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Advances in multivariate pattern analysis for
chronic pain: an emerging, but imperfect method
Massieh Moayedi

Brain imaging has substantially advanced our understanding of
chronic pain. Many studies have investigated the structure and
function of the brain in chronic pain and have identified
abnormalities in various distributed sets of brain regions.1,3,5

However, there are few, if any, patterns of abnormalities that have
been identified that are specific to pain; the pattern of functional
brain activity related to nociceptive processing derived by
univariate statistical approaches can largely be accounted for by
the salience content of the stimulus.4,9,16 One potential reason for
the lack of specificity of brain imaging findings of chronic pain could
be that pain is thought to be an emergent property of network
activity, and this cannot be captured or modeled by traditional
univariate statistics. Novel sophisticated analysis methods can
account for distributed patterns of activity. These multivariate
statistical approaches are more suitable for the complex pattern of
brain activity related to nociceptive processing and pain
modulation, both in health and disease (for a review, see Ref. 15).

One complex, ambiguous, and heterogeneous set of chronic
pain conditions is temporomandibular disorders (TMDs), com-
prising of pain in the temporomandibular joint and/or the muscles
ofmastication. Temporomandibular disorders represent themost
common orofacial chronic pain disorder and are more prevalent
in women. Several studies have now reported structural and
functional brain abnormalities in TMDs.12–14,20,21 There is some
evidence that TMDmay, in part, have a central etiology. However,
there are no clear patterns of brain activity specific to TMD.
Harper et al.6 set out to investigate whether they could use
multivariate statistical methods to distinguish TMD-related brain
activity from that of an experimental pressure pain. Specifically,
the authors used functional magnetic resonance imaging (fMRI)
to image the brains of ten patients with myofascial-type TMD and
ten healthy subjects, whereas they received experimental
pressure pain on the temporalis muscle or on the thumb.

Multivariate statistics typically use algorithms to learn patterns of
activity related to different states (machine learning) to make
predictions of brain states. For example, an algorithm can be trained
to differentiate between the pattern of brain activity elicited by
a noxious stimulus, and an auditory one. Once the algorithm is
trained, it is presented with patterns of either auditory or noxious
stimuli, and it attempts to predict whichmodality is being presented.
Thechallenge is tooptimize thealgorithm to increase its classification
accuracy without rendering the classifier ecologically invalid.7

Several studies have used multivariate techniques–namely
multivariate pattern analysis (MVPA) to search for “fingerprints”
specific for acute pain processing10,19 and for chronic pain
conditions.2,8,11,17,18 Although these studies usually have
reported low-levels of specificity, such approaches are important
as they have the potential to improve our understanding of the
neural information processing of complex perceptions such as
pain. For example, one important recent finding is that primary
sensory regions in the cortex (which are traditionally believed to
be unimodal) uniquely encode stimuli of all modalities.10 This
study highlights the potential of MVPA to uncovering the central
mechanisms of chronic pain disorders, and, in the future, the
development of biomarkers.

Harper et al. use MVPA to test 3 different questions about
central processing of pain. First the authors compare an acute
experimental pressure pain stimulus on the temporalis muscle (or
the face) to rest (nonstimulus, baseline fMRI) scans. The algorithm
could successfully differentiate acute nociceptive stimuli from rest
in healthy controls, and from spontaneous pain in TMD. The
regions that encoded these differences were regions typically
activated by nociceptive stimuli. Notably, the algorithmperformed
poorer in subjects who rated their clinical pain higher. This finding
is important, as it suggests that, although MVPA is sensitive
enough to differentiate between acute and chronic pain
processing, these processes have common neural substrates.

Next, the authors compared the ability of MVPA to distinguish
between experimental pressure pain on the temporalis region and
on the thumb. The algorithm successfully differentiated brain
activity from these 2 stimuli in patients with TMD, but not in
controls. This finding suggests that the brain pattern associated
with nociceptive processing of experimental pain in the tempo-
ralis region is different than that of pressure pain in the thumb in
TMD. In addition, the algorithm performed better in patients with
higher levels of clinical pain, suggesting that the algorithm is
sensitive to both the spatial pattern of the signal and the
amplitude of the fMRI signal. In other words, pain evoked over
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the temporalis muscle has a greater signal than pain evoked on
the thumb, either because of mechanical hyperalgesia in the
temporalis muscle in TMD or because of the additive nociceptive
drive between TMD and evoked pressure pain.

In a third analysis, the authors tested whether the algorithm
could differentiate between patients with TMD and controls while
they received evoked pressure pain on the face. The algorithmwas
only slightly better than chance. Together, these sets of findings
demonstrate that, although MVPA was able to differentiate
between sources of pain within patients, it could not yet be used
to correctly classify patients from healthy, pain-free subjects.

In sum, the study by Harper et al. highlights that MVPA is an
emerging technique with great promise in elucidating the central
mechanisms of acute and chronic pain processing. However, the
technique is still clearly limited. With the development of higher
resolution brain imaging techniques, such as MRIs with higher
field strengths, and the combination of different imaging
modalities (such as EEG and fMRI), future MVPA studies could
become invaluable research tools.
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