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Prediction of prognosis, 
immune infiltration 
and immunotherapy response 
with N6‑methyladenosine‑related 
lncRNA clustering patterns 
in cervical cancer
Haixia Jia1,5, Meiting Cao2,5, Suhua Hao3, Jiahao Wang4 & Jintao Wang4*

LncRNAs and tumor microenvironment (TME) exert an important effect in antitumor immunity. 
Nonetheless, the role of  m6A‑related lncRNA clustering patterns in prognosis, TME and 
immunotherapy of cervical cancer (CC) remains unknown. Here, based on 7  m6A‑related prognostic 
lncRNAs obtained from TCGA‑CC dataset, two  m6AlncRNA clustering patterns were determined. 
 m6AlncRNA clusterA was characterized by immune cell infiltrates and immune activation.  m6AlncRNA 
clusterB was characterized by enrichment of immune evasion and tumorigenic activation pathways 
as well as survival and clinical stage disadvantage. Then, principal component analysis algorithms 
were used to construct  m6AlncRNAscore based on prognostic differentially expressed genes 
between two  m6AlncRNA clusters to quantify  m6AlncRNA clustering patterns.  m6AlncRNAscore 
was an independent prognostic protective factor. Higher Th2 and Treg cells and enrichment of 
immunosuppressive pathways were observed in the low‑m6AlncRNAscore group, with poorer survival. 
High‑m6AlncRNAscore was characterized by increased infiltration of activated CD8 T cell, enrichment 
of immune activation pathways, lower IL‑10 and TGF‑beta1 levels, and higher immunophenscore 
values, indicating inflamed TME and better anti‑tumor immunotherapy efficacy. Quantitative 
Real‑Time Polymerase Chain Reaction was used for detection of  m6A‑related prognostic lncRNAs. 
Collectively, we identified two  m6AlncRNA clustering patterns which play a nonnegligible role in the 
prognosis, TME heterogeneity and immunotherapy of CC patients.

Cervical cancer (CC) is the fourth leading cause of cancer deaths in women  globally1. In China, 59,000 women 
died of CC in 2020, accounting for about 17% of all CC deaths worldwide in the same  year2. High mortal-
ity of CC is associated with recurrence and an advanced stage at diagnosis. Patients with recurrent and/or 
advanced CC have limited treatment options and poor prognosis, with a 5-year survival probability of 17%3. 
Immunotherapy represented by immune checkpoint inhibitors (ICIs) provides a promising perspective for cancer 
treatment. However, the overall response rate of ICIs was only 10–25% in previous clinical trials for  CC4. The 
mechanisms behind the poor response of ICIs deserve further investigation. Increasing evidence indicates that 
tumor microenvironment (TME) not only influences tumor cell growth and metastasis, but also strongly affects 
tumor immune escape and immunotherapy  efficacy5,6. Therefore, the heterogeneity and complexity of TME and 
novel biomarkers associated with TME should be further explored to predict immunotherapeutic response and 
provide new therapeutic targets for tumors.

N6-methyladenosine  (m6A) modification, the most common epigenetic modification in eukaryotic messen-
ger RNAs and long non-coding RNAs (lncRNAs), plays a crucial role in RNA processing, splicing, degradation, 
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and translation, thereby affecting cell self-renewal, differentiation, tumorigenesis, and tumor  progression7–9. 
m6A modification is a dynamic reversible process regulated by methyltransferases, binding proteins, and 
 demethylases10. Methyltransferases are composed of METTL3/14/16, ZC3H13, RBM15, WTAP, VIRMA, 
and RBM15B, and catalyze the RNA methylation modification  process10–12. Demethylases include  FTO12 and 
ALKBH3/512, and mediate the RNA methylation removal process. Binding proteins consist of YTHDF1/2/3, 
YTHDC1/2, HNRNPA2B1, LRPPRC, FMR1, TRMT112, ZCCHC4, NUDT21, CPSF6, SETD2, SRSF3, SRSF10, 
XRN1, NXF1, PRRC2A, IGF2BP1/2/3, IGFBP3, and RBMX, exerting a vital role in carcinogenesis, invasion, 
and metastasis by combining with  m6A  motif10–12.

Although over 85% of the human genome is transcribed, less than 3% of the transcripts encode protein, and 
the remaining transcripts mainly are non-coding  RNAs13. LncRNAs, more than 200 nucleotides in length, con-
stitute the largest group of ncRNAs and play a key role in transcriptional and post-transcriptional  regulation14. It 
has been reported that lncRNAs exert an important effect on oncogenesis, metastasis, TME, and tumor immune 
escape and might be potential therapeutic targets for  cancer14–18. However, the relationship between  m6A-related 
lncRNA clustering patterns and TME immune infiltration remains unclear.

