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Abstract

We show that a two-component proportional representation provides the necessary frame-

work to account for the properties of a 2 × 2 contingency table. This corresponds to the fac-

torization of the table as a product of proportion and diagonal row or column sum matrices.

The row and column sum invariant measures for proportional variation are obtained. Geo-

metrically, these correspond to displacements of two point vectors in the standard one-sim-

plex, which are reduced to a center-of-mass coordinate representation, ðd; mÞ 2 R2
. Then,

effect size measures, such as the odds ratio and relative risk, correspond to different per-

spective functions for the mapping of (δ, μ) toR1
. Furthermore, variations in δ and μ will be

associated with different cost-benefit trade-offs for a given application. Therefore, pure

mathematics alone does not provide the specification of a general form for the perspective

function. This implies that the question of the merits of the odds ratio versus relative risk can-

not be resolved in a general way. Expressions are obtained for the marginal sum depen-

dence and the relations between various effect size measures, including the simple

matching coefficient, odds ratio, relative risk, Yule’s Q, ϕ, and Goodman and Kruskal’s τc|r.

We also show that Gini information gain (IGG) is equivalent to ϕ2 in the classification and

regression tree (CART) algorithm. Then, IGG can yield misleading results due to the depen-

dence on marginal sums. Monte Carlo methods facilitate the detailed specification of sto-

chastic effects in the data acquisition process and provide a practical way to estimate the

confidence interval for an effect size.

Introduction

In research with contingency tables, the ability to compare experimental results from different

studies is essential for studying the dependence between categorical variables and how it is

maintained. However, the data acquisition is controlled by sample size parameters that appear

as row and column sums for the various categories. Association coefficients that are not

adjusted for unbalanced sample size can differ between tables even if the underlying system

response is unchanged [1, 2]. The dependence of the ϕ coefficient on the margins led to the

development of the normalized form, ϕ/ϕmax [3, 4]. Recently, VanLiere and Rosenberg investi-

gated the allele frequency dependence of the r2 linkage disequilibrium measure [5]; note that ϕ
and r refer to the same coefficient. Olivier and Bell discussed the limitations of the ϕ coefficient

and proposed effect size thresholds for the odds ratio because it is a measure that is “not
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problematic” [6]. The odds ratio is invariant to scaling of rows or columns, but there is con-

tinuing debate on the merits of the odds ratio versus the relative risk [7–10]. Warrens [11]

showed that members of the general family of association coefficients that are linear transfor-

mations of the simple matching coefficient do not satisfy all three desiderata for a well-behaved

coefficient. The lack of consensus on the utility of the many alternative effect size measures

[11, 12] led us to consider whether there might be a core set of principles and elementary prop-

erties for 2 × 2 tables that might broadly apply. In this paper, we review coordinate systems for

representing proportional variation in a 2 × 2 table, which corresponds to a two-component

system of point vectors in the standard one-simplex with two degrees of freedom. Then, we

examine the equivalence class of tables induced by an odds ratio. The scaling invariance corre-

sponds to a diagonal symmetry such that an odds ratio does not possess a simple interpretation

in terms of proportional effects. We discuss the connections between proportion difference,

odds ratio, Yule’s Q, and relative risk and show that an effect size statistic is more generally

regarded as a perspective function, i. e., a linear fractional transformation [13] of proportional

variation. A contingency table factors into a product of proportion and diagonal row or col-

umn sum matrices. Rows and columns of the proportion matrix correspond to different repre-

sentations of the relation between categorical variables. Therefore, a 2 × 2 table is associated

with four different forms of proportional variation. Together, these constitute the full imple-

mentation of the Goodman and Kruskal proposal that adjustment for unbalanced sample size

is needed in the estimation of effect size [2]. Various forms of stochastic effects can affect a

data acquisition process, so a 2 × 2 table is associated with a distribution. We discuss the use of

