immune-
regulating factors interferon-regulated transcription factor 3
(IRF3), STAT1, and Janus kinase one function as substrates
of ISG15 and that the ISGylation of these proteins increases the
release of type I IFNs and ISGs, thereby extending the immune
response signal cascade (Ganesan et al., 2016; Albert et al., 2018;
Yoo et al., 2018; Malakhov et al., 2003). For example, when the
host is infected, STAT1 ISGylation promotes the maintenance
of phosphorylation and continuous activation of downstream
signaling, which ultimately promotes a more powerful IFN
response (Ganesan et al., 2016). In addition to positive
regulation, ISG15 negatively regulates type I IFN signaling at
multiple levels, such as ISGylation of the RIG-I protein, which
inhibits IFN expression (Figure 2) (Zhao et al., 2005; Kim et al.,
2008; Zhu et al., 2014; Du et al., 2018). On the one hand, because
the process of covalent binding of ISG15 to the target protein is
reversible, this binding can be dissociated by the ubiquitin-
specific protease USP18, which indirectly regulates IFN
expression. On the other hand, the deubiquitinating enzyme

USP18 can also directly inhibit type I IFN receptor signaling,
thereby suppressing the immune response (Arimoto et al.,
2017). The non-covalent interactions of ISG15 and USP18
prevent the ubiquitination of USP18 by S-phase kinase-
associated protein two and stabilize the downregulation of
the IFN signaling pathway by USP18 (Tokarz et al., 2004;
Zhang et al., 2015).

These results suggest that ISG15 can regulate immune
function from multiple perspectives, such as stimulating
immune cell maturation, regulating cytokine release, and
affecting IFN signaling. In recent years, many studies have
explored the role of ISG15 in antiviral innate immunity,
especially in the process of viral infection, and the role of
ISGylation of host and viral target proteins in immune
defense. In this review, we explore this topic in detail.

ANTIVIRAL EFFECTS OF ISGYLATION ON
HOST PROTEINS AND THEIR FUNCTIONS

Although the ISG15 protein was discovered in 1979, its nature
and function were not elucidated for many years, until
researchers discovered that IFN-induced ISG15 and its
covalent form were implicated as a central player in the
process of viral infection. Gene knockout, overexpression,
genetic deletion of each component in the ISG15 cascade

FIGURE 2 | The function of ISG15 in immune response. Under pathogenic stimuli such as viral and bacterial infections, LPS, and DNA damage, monocytes,
lymphocytes, neutrophils, etc. can all secrete ISG15. Intracellular ISG15 can bind to proteins related to innate immune signaling pathways, activate IRF3, STAT1, JAK1
and other proteins, or inhibit protein activity (such as RIG-I), thereby promoting or inhibiting the secretion of IFNγ. The ISG15 secreted in vitro can bind to the LFA1
receptor on the cell surface, thereby promoting the secretion of IFNγ from NK cells and T cells. It can also induce the proliferation of NK cells and the maturation of
dendritic cells.
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reaction process, and various other methods have since been used
to determine whether ISG15 is involved in the host antiviral
immune response (Campbell and Lenschow, 2013).

ISG15 can affect the antiviral immune response by binding to
the target proteins of the IFN, NF-κB, and c-Jun N-terminal
kinase (JNK) pathways (Jeon et al., 2009). Among them, the key
factor for type I IFN response, IRF3, is a target of ISG15. The
combination of ISG15 and IRF3 inhibited the proteasomal
degradation of IRF3 and enhanced the intracellular IFN
response (Ganesan et al., 2016). Concurrently, the covalent
binding of ISG to the antiviral effector molecules K193, K360,
and K366 can weaken the interaction between IRF3 and peptidyl-
prolyl-cis-trans isomerase one and hinder the ubiquitination of
IRF3 (Shi et al., 2010). Therefore, IRF3 can maintain its own
activity after the modification of ISG and improve the IRF3-
mediated antiviral response by inhibiting its own degradation.