In this study, we established a scoring system,  m6AlncRNAscore, to quantify the  m6AlncRNA clustering pat-
terns in individual patients with CC. Further, we explored the independent prognostic value of  m6AlncRNAscore 
in the overall survival (OS), progression-free survival (PFS), and disease-specific survival (DSS), and the potential 
predictive role in immunotherapy efficacy. Additionally, we explored the correlation of  m6AlncRNA clustering 
patterns with clinicopathologic characteristics, TME immune infiltration, and somatic mutation, as well as the 
potential mechanisms in CC. Finally, we validated the expression of 4  m6A-related prognostic lncRNAs in tumor 
samples and normal tissues.

Materials and methods
Data acquisition. The RNA sequencing and  somatic mutation data were downloaded from the Cancer 
Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/) database. The immunophenscore (IPS) data were down-
loaded from the Cancer Immunome Atlas (TCIA, https:// tcia. at/) database. The clinical information was down-
loaded from UCSC Xena (https:// xenab rowser. net/). The sequencing data of 306 CC samples and 3 normal 
tissues were downloaded. The clinical information was summarized in Supplementary Table 1. Patients with OS 
less than or equal to 30 days were excluded, leaving the remaining 273 CC patients were enrolled into the further 
survival analysis. All methods were performed in accordance with the relevant guidelines and regulations.

Identification of  m6A‑related lncRNAs. The transcriptome sequencing genes were divided into mRNA 
genes and lncRNA genes according to the human genome annotation data. Expression levels of 34  m6A regu-
lators were extracted from the mRNA data. Pearson correlation coefficient was then used to assess the cor-
relation between  m6A regulators and lncRNAs. The lncRNAs with absolute correlation coefficient > 0.40 and P 
value < 0.001 were regarded as  m6A-related lncRNAs. Next, univariate Cox regression analysis was applied to 
determine lncRNAs associated with prognosis. The  m6A-related lncRNAs with P value < 0.05 were considered as 
 m6A-related prognostic lncRNAs.

Consensus clustering analysis. The “ConsensusClusterPlus” package (1000 iterations) was utilized to 
divide patients into different clustering patterns, referred to as  m6AlncRNA clusters, based on the expression 
levels of  m6A-related prognostic lncRNAs. According to the expression of prognosis-associated DEGs between 
different  m6AlncRNA clusters, patients were again classified into different clustering subtypes, termed as gene 
clusters.

Gene set variation analysis (GSVA). To explore the difference of biological process activity between 
different subgroups, we conducted GSVA enrichment analysis by using the “GSVA” package. The “c2.cp.kegg.
v7.4.symbols” gene sets were downloaded from MSigDB database for running GSVA analysis. Adjusted P 
value < 0.05 was regarded as statistically significant.

Estimation of TME immune cell infiltration. The single-sample gene-set enrichment analysis (ssGSEA) 
algorithm was used to quantify the relative infiltration levels of TME immune cells. The gene set for marking 
23 immune cell types was acquired from the published  study19,20. The ssGSEA score was applied to represent 
the relative abundance of each infiltrating immune cell in each patient. Moreover, ESTIMATE algorithm was 
utilized to quantify the stromal and immune components for each patient.

Identification of DEGs and KEGG pathway enrichment analysis. The “limma” package was utilized 
to determine differentially expressed genes (DEGs) between different  m6AlncRNA clusters. The significance 
criterion for determining DEGs was set as adjusted P value < 0.001. The “clusterProfiler” package was employed 
to perform KEGG enrichment analysis for the DEGs to explore their potential biological behaviors.

Generation of  m6AlncRNAscore. To further investigate the role of  m6AlncRNA clustering patterns in 
CC, we constructed a scoring system, namely  m6AlncRNAscore, for individual patients based on the prognosis-
associated DEGs between different  m6AlncRNA clusters. The procedures for  m6AlncRNAscore establishment 
were as follows: first, we extracted prognosis-associated DEGs by univariate Cox regression analysis; second, 
principal component analysis (PCA) was used to construct  m6AlncRNAscore based on each prognostic DEG 
expression for each sample. The advantage of this method is that the score is focused on the largest well-corre-
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lated (or anti-correlated) gene block in the set, while the contribution weight from genes that are not tracked 
with other set is reduced. Similar to GGI  establishment20,21, the  m6AlncRNAscore formula was as follows:

where n is the total number of prognosis-associated DEGs, and i is the expression of the ith prognostic DEG.

Somatic mutation analysis. The “maftools” package was used to analyze the somatic mutation data of 
patients. Tumor mutation burden (TMB), mutations per million bases, was calculated for each patient. Then, we 
compared TMB between different  m6AlncRNAscore groups.

Prediction of response to ICIs. TCIA database provides immune profiles and antigenomes for 20 solid 
tumors including CC. IPS ranges from 0 to 10, represents tumor immunogenicity. The larger the IPS value, the 
stronger the immunogenicity. It has been validated that IPS could predict the response of tumor patients to 
 ICIs19–23.

Drug sensitivity prediction. We predicted the chemotherapeutic drug sensitivity based on the Genomics 
of Drug Sensitivity in Cancer (GDSC) database (https:// www. cance rrxge ne. org/). oncoPredict package was used 
to estimate the half-maximal inhibitory concentration (IC50).