Monte Carlo methods as a practical way to simulate a distribution of tables and estimate the

confidence interval for an effect size. Finally, our interest in effect size measures developed in

the course of plant breeding research at DuPont to identify agriculturally beneficial genetic

variation in maize [14]. These studies involved high-dimensional search to assess linkage dis-

equilibrium and genome-wide association (GWAS) in maize populations, including the use of

the classification and regression tree (CART) algorithm. An essential step in CART is an

exhaustive search over the range of each independent variable for an optimal binary partition

of the response data [15, 16]. We show that the Gini information gain is equivalent to ϕ2, and

we compare their behavior with a scaling invariant effect size measure using a publicly avail-

able data set. Satisfactory resolution of these longstanding issues in the application of effect

size for statistics would have broad implications for high-dimensional data analysis and

machine learning. The main novel contributions of this work are: 1) identification of the

correspondence between factoring the 2 × 2 table and effect size, 2) identification of the four

forms of proportional variation with row or column sum invariance, 3) identification of an

effect size measure for a 2 × 2 table as a mapping of proportional variation for a two-compo-

nent system in41 ×41 toR2
, 4) identification of the equivalence between Gini information

gain and the ϕ coefficient, 5) development of an improved CART association algorithm using

a proportional displacement measure with correction for unbalanced sample size for the

response.

1 Methods

1.1 Notation

In this work, we study the connection between odds ratio, proportion and ϕ for a 2 × 2 table.

Our notation for the three required coordinate systems is briefly summarized here. We deviate

slightly from convention and use the symbol41 to designate the standard one-simplex [13]

such that the dot product of a vector, u 241, with the one-vector satisfies the condition u � 1 =

1. Ratio vectors, (α, 1) and (β, 1), with a;b 2 R1
are elements of the projective line, P1

. (α, 1)
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corresponds to the proportion, pα = α/(α + 1), and the proportion vector, pα = (pα, 1 − pα), in

41. The subscript for a proportion corresponds to its P1 coordinate. Similarly, (β, 1) corre-

sponds to the proportion vector pβ = (pβ, 1 − pβ). (a, b), (c, d), (a, c), and (b, d) are vectors in

R2
. (a, b) corresponds to the ratio vector, (a/b, 1), in P1

. (a/b, 1) corresponds to the proportion,

pa=b ¼ a
b =

a
bþ 1
� �

, and the proportion vector, (pa/b, pb/a) = (pa/b, 1 − pa/b), in41. Ratio and pro-

portion vectors are defined in a similar way for the other R2
vectors. The slightly cumbersome

subscript notation is necessary because we are working with proportions for both row space

such as ‘pa/b’, and column space such as ‘pa/c’. However, in subscripts for marginal sum propor-

tions the division byN is dropped; e. g., pa+c = (a + c)/N whereN = a + b + c + d. Ratio and pro-

portion vectors are examples of perspective functions of the general form Pðu; tÞ ¼ u
t for

u 2 RN , t 2 R1, and t> 0 [13]. Another familiar example is normalization by the Euclidean

norm, Pðu; jjujjÞ ¼ 1

jjujj u.

1.2 Coordinate systems for proportion and odds ratio

In this section, we discuss coordinate systems for representing binary proportional variation

in categorical data analysis. For the point vector ða; bÞ 2 R2
, the ratio corresponds to a linear

fractional transformation

a
b
¼
ðaþ bÞ þ ða � bÞ
ðaþ bÞ � ða � bÞ

;

¼
1þ ds
1 � ds

;

ð1Þ

where δs is the difference in proportion

ds ¼
a � b
aþ b

;

¼
a
b � 1
a
bþ 1

:

The ‘s’ designation arises from the connection with the proportional displacement, δs, between

the pair of vectors (a, b) and (b, a),

δs ¼
1

aþ b
a; bð Þ � b; að Þ½ �;

¼ dsð1; � 1Þ;

ð2Þ

and the correspondence of these vectors to a diagonally ‘symmetric’ 2 × 2 table as described in

Section 1.4. We will encounter several expressions of the form Eq (1), indicating that elements

of projective geometry [13, 17] provide the framework for the analysis of proportional varia-

tion. Consequently, our objective is to identify vector algebraic structures for representing pro-

portional variation in asymmetric 2 × 2 tables. They provide the framework for analyzing the

relationships between binary proportion, odds ratio, Yule’s Q, relative risk, and ϕ.