ISG15 can bind to protein kinase R (PKR), an IFN-inducible
protein kinase activated by double-stranded RNA.
Simultaneously ISG15 can also activate PKR in the absence of
viral RNA. Activated PKR can inhibit protein translation by
phosphorylation of eukaryotic initiation factor 2α, and PKR
activated by ISG15 can further promote IFN production
(Okumura et al., 2013). In addition, RIG-I is the target protein
of ISG15, and RIG-I can activate the RNA sensors of IRF3 and
NF-κB. The covalent combination of ISG15 and RIG-I can
downregulate signal transduction mediated by RIG-I. Free
ISG15 can regulate the level of RIG-I by promoting the
interaction between RIG-I and the autophagy substrate protein

p62 (Nakashima et al., 2015; Du et al., 2018). ISGylation of
phosphorylated STAT1 can also maintain its activity by
inhibiting its own polyubiquitination and proteasomal
degradation (Ganesan et al., 2016). In another example,
ISGylation of filamin B can negatively regulate IFN-
α-mediated c-Jun N-terminal kinase signals and inhibit cell
apoptosis (Jeon et al., 2009). ISG15 can also bind to ubiquitin-
conjugating enzyme 13 to inhibit the ubiquitination of
transforming growth factor kinase one and negatively regulates
the NF-κB pathway (Takeuchi and Yokosawa, 2005).

On the one hand, ISG15 influences antiviral immunity by
ISGylation of host cell proteins and the relevant immune
signaling pathways. On the other hand, ISG15 can affect virus
replication, release, and latency in the host body through the
ubiquitin-like modification of the virus protein to achieve
antiviral immunity (Figure 3). Relevant examples are
described in detail below.

ISGYLATION OF VIRAL PROTEINS AND
THEIR FUNCTIONS

Lenschow and Werneke’s team demonstrated that ISG15-
knockout mice were more susceptible to IAV and IBV, herpes
simplex virus, norovirus, chikungunya virus, and other pathogens
than wild-type mice (Lenschow et al., 2007; Werneke et al., 2011;
Morales and Lenschow, 2013; Rodriguez et al., 2014). They
demonstrated that both free and binding ISG15 expression is

FIGURE 3 | Antiviral effects of ISGylation on host and viral proteins. ISG15 affects the infection of cells by the virus through covalently binding with viral proteins and
host proteins. 1. The combination of ISG15 and the viral nucleoprotein (green) can destroy the protein oligomerization and the ability of the viral nucleoprotein to inhibit
virus replication. The ubiquitin-like modification formed by this combination can be cleaved by PLpro to restore the replication ability of the virus.2. The combination of
ISG15 and host protein (blue) can inhibit the interaction between host protein and virus protein, thereby inhibiting the release of virus particles in the cell.
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upregulated after pathogen infection, and both forms of ISG15
exhibit antiviral activity. For example, after IAV infection, free
ISG15 can bind to the NS1 protein with seven lysine residues, which
are potential target sites for ISGylation, blocking the nuclear
localization of the NS1 protein and inhibiting virus replication,
RNA processing (Jumat et al., 2016). At the same time, the
ISGylation of NS1 can inhibit the interaction with PKR, which
relieve the inhibition of NS1 protein on innate immunity and
restoring IFN-induced anti-IAV activity (Pincetic et al., 2010).

As for IBV, nucleoprotein and matrix protein M1 are also
targets for covalent binding of ISG15. Nucleoprotein ISGylation
hinders the oligomerization of a large number of other non-
conjugated nucleoproteins, inhibits the formation of IBV
ribonucleic acid protein, and reduces viral protein synthesis
and viral replication (Durfee et al., 2010; Zhao et al., 2016).
Rahnefeld et al. found that the coxsackie virus CVB3 2A protease
ISGylation can inhibit the cleavage of eukaryotic translation
initiation factor 4 G and reduce CVB3 replication (Rahnefeld
et al., 2014).