Construction of ceRNA network. We firstly obtained the miRNAs interacting with the  m6A-related 
prognostic lncRNAs by co-expression method. The miRNAs with absolute correlation coefficient < -0.20 and 
P value < 0.001 were regarded as related miRNAs. Then, we predicted the miRNA target genes (mRNA) by 
miRanda, miRDB, miRTarBase and TargetScan software. When all four kinds of software consider this gene as 
the target gene of miRNA, we regard this gene as the final target gene. The lncRNA-miRNA and miRNA-mRNA 
regulatory relationships were integrated to construct the competing endogenous RNA (ceRNA) network using 
Cytoscape software.

Sample collection. We totally collected 14 cervical tissue specimens, including 6 cervical cancer samples 
and 6 healthy controls in the Gynecology Department of Cancer Hospital Affiliated to Shanxi Medical Univer-
sity. Ethical approval was obtained from the Science Research Ethics Committee of Cancer Hospital Affiliated to 
Shanxi Medical University (No: SJJ202105). Informed consent and approval were provided by all participants. 
6 patients with cervical cancer were newly diagnosed FIGO stage I/II patients without receiving any treatment.

Quantitative real‑time polymerase chain reaction (qRT‑PCR). Total RNA was isolated from 
12 samples using RNA TRIzol reagent (Tiangen Biotech Co., Ltd., Beijing, China, #DP451). cDNA synthesis 
was conducted with PrimeScriptTM RT Master Mix (Takara Biomedical Technology Co., Ltd., Beijing, China, 
#RR036Q). Real-time PCR was then performed with TB Green Premix Ex Taq (Takara Biomedical Technol-
ogy Co., Ltd., Beijing, China, #RR820A). Relative expression of lncRNAs were normalized to GAPDH and cal-
culated by 2-ΔΔCt method. Primers sequences are listed in Supplementary Table 2.

Statistical analysis. All statistical analyses were done in R version 4.0.4. Pearson correlation test was 
employed for assessing the relationship between  m6A regulators and lncRNAs. Wilcoxon rank sum test was 
applied to compare the quantitative data such as  m6A-related prognostic lncRNAs, immune cell infiltration, and 
 m6AlncRNAscore between groups. Kaplan–Meier method was utilized to draw survival curves, and log-rank test 
was performed to compare the survival difference between groups. The predictive accuracy of  m6AlncRNAscore 
was evaluated using the receiver operating characteristic (ROC) curve and area under curve (AUC). Multivari-
able Cox regression model was applied to ascertain the independent prognostic factors of CC. According to the 
association between  m6AlncRNAscore, TMB, and OS, we used the “survminer” package to find the optimal cut-
off values of  m6AlncRNAscore and TMB, respectively. Patients were then divided into different groups according 
to the optimal cutoff value. Unless otherwise specified, a two-sided P value < 0.05 was considered statistically 
significant.

Results
Identification of  m6A‑related lncRNAs. Pearson correlation analysis was used to assess the relationship 
between 14,086 lncRNAs and 34  m6A regulators. Total 112 lncRNAs with absolute correlation coefficient > 0.40 
and P value < 0.001 were considered as  m6A-related lncRNAs. Univariate Cox regression analysis was used to 
explore the prognostic roles of  m6A-related lncRNAs. Of the 112  m6A-related lncRNAs, 7 were associated with 
the OS (Table 1). These results indicated that the 7  m6A-related lncRNAs, including AC024270.4, AC008124.1, 
AL109811.2, AC015922.2, AC099850.4, AC025176.1, and RPP38-DT, might be potential prognostic biomarkers 
of CC, termed as  m6A-related prognostic lncRNAs.

Expression profiles of  m6A‑related prognostic lncRNAs. To explore the potential biological function 
of  m6A-related lncRNAs in the occurrence of CC, we compared the expression profiles of 7  m6A-related prog-
nostic lncRNAs between CC samples and normal tissues. Notably, the tumor samples showed significantly lower 
expression levels of AC024270.4, AC008124.1, AL109811.2, and AC015922.2, but higher levels of AC099850.4, 
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AC025176.1, and RPP38-DT, compared with the normal samples (Supplementary Fig. 1). These findings sug-
gested that the 7  m6A-related prognostic lncRNAs might possess important biological roles in the development 
of CC.

Consensus clustering patterns of  m6A‑related prognostic lncRNAs. The “ConsensusClusterPlus” 
package, using the 7  m6A-related prognostic lncRNAs, was utilized to explore the molecular subtypes of patients. 
According to the cumulative distribution function (CDF), the area under the CDF curve, the tracking plot from 
k = 2 to 9 (Supplementary Fig. 2a-c), and the number of cases in any cluster cannot be too small, the k = 2 was 
identified as the cluster number in our study to divide patients into two different  m6A-related lncRNA clus-
tering patterns (Fig. 1a), including 209 cases in  m6AlncRNA clusterA and 64 cases in  m6AlncRNA clusterB. 
 m6AlncRNA clusterA had a notably better outcome compared with clusterB (Fig. 1b). In addition, the heatmap 
revealed that  m6AlncRNA clusterB was preferentially related to a high FIGO stage (Fig. 1c).