Proportional normalization of a ratio vector produces a proportion vector

1
a
bþ 1

a
b
; 1

� �
¼

a
aþ b

;
b

aþ b

� �

;

¼ Pðða; bÞ; aþ bÞ;

which is an element of41 (Fig 1). Then, a proportion vector has the form v = (v1, 1 − v1), with
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derivative dv = dv1(1, −1) such that dv � 1 = 0 for 0� v1� 1. In contrast, the corresponding

ratio vector has the form

v0 ¼
v1

1 � v1

; 1

� �

;

with derivative

dv0 ¼
dv1

ð1 � v1Þ
2

1; 0ð Þ:

Fig 1. Coordinates for a two-component binary proportional system. Proportional variation for vectors, (a, b) and (c, d), is represented either as

points, a
b ; 1
� �

and c
d ; 1
� �

, in P1
, or as points in the standard one-simplex,41. δ is the proportional displacement between the vectors. Proportion and

ratio are related by a linear fractional transformation, as indicated by the dashed lines.

https://doi.org/10.1371/journal.pone.0224460.g001
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Then, the difference between proportion vectors u and v

δ ¼ u � v;

¼ ðu1 � v1Þð1; � 1Þ;

is parameterized by a single parameter, u1 − v1, and variation in binary proportion corre-

sponds to translation in41. The difference between ratio vectors is also parameterized by a

single parameter,

δ0 ¼ u0 � v0;

¼
ðu1 � v1Þ

ð1 � u1Þð1 � v1Þ
ð1; 0Þ:

Therefore,41 and P1 correspond to different constraints in representing proportional varia-

tion. However, the order of categories in a contingency table is arbitrary, and it is not possible

to identify a unique category that should serve as the perspective coordinate for a ratio. This

introduces ambiguity, as we will see later in the discussion of the odds ratio. On the other

hand, in factoring out the effects of marginal sums, the41 representation provides an impor-

tant function in the analysis of 2 × 2 tables.

Now, we discuss the representation of a two-component system of binary proportions in

41 and P1 coordinate systems, and describe intrinsic properties of various effect size measures.

The formulae take on a more compact, intuitive form because scaling invariance is built-in.

The algebraic intuition gained here helps in comprehending the more cumbersome expres-

sions obtained later using theR2
representation. The exception is the ϕ coefficient, which does

not possess a41 representation due to the lack of scaling invariance (section 1.4). In particu-

lar, we discuss properties of the odds ratio, ω = β/α, where α, β� 0, corresponding to (α, 1)

and (β, 1) on the P1
line, respectively. Then, relative risk is defined as ρ = pβ/pα, where pβ = β/

(β + 1) and pα = α/(α + 1). The corresponding proportional basis consists of pα = (pα, 1 − pα)

and pβ = (pβ, 1 − pβ). Next, we introduce the center-of-mass basis

δb� a ¼
1

2
ðpb � paÞ;

¼ dð1; � 1Þ;

μaþb ¼
1

2
ðpa þ pbÞ;

¼ ðm; 1 � mÞ;

with the parameters d ¼
pb � pa

2
and m ¼

paþpb
2

; note that the alternative basis δα−β and μα+β would

also suffice. Then, variation is represented by the two-parameter vector (δ, μ), reflecting the

fact that there are two degrees of freedom. Using the relations a ¼
pa

1� pa
, b ¼

pb
1� pb

, pα = μ − δ

and pβ = μ + δ, we obtain

o ¼
pb � papb
pa � papb

;

¼
d

2
þ mð1 � mÞ þ d

d
2
þ mð1 � mÞ � d

:

ð3Þ
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Then, we introduce Yule’s Q [1] to obtain

Q ¼
o � 1

oþ 1
;

¼
d

d
2
þ mð1 � mÞ

:

ð4Þ

Similarly, the relative risk is expressed as

r ¼
pb
pa
;

¼
mþ d

m � d
;

ð5Þ

and the ratio difference is expressed as

b � a ¼
pb � pa

ð1 � pbÞð1 � paÞ
;