Studies have shown that ISG15 can affect the release of HIV,
Ebola virus, and avian sarcoma leukosis virus through different
mechanisms. Pincetic and Okumura demonstrated that ISG15
inhibited the monoubiquitination of the HIV group-specific
antigen protein, blocked its interaction with host tumor
susceptibility gene 101, and inhibited the emergence and
release of HIV (Okumura et al., 2006). When infected with
Ebola, the ubiquitin ligase NEDD4 catalyzes the ubiquitination
of the viral matrix protein VP40 and promotes the release of
virus-like particles (Okumura et al., 2008). Lenschow and
Malakhova demonstrated that ISG15 inhibits the transfer of
ubiquitin-binding enzyme to NEDD4 and activity of
NEDD4 ubiquitin-binding enzyme, thus inhibiting the
budding and release of the Ebola virus (Malakhova and
Zhang, 2008). ISGylation of charged multivesicular body
protein 5 (CHMP5), a component of the endosome sorting
complex, promotes its aggregation and the isolation of Vps4
coenzyme factor LIP5 and limits the membrane recruitment of
Vps4 and its interaction with the avian sarcoma leukosis virus
budding complex, thereby inhibiting the release of intracellular
virus-like particles (Pincetic et al., 2010). In addition,
researchers found that ISG15 can also affect the budding
process of vesicular stomatitis virus by inhibiting the activity
of NEDD4 and that ISG15 overexpression can significantly
reduce the viral titer of its wild-type strains (Malakhova and
Zhang, 2008).

Another study showed that ISG15 regulated the incubation
period of the virus. Dai et al. used Illuminamicroarray technology
to analyze the gene expression changes in primary human oral
fibroblasts after infection with Kaposi’s sarcoma-associated
herpes virus and found that a series of IFN-stimulated genes
were upregulated, especially ISG15 and ISG20, which maintain
the virus incubation period by regulating Kaposi’s sarcoma-
associated herpes virus-specific microRNA (Dai et al., 2016).
This reduces the expression of ISG15 during the incubation
period of Kaposi’s sarcoma-associated herpes virus infection
and increases the expression of virus cleavage genes and the
release of virus particles.

These results suggest that free or bound ISG15 produced by
stress can regulate the function of viral proteins, inhibit viral
replication, budding, and release. Thus, ISG15may play a key role
in inhibiting viral infection (Table 1).

ISG15 PARTICIPATES IN NON-VIRAL
INNATE IMMUNE RESPONSES

Recent work has also highlighted the function of ISG15 in non-
viral innate immune responses, such as pathogen defense
responses, host damage and repair responses, and other host
signaling pathways. ISG15−/− mice are more susceptible to
mycobacterium than wild-type mice, verifying that the degree
of mycobacterium drop is not a determinant of susceptibility
enhancement. Significantly increased cytokine release was
detected in ISG15−/− mice, and the cytokine storm induced by
ISG15 knockout was blocked by tumor necrosis factor-α-specific
antibodies (Bogunovic et al., 2012; Kimmey et al., 2017). During
Listeria monocytogenes infection, the expression of ISG15
increases, which depends on the cytosolic DNA-sensing
pathway, and enhanced secretion of IL-6 and IL-8 was
detected in ISG15-overexpressing cells (Radoshevich et al.,
2015). These studies demonstrate that ISG15 plays an
antagonistic role in the host response to pathogens and
regulates cytokine signal transduction. Exogenous stimuli, such
as DNA damage, radiation, ischemia, and telomere shortening,
can also induce immune cells to produce ISG15 (Liu et al., 2004).

SARS-COV-2 PAPAIN-LIKE PROTEASE: A
DECONJUGATING PROTEASE

The SARS-CoV–coronavirus genome encodes two viral
proteases: PLpro and 3C-like protease. The structure and
function of PLpro has been a hot topic in the molecular
biology of coronavirus recently. PLpro is involved in cutting
the N-terminal part of the SARS-CoV replicase polymerin and is
a regulatory protein molecule for the formation of the SARS-CoV
replicase complex (Shin et al., 2020). Results showed that SARS-
CoV PLpro protease is a virus-encoded DUB, which has an
obvious deubiquitinating effect on cellular proteins (Klemm
et al., 2020). PLpro is also active against ubiquitin and ISG15,
which can negatively regulate the innate immune response to the
virus (Shin et al., 2020). There are also OTU domain-containing
proteases that can be encoded by Crimean-Congo hemorrhagic
fever orthonairovirus, porcine reproductive and respiratory
syndrome virus, and equine arteritis virus, which have
properties similar to those of PLpro (Frias-Staheli et al., 2007).
These proteins have been shown to reduce ubiquitin and ISG15
conjugates in cells. However, the researchers have compared
SARS-CoV-2-PLpro with similar enzymes of other
coronaviruses (SARS-CoV-1 and MERS). It was found that the
SARS-CoV-2-PLpro enzyme processes ubiquitin and ISG15 in a
different way with SARS-CoV-1-PLpro (Rut et al., 2020).