TME immune infiltration characteristics of different  m6AlncRNA clustering patterns. GSVA 
was applied to explore the biological behaviors between different  m6AlncRNA clustering patterns.  m6AlncRNA 
clusterA presented enrichment pathways related to oxidative phosphorylation, cardiac muscle contraction, his-
tidine catabolism, and arachidonic acid metabolism (Fig. 1d).  m6AlncRNA clusterB was significantly enriched in 
immune evasion, stromal, and tumorigenic activation pathways such as TGF beta signaling pathway, ubiquitin 
mediated proteolysis,  focal  adhesion, and pathways  in  cancer. Subsequently, we further compared TME cell 
infiltrates between two  m6AlncRNA clusters. ClusterA showed higher infiltration levels of multiple immune cells 
such as activated B cell and activated CD8 T cell than clusterB (Fig. 1e). The TME cell-infiltrating characteristic 
of clusterA was consist with its matching survival advantage. As expected, clusterA exhibited higher immune 
score (Fig. 1f) and ESTIMATE score (Fig. 1g), suggesting that clusterA had a significantly higher immune cell 
content and lower tumor purity. However, no significant difference of stromal score was displayed between two 
clusters (Fig. 1h). These results indicated that the two distinct  m6AlncRNA clustering patterns had markedly 
different TME.

Generation of  m6AlncRNA genes and KEGG pathway enrichment analysis. To further explore 
the potential biological behaviors of each  m6AlncRNA clustering pattern, we determined 786 DEGs between two 
 m6AlncRNA clusters using the limma package, named as  m6AlncRNA genes. Then, we used the clusterProfiler 
package to perform KEGG enrichment analysis for the DEGs. Figure 2a showed the pathways with significant 
enrichment. To our surprise, these genes presented enrichment of pathways associated with PD-L1 expression 
and PD-1 checkpoint pathway and infection-related pathways such as viral carcinogenesis and Epstein-Barr 
virus infection. Afterward, we utilized univariate Cox regression analysis to explore the effect of DEGs on the 
survival of patients. Among the 786 genes, 140 were positively or negatively related to the OS with P value < 0.05, 
regarded as  m6AlncRNA prognostic genes (Supplementary Table 3).

Consensus clustering of  m6AlncRNA prognostic genes. To further assess the regulation mechanism 
of  m6AlncRNA clustering pattern in CC, we subsequently performed consensus clustering analysis based on the 
140 prognostic DEGs so as to divide patients. The consensus clustering of the 140  m6AlncRNA prognostic genes 
classified patients into two different genomic subtypes, considered as gene clusterA (n = 224) and gene clusterB 
(n = 49), respectively (Supplementary Fig. 3a-c and Fig. 2b). We found that 4 out of the 7  m6A-related prognostic 
lncRNAs showed significantly different expression levels in the two gene clusters (Supplementary Fig. 4a). Gene 
clusterB had significantly better prognosis than gene clusterA (Fig. 2c). Moreover, the heatmap showed gene 
clusterA was preferentially associated with  m6AlncRNA clusterB (Fig. 2d).

Generation of  m6AlncRNAscore and prognostic value. To reveal the role of 140 prognostic DEGs in 
CC, we used PCA to construct a scoring system to quantify the  m6AlncRNA clustering pattern in each patient, 
termed as  m6AlncRNAscore. We then divided patients into the high-m6AlncRNAscore group (n = 147) and the 
low-m6AlncRNAscore group (n = 126) according to the cutoff value -0.85 determined by the survminer pack-
age. Of the 7  m6A-related prognostic lncRNAs, 6 displayed significantly different levels between two different 
 m6AlncRNAscore groups (Supplementary Fig. 4b). A better prognosis was observed in the high-m6AlncRNAs-
core subgroup (Fig. 3a). The alluvial diagram showed the corresponding relationship between  m6AlncRNA clus-

Table 1.  m6A-related lncRNAs associated with prognosis of cervical cancer.

m6A-related prognostic lncRNAs HR (95% CI) P value

AC024270.4 0.048 (0.004, 0.581) 0.017

AC099850.4 1.042 (1.007, 1.079) 0.018

AC025176.1 0.806 (0.659, 0.984) 0.034

AC008124.1 0.628 (0.422, 0.935) 0.022

AL109811.2 0.801 (0.672, 0.954) 0.013

AC015922.2 1.088 (1.022, 1.159) 0.009

RPP38-DT 0.068 (0.005, 0.838) 0.036



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17256  | https://doi.org/10.1038/s41598-022-20162-2