¼
d

1þ mðm � 2Þ � d
2
:

ð6Þ

Inspection of Eqs (3–6) shows that the odds ratio and relative risk correspond to linear frac-

tional transformations of proportional variation, and an effect size statistic corresponds to a

perspective function P((δ, μ), t) = (δ/t, μ/t), where t is a polynomial function of δ and μ. How-

ever, algebraic considerations alone are not sufficient to explain why a particular form might

be preferred for t or to provide operational interpretations for the different perspective nor-

malizations in Eqs (4–6). In his 1912 paper, Yule remarked that the Q coefficient has the merit

of possessing a simple form “but the demerit of not possessing an equal simplicity of interpre-

tation” [1]. Given the lack of an interpretation for the different normalizations, we find that

Yule’s remark also extends to the odds ratio and relative risk. Furthermore, rearranging Eqs

(4) and (5) gives the corresponding relations

d
2
�
d

Q
þ mð1 � mÞ ¼ 0; ð7Þ

dðrþ 1Þ � mðr � 1Þ ¼ 0; ð8Þ

with 0� μ − δ� 1 and 0� μ + δ� 1. Each of the four forms of proportional variation identi-

fied in the section 1.3 satisfies these relations. Thus, there are a range of values of (δ, μ) for a

fixed value of either Q, or ρ (Fig 2). This ambiguity in proportional effects explains why the

question of the merits of the odds ratio versus relative risk is still not resolved [18, 19]. A more

precise approach would take into account the two-dimensional nature of the proportional var-

iation, which could involve separate thresholds for δ and μ. In any case, the specification of a

perspective function should be based on the assessment of cost-benefit trade-offs for variations

in δ and μ, which will depend on the particular application.

1.3 Decomposition of proportional variation for a 2 × 2 contingency table

In this section, the two-component framework is used in the analysis of proportional variation

for a 2 × 2 table (Table 1). We are particularly concerned with the confounding effect of the

row and column sums in the formulation of association measures [2, 5, 11]. Each marginal

sum corresponds to a categorical sample size that is determined by experimental procedure.
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Suppose the first row of Table 1 is multiplied by a number k to reflect a change in sample size;

then, (a, b) 7! (ka, kb). Then, the simple matching coefficient [11], sM, is expressed as

sM ¼
kaþ d

kðaþ bÞ þ cþ d
;

which is not invariant to scaling by k. Alternatively, each marginal sum serves as a proportional

normalization factor; e. g., P((a, b), a + b). Then, sM can be expressed as the weighted sum of

proportions

sM ¼
aþ c

aþ bþ cþ d
a

aþ c
þ

bþ d
aþ bþ cþ d

d
bþ d

≕xaþcpa=c þ xbþdpd=b
ð9Þ

Fig 2. Center-of-mass coordinates for a two-component biproportional system. In the41 representation, the

center-of-mass coordinates are μ = (pα + pβ)/2 and δ = (pβ − pα)/2. The proportional variation, (μ, δ), for fixed odds

ratio, ω = 2, and relative risk, ρ = 1.2, are shown. The odds ratio and relative risk are perspective functions of the

center-of-mass coordinates.

https://doi.org/10.1371/journal.pone.0224460.g002

Table 1. The 2 × 2 contingency table.

Column 1 Column 2 Row sum

Row 1 a b a + b
Row 2 c d c + d

Column sum a + c b + d

Observed counts, (a, b, c, d), of the joint occurrence of categorical events are listed in the table. The sample size

parameters for the classifications appear as the row sums, (a + b, c + d), and column sums, (a + c, b + d). The column

and row sums are linearly related, and each sum serves as a scale factor for proportion.

https://doi.org/10.1371/journal.pone.0224460.t001
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¼
aþ b

aþ bþ cþ d
a

aþ b
þ

cþ d
aþ bþ cþ d

d
cþ d

≕xaþbpa=b þ xcþdpd=c
ð10Þ

for columns or rows, respectively. The proportions are invariant to scaling of either rows or

columns, but the corresponding weights (xi) are not because the overall sum, a + b + c + d,

does not distinguish between row or column sums. Therefore, sM can differ between two tables

because of differences in sample size even though the underlying system response properties

might be unchanged. Warrens [11] has shown that members of the general family of coeffi-

cients that are linear transformations of sM do not satisfy the criteria for a well-behaved coeffi-

cient. As discussed by Goodman and Kruskal [2], dependence on sample size parameters

complicates the interpretation of association coefficients. The concepts discussed in this paper

support their proposal that normalization to adjust for unbalanced sample sizes is necessary.