Recently, Huang and Zhang have made progress in elucidating
the complex structure of SARS-CoV-2 PLpro and antiviral drug
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discovery (Fu et al., 2021). They found that the small molecule
inhibitor GRL0617 inhibited the activity of PLpro to shear the
ubiquitin-like chain and the ubiquitin-like protein ISG15 chain
in vitro and the ability to inhibit viral replication of SARS-CoV-
2. The structure of the inhibitor and protein complex and two-
dimensional NMR experiments revealed that GRL0617 interferes
with protein–protein interaction between PLpro and ISG15, acting
as an inhibitor for this interaction. They established that SARS-CoV-
2 protease PLpro is a target for antiviral drug development at the
cellular and atomic resolution crystal structure levels and identified
the binding site of GRL0617 as a hot spot for antiviral drug
development targeting PLpro using a variety of biophysical methods.

DISCUSSION

ISG15 is a ubiquitin-like protein, produced by IFN, viruses,
lipopolysaccharides, and other stimuli. ISG15 exerts antiviral
effects by covalently binding to target proteins, inhibiting the
release and replication of viral particles, and regulating the
incubation period of viruses. In addition to the ISG15 covalent
conjugate, the ISG15 monomer can promote the proliferation of
NK cells and dendritic cells and enhance the chemotactic activity
of neutrophils. Moreover, ISG15 is implicated in host damage,
DNA repair, autophagy, protein translation, and other
processes. ISG15 is also associated with the occurrence of
cancer. However, there are still many unsolved mysteries
about the biological function of ISG15 and the molecular
mechanism underlying the antiviral effects of the ubiquitin-
like modification system.

The PLP2 domains of many human and animal coronaviruses,
such as the SARS coronavirus, MHV-A59, NL-63, and 229E, have
demonstrated DUB activity, and the catalytic sequence of the PLP
domain of these coronaviruses is highly conserved. However, it is

still unclear whether DUB activity and regulation of the host
natural immune response are the common characteristics of all
PLpros, and the functional relationship between DUB activity of
PLpro and its IFN antagonism needs further study.

In general, the diversity and broad spectrum of substrates,
complexity of the ISG enzyme system, and cross-linking with the
ubiquitination pathway all determine the complexity of ISG15
function. Further understanding of the molecular trajectory of the
ubiquitin-like protein ISG15 may lead to new therapeutic
strategies for antiviral treatment, immune function regulation,
and cancer treatment.
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TABLE1 | Interaction between ISG15 and viral proteins.

Viral proteins Biological effects after ISGylation Impact on viral infection Reference

IVA NS1 ISG15 inhibits viral proteins nuclear translocation and restores
host antiviral responses

Inhibits IBV replication (Tang et al., 2010; Zhao
et al., 2010)

IBV NPs ISGylation of NPs inhibit the oligomerization of unmodified NPs,
which impedes viral RNA synthesis

Inhibits IBV replication Zhao et al. (2016)

CVB3 2Apro ISG15 inhibits its protease activity to restore host protein
translation

Inhibits CVB3 replication Rahnefeld et al. (2014)

HIV Gag ISG15 inhibits the monoubiquitination of Gag protein and block
its interaction with TSG101

Inhibits the emergence and release of HIV. Okumura et al. (2006)

EBOV VP40 ISGylation of NEDD4 ubiquitin-binding enzyme inhibits its
interaction with VP40

Inhibits the budding and release of Ebola virus (Yasuda et al., 2003;
Okumura et al., 2008)

ASLV Gag The ISGylation of CHMP5 limits the membrane recruitment of
Vps4 and its interaction with the ASLV Gag

Inhibits the ASLV budding complex, then inhibits the
release of intracellular virus-like particles

Pincetic et al. (2010)

SARS PLpro
MERS PLpro

PLpro protease is a virus-encoded DUB, which active on
ubiquitin like molecule ISG15

Negatively regulates the innate immune response to
the virus

Rut et al. (2020)
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