www.nature.com/scientificreports/

Figure 1.  Differences in OS, clinicopathological and biological features, and TME characteristics between 
two different  m6AlncRNA clustering patterns constructed based on 7  m6A-related prognostic lncRNAs. (A) 
Consensus clustering matrix for k = 2. (B) Kaplan–Meier curves of OS between  m6AlncRNA clusterA and 
 m6AlncRNA clusterB. (C) Heatmap and clinicopathological features of two  m6AlncRNA clusters (*, P < 0.05). 
(D) Heatmap and the activation states of biological pathways in two different  m6AlncRNA clustering patterns. 
(E) The abundance of each TME infiltrating cell in two  m6AlncRNA clustering patterns (*, P < 0.05; **, P < 0.01; 
***, P < 0.001). (F) Immune score, (G) ESTIMATE score, and (H) stromal score in two  m6AlncRNA clusters.
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ter grouping, gene cluster grouping,  m6AlncRNAscore grouping, and survival outcomes (Fig. 3b). The matching 
rates of  m6AlncRNA clusterA with high-m6AlncRNAscore and  m6AlncRNA clusterB with low-m6AlncRNAs-
core were 67.5% and 90.6%, respectively. To assess the accuracy of  m6AlncRNAscore in predicting the OS, we 
performed ROC analysis and found that the 3-year AUC value was 0.708, implying that  m6AlncRNAscore had 
a good prognostic discrimination performance (Fig.  3c). Subsequently, we compared the  m6AlncRNAscore 
between different clustering subtypes. The  m6AlncRNAscore in  m6AlncRNA clusterA, as expected, was dra-
matically higher than that in  m6AlncRNA clusterB (Fig. 3d). Similarly, gene cluster B had significantly higher 
 m6AlncRNAscore compared with gene cluster A (Fig. 3e). Further stratified survival analysis results showed that 
the OS time in the low-m6AlncRNAscore group was dramatically shorter compared with the high-m6AlncR-
NAscore group, no matter for patients with grade1/2, grade3/4, age ≤ 60 years, age > 60 years, stage I/II, or stage 
III/IV (Fig. 3f-k).

Independent prognostic value of  m6AlncRNAscore in the prognosis of CC. As shown in Fig. 4a, 
the univariate Cox analysis results showed that  m6AlncRNAscore, age, and FIGO stage were significantly related 
to the OS of CC patients. Subsequent multivariate Cox analysis results displayed that age was an independ-
ent risky factor (HR = 2.157, P value = 0.015), but  m6AlncRNAscore was an independent protective factor 
(HR = 0.918, P value < 0.001) for the OS of CC patients (Fig. 4b).

Considering the significance of PFS and DSS in tumor prognosis, we further validated the prognostic value 
of  m6AlncRNAscore in the PFS and DSS. In the univariate analysis, high-m6AlncRNAscore was significantly 
associated with better PFS (Fig. 4c) and DSS (Fig. 4d). Moreover, further multivariate Cox regression analysis 
results showed that  m6AlncRNAscore was not only an independent prognostic factor for the PFS (Fig. 4e), but 
also an independent prognostic factor for the DSS (Fig. 4f). Our results strongly indicated that  m6AlncRNAscore 
had good prognostic value in CC.

TME immune infiltration characteristics of different  m6AlncRNAscore groups. To verify the 
biological behaviors of  m6AlncRNA clustering patterns in TME, we performed GSVA and ssGSEA analyses 
in two  m6AlncRNAscore groups. The high-m6AlncRNAscore group was characterized by enrichment of hall-
mark pathways such as oxidative phosphorylation and cardiac muscle contraction (Fig. 5a) and infiltration of 
activated CD8 T cell, CD56dim natural killer cell, and monocyte (Fig. 5b). The low-m6AlncRNAscore group 

Figure 2.  KEGG pathway analysis of DEGs between two  m6AlncRNA clustering patterns and differences in OS 
and clinicopathological characteristics between two gene clusters constructed based on  m6AlncRNA prognostic 
genes. (A) KEGG pathway analysis for DEGs between two  m6AlncRNA clusters. (B) Consensus clustering 
matrix of  m6AlncRNA prognostic genes for k = 2. (C) Kaplan–Meier curves of OS between gene clusterA and 
gene clusterB. (D) Heatmap and clinicopathological characteristics of two gene clusters (***, P < 0.001).
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Figure 3.  Construction of  m6AlncRNAscore and prognostic value. (A) Kaplan–Meier curves of OS between 
the high- and low-m6AlncRNAscore groups. (B) Alluvial diagram showing the changes of  m6AlncRNA clusters, 
gene clusters,  m6AlncRNAscore, and survival state. (C) The 3-year ROC curve of  m6AlncRNAscore in the OS. 
(D) Comparison of  m6AlncRNAscore between two  m6AlncRNA clusters. (E) Comparison of  m6AlncRNAscore 
in two gene clusters. Kaplan–Meier curves of OS between the high- and low-m6AlncRNAscore groups in (F) 
grade1/2 patients, (G) grade3/4 patients, (H) patients with age ≤ 60 years, (I) patients with age > 60 years, (J) 
stage I/II patients, and (K) stage III/IV patients.
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was characterized by enrichment of immunosuppressive, stromal, and carcinogenic activation pathways such as 
wnt signaling pathway, TGF beta signaling pathway, MAPK signaling pathway, ERBB signaling pathway, focal 
adhesion, extracellular matrix (ECM)-receptor interaction, and pathways in cancer (Fig. 5a). Besides, the low-
m6AlncRNAscore group was rich in T helper 2 (Th2) and regulatory T (Treg) cells, two types of tumor immu-
nosuppressive T cells (Fig. 5b). We then explored the expression profiles of immunosuppressive factors IL-10 
(Fig. 5c) and TGF-beta1 (Fig. 5d) and found that their levels in the low-m6AlncRNAscore group were signifi-