The invariance of the odds ratio to scaling of either rows or columns is expressed as

o
bc
k
�
ad
k
¼ 0; ð11Þ

k> 0. This expression remains valid if either bc 7! cb or ad 7! da. Thus, the odds ratio does

not distinguish between ratios for rows and columns, o ¼ a
b
d
c ¼

a
c
d
b [18, 20], which introduces

ambiguity with respect to proportional effects. Consider the equivalence class of tables

obtained by unitary scaling of the diagonal elements (‘u-scaling’),

o
b
j
c
j� 1
�

a
k� 1

d
k
¼ 0;

with j, k> 0 (Table 2). The two numerical examples of such tables shown in Fig 3 demonstrate

that while the odds ratio and Q are invariant, the proportions are not. Furthermore, in the

Table 2. Diagonal scaling invariance of the odds ratio.

Column 1 Column 2 Row sum

Row 1 ka b
j kaþ b

j

Row 2 jc d
k jcþ d

j

Column sum ka + jc b
j þ

d
k

The odds ratio does not distinguish between rows and columns, o ¼ a
b
d
c ¼

a
c
d
b, so the odds ratio is invariant to unitary

scaling of the diagonal elements with j> 0, k > 0.

https://doi.org/10.1371/journal.pone.0224460.t002

Fig 3. Contingency tables with fixed odds ratio. While the odds ratio,o ¼ ad
bc, is fixed in these tables, the proportions are not. The Yule Q statistic

is also invariant because it is related to ω by the linear fractional transformation Q ¼ o� 1

oþ1
.

https://doi.org/10.1371/journal.pone.0224460.g003

Factoring a 2 x 2 contingency table

PLOS ONE | https://doi.org/10.1371/journal.pone.0224460 October 25, 2019 8 / 23

https://doi.org/10.1371/journal.pone.0224460.t002
https://doi.org/10.1371/journal.pone.0224460.g003
https://doi.org/10.1371/journal.pone.0224460


special case where j ¼
ffiffiffiffiffiffiffi
b=c

p
and k ¼

ffiffiffiffiffiffiffiffi
d=a

p
, the row and column sums are equalized due to

the geometric averaging of the diagonal elements, and the Yule symmetric table (Table 3) is

obtained. This table serves as the basis for Yule’s ω coefficient [1], also known as the coefficient

of colligation [21]. However, row and column sums are linearly related by a column propor-

tion matrix

aþ b

cþ d

 !

¼

a
aþ c

b
bþ d

c
aþ c

d
bþ d

0

B
B
B
@

1

C
C
C
A

aþ c

bþ d

 !

:

This linear relation is not preserved by u-scaling because of the mixing of effects between rows

and columns (Table 2), so the odds ratio by itself is not suitable as an effect size measure. The

linear relation also implies that row and column sums play equal roles as sample size parame-

ters directly or indirectly, and that either rows or columns can be equalized, but not both

simultaneously. It is necessary to choose between rows or columns in conditioning a contin-

gency table for unbalanced sample sizes.

A self-consistent representation of proportional variation must account for the scaling

invariance of the odds ratio. Therefore, our objective is to obtain a decomposition of the odds

ratio in terms of elementary proportions by conditioning for the effect of the marginal sums.

Consider scaling of the expression ωbc − ad = 0 by column sums to obtain the fractional repre-

sentation

o
b

n1ðbþ dÞ
c

n2ðaþ cÞ
�

a
n1ðaþ cÞ

d
n2ðbþ dÞ

¼ 0; ð12Þ

where n1 and n2 are normalization factors for the subsequent conversion to proportion vec-

tors. Since there are two ways to express the odds ratio as a product of ratios, there are