Figure 3.  (continued)

Figure 4.  Independent prognostic value of  m6AlncRNAscore in CC patients. (A) Univariate and (B) 
multivariate Cox regression analyses for the OS. Univariate Cox regression analyses for the (C) PFS and (D) 
DSS. Multivariate Cox regression analyses for the (E) PFS and (F) DSS.
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cantly higher. The above results indicated again that  m6A-related lncRNA clustering patterns played a vital role 
in shaping TME landscape.

Clinical and somatic mutation characteristics of different  m6AlncRNAscore groups. As 
expected, the  m6AlncRNAscore was significantly higher in patients with stage I/II than those with stage III/IV 
(Fig. 6a). However, no significant  m6AlncRNAscore difference was observed in different age or grade subgroups. 
TMB quantification analysis results showed that the low-m6AlncRNAscore group presented no significant TBM 
difference in relative to the high-m6AlncRNAscore group (Fig. 6b). Next, the survminer package was applied to 
classify patients with information of somatic mutation and survival into the high-TMB group (n = 28) and the 
low-TMB group (n = 226) according to the cutoff value 6.32. A better prognostic tendency was observed in the 
high TMB group, while no significant difference was displayed between the high- and low-TMB groups (Fig. 6c). 
Moreover, we found that patients with low-m6AlncRNAscore and low-TMB had the worst prognosis, and the 
prediction power of  m6AlncRNAscore was not disturbed by TMB during the first 5 years of follow-up (Fig. 6d).

Patient’s response to ICIs in different  m6AlncRNAscore groups. It has been reported that IPS val-
ues could predict the response of patients to ICIs. Whether patients received anti-CTLA-4 (Fig. 7a), anti-PD-L1 
(Fig. 7b) or anti-CTLA-4 and anti-PD-L1 combination treatments (Fig. 7c), the IPS values of the high-m6AlncR-
NAscore group were dramatically higher compared with the low-m6AlncRNAscore group, suggesting that the 
corresponding ICI therapy responses in the high-m6AlncRNAscore group were significantly better than those of 
the low-m6AlncRNAscore group. These results indicated that patients with high-m6AlncRNAscore were more 
likely to benefit from ICIs.

Drug sensitivity prediction in different  m6AlncRNAscore groups. Then, we used the GDSC database 
to predict the valid drugs of high- and low-m6AlncRNAscore groups. Supplementary Fig. 5 showed that the CC 
patients in the high-m6AlncRNAscore group sensitively responded to 12 drugs (AZD3759, BI-2536, CDK95038, 
Dasatinib, ERK2440, Erlotinib, Gefitinib, Ibrutinib, NU7441, Osimertinib, Sapitinib, and UMI-77). The therapy 
responses to 18 drugs (Afuresertib, Axitinib, AZD6482, AZD8055, Dactolisib, GNE-317, GSK269962A, Ipata-
sertib, Leflunomide, MK-2206, Navitoclax, Nilotinib, OSI-027, Oxaliplatin, Palbociclib, PF-4708671, Ribociclib, 

Figure 5.  TME cell infiltration characteristics in the high- and low-m6AlncRNAscore groups. (A) Heatmap and 
the activation states of biological pathways in two  m6AlncRNAscore groups. (B) The abundance of each TME 
infiltrating cell in two  m6AlncRNAscore groups (*, P < 0.05; **, P < 0.01; ***, P < 0.001). The expression levels of 
(C) IL-10 and (D) TGF-beta1 in two  m6AlncRNAscore groups.
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and SB505124) in the low-m6AlncRNAscore group were significantly better than those of the high-m6AlncR-
NAscore group.

Construction of the ceRNA network of the 7  m6A‑related prognostic lncRNAs. To further iden-
tify the mechanism of the 7  m6A-related prognostic lncRNAs in CC patients, we constructed the lncRNAs-
miRNAs-mRNAs ceRNA network. First, we obtained 30 miRNAs by the co-expression method. Then, miRanda, 
miRDB, miRTarBase and TargetScan software were used to identify 166 mRNA. Furthermore, we constructed 
and visualized the ceRNA network by incorporating 7  m6A-related prognostic lncRNAs, 30 miRNAs, and 166 
mRNA (Supplementary Fig. 6).

Validation of the expression levels of four  m6A‑related lncRNAs in CC samples. qRT-PCR assay 
was used to detect the expression of AC024270.4, AC008124.1, AC025176.1 and RPP38-DT in 6 tumor tissues 
and 6 normal samples. As shown in Supplementary Fig. 7, compared with normal tissues, cervical cancer tis-
sues had higher AC024270.4 and AC008124.1, but lower AC025176.1. There was no difference in AC024270.4 
expression between tumor samples and normal samples.

Discussion
Increasing evidence indicates that TME plays an indispensable role in tumor immune escape and immunotherapy 
 efficacy5,6. Therefore, identifying the role and potential regulatory mechanisms of  m6A-related lncRNA clustering 
patterns in survival prediction and immune infiltration will deepen our understanding of tumor immune escape 
and enrich the effective population for cancer immunotherapy.

Here, we revealed two distinct  m6AlncRNA clustering patterns based on 7  m6A-related prognostic lncR-
NAs.  m6AlncRNA clusterA was characterized by low tumor purity and high infiltration level of immune cells, 

Figure 6.  Clinical and somatic mutation characteristics in the high- and low-m6AlncRNAscore groups. 
(A) Comparison of  m6AlncRNAscore between patients with stage I/II and patients with stage III/VI. (B) 
Comparison of TMB between the high- and low-m6AlncRNAscore groups. (C) Kaplan–Meier curves of OS 
in high- and low-TMB groups. (D) Survival analyses for subgroup patients stratified by  m6AlncRNAscore and 
TMB using Kaplan–Meier curves.
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such as activated B cell and activated CD8 T cell, which are key effectors of anti-tumor  immunity24,25. Further, 
 m6AlncRNA clusterA were mainly involved in immune activation pathways such as oxidative phosphorylation, 
cardiac muscle contraction, and arachidonic acid metabolism. Inhibition of oxidative phosphorylation alone 
limits the proliferation of T cells exposed to persistent antigen and promotes T cell exhaustion by upregulating 
genes associated with T cell  exhaustion26. Therefore, we speculated that the enriched oxidative phosphorylation 
signaling pathway in  m6AlncRNA clusterA might promote the self-renewal of T cells, thereby enhancing antitu-
mor immunity. Mediators released from arachidonic acid metabolic pathway play vital roles in maintaining the 
immune system normal  function27,28. Cardiac muscle contraction pathway has been reported to be associated 
with autoimmune diseases characterized by abnormally activated immune  response29,30. However,  m6AlncRNA 
clusterB was characterized by enrichment of immune evasion and tumorigenic activation pathways such as 
TGF beta signaling pathway, ubiquitin mediated proteolysis, and pathways in cancer. Existing studies imply 
that TGF beta signaling inhibits not only the innate immunity but also the adaptive immune system, leading to 
tumor immune evasion and poor response to  ICIs31,32. Thus, TGF beta signaling pathway is a potential tumor 
therapeutic target worthy of in-depth  study33. Ubiquitin mediated proteolysis is involved in multiple biologi-
cal processes including immune regulation and inflammatory  response34. Melanoma patients with high level 
HECTD2, the E3 ubiquitin ligase involved in ubiquitin mediated proteolysis, had worse antitumor immunity and 

Figure 7.  Comparison of IPS values between the high- and low-m6AlncRNAscore groups. Comparison of IPS 
values in (A) patients receiving anti-CTLA-4 treatment, (B) patients receiving anti-PD-L1 treatment, and (C) 
patients receiving anti-CTLA-4 and anti-PD-L1 combination treatment.
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worse outcome of ICI treatment than those with low level  HECTD234. Consistent with TME immune infiltration 
characterizations,  m6AlncRNA clusterA had better clinical outcomes in relative to  m6AlncRNA clusterB, which 
was preferentially related to a higher FIGO stage.

Further, we explored the transcriptome difference between two  m6AlncRNA clustering patterns. These DEGs 
were significantly linked to PD-L1 expression and PD-1 checkpoint pathway and immune-related infection 
pathways. PD-1/PD-L1 axis negatively regulates T cell activation by inhibiting Ras-Raf-MEK-ERK35. These 
findings demonstrated again that the  m6AlncRNA clustering pattern dissimilarity was associated with tumor 
immunity difference. Moreover, we classified patients into two different genomic subtypes and two distinct 
 m6AlncRNAscore groups based on the prognostic DEGs. Gene clusterA with poor prognosis was preferen-
tially associated with  m6AlncRNA clusterB with poor prognosis. To our surprise, up to 72.9% of patients had 
 m6AlncRNA cluster grouping consistent with  m6AlncRNAscore grouping. By integrated analyses, we found that 
the  m6AlncRNAscore was a reliable and independent prognostic protective biomarker for the OS, PFS, and DSS 
of CC patients. No matter in the overall or in stratified survival analysis, patients with high-m6AlncRNAscore 
had better prognosis than low-m6AlncRNAscore. Previous studies have reported that high-TMB predicts a better 
clinical outcome and a higher ICI response rate in some  tumors36,37. In our study, patients with high-TMB had 
longer OS than patients with low TMB, while no significant difference was observed. Although it could not be 
considered that the long-term prediction ability of  m6AlncRNAscore was not affected by TMB due to the small 
sample size, we could determine that its prediction ability within 5 years was unaffected by TMB. Our findings 
indicated that  m6AlncRNA clustering patterns might affect tumor immune escape by regulating TME, and finally 
affected the prognosis of patients.

Similar to GSVA results of  m6AlncRNA clusters, the high-m6AlncRNAscore group was enriched in immune-
inflamed pathways such as oxidative phosphorylation and cardiac muscle contraction, while the low-m6Al-
ncRNAscore group was significantly related to immunosuppressive pathways such as wnt signaling pathway, 
TGF beta signaling pathway, and MAPK signaling pathway. As discussed earlier in this study, oxidative phos-
phorylation signaling and cardiac muscle contraction signaling are involved in activated immune response in 
 humans26,38,39. TGF beta  signaling31–34,40, Wnt  signaling41, and MAPK  signaling42 have been reported to promote 
tumor immune escape and limit antitumor immune response. Besides, the abundance of activated CD8 T cell 
and CD56dim natural killer cell was higher in the high-m6AlncRNAscore group. Consistent with the enrich-
ment of immunosuppressive pathways, the fractions of Th2, Treg, IL-10, and TGF-beta1 were higher in patients 
with low-m6AlncRNAscore. Th2 and Treg are tumor immunosuppressive cells. Researchers have already found 
that patients with cervical cancer express higher Th2 and Treg than women with normal  cervix43. Treg, a major 
barrier to effective anti-tumor immunotherapy, promotes tumor immune escape by production of immunosup-
pressiv cytokines such as IL-10 and TGF-beta44,45. TGF-beta in turn promotes the expansion of  Treg44,45. It has 
been reported recently that  m6A-related lncRNAs are novel prognostic biomarkers in lung cancer and breast 
cancer and are associated with  TME46,47. Therefore,  m6AlncRNAscore dissimilarity was significantly associated 
with TME difference. These findings could provide novel insights for cancer immunotherapy, that is, targeting 
 m6A-related lncRNAs or  m6A-related lncRNA relevant genes to reverse adverse TME, and then developing new 
immunotherapeutic drugs.

IPS comprehensively represents tumor immunogenicity and has been verified to predict the ICI treatment 
 efficacy19–23. In our study, the high-m6AlncRNAscore group had higher IPS values than the low-m6AlncRNAscore 
group regardless of ICI therapy regimen, indicating that patients with high-m6AlncRNAscore might be more 
likely to benefit from ICIs. Additionally, IL-10 and TGF-beta might be potential new targets for anti-tumor 
immunotherapy in patients with high-m6AlncRNAscore, deserving further study. Furthermore, drug sensitivity 
analysis results found that the high-m6AlncRNAscore group had different sensitive drugs compared with the 
high-m6AlncRNAscore group. These findings demonstrated that m6AlncRNA clustering patterns could affect 
the therapeutic efficacy of ICIs.

Previous research on the 7  m6A-related lncRNAs was few. AC099850.4 was reported to be in relation to 
the prognosis of ovarian cancer through lncRNA-miRNA-mRNA competing  triplets48. In our study, we also 
constructed the ceRNA network, which could help us better understand the mechanisms of the 7  m6A-related 
lncRNAs in CC. Consistent with the lower expression levels of AC024270.4 and AC008124.1 in cervical cancer 
tissues in relative to normal tissues in TCGA database, our qRT-PCR results displayed that AC024270.4 and 
AC008124.1 had significantly lower levels in tumor samples than normal tissues. The level of AC025176.1 in 
tumor samples was remarkably higher compared with normal tissues both in our experiment and TCGA analysis 
results. However, the expression of RPP38-DT in cervical cancer tissues was higher in TCGA database, but lower 
in our experiment in comparison with normal controls. The expression difference of RPP38-DT may be associ-
ated with the small sample size in TCGA-cervical cancer database with only three controls and our experiment 
with 6 pairs of case–control samples.

One limitation of our study was that our results were not validated in another database. Another limitation 
was that the full mechanisms of the 7  m6A-related lncRNAs in CC remained unclear. More research is needed 
in the future.

In summary, we firstly revealed the important regulation role of  m6A-related lncRNA clustering patterns on 
prognosis, TME, and ICI therapeutic efficacy in CC. The difference of  m6A-related lncRNA clustering patterns 
was a vital factor leading to the heterogeneity and complexity of individual TME. The systematic evaluation of 
 m6A-related lncRNA clustering patterns will help improve our understanding of TME immune infiltration char-
acteristics and might provide novel potential approaches for immunotherapy response prediction and patient 
prognostic stratification in CC.
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Data availability
Publicly available datasets were analyzed in this study. This data can be found here: TCGA database (http:// 
www. cancer. gov/ tcga), TCIA database (https:// tcia. at/)", and UCSC Xena database (https:// xenab rowser. net/).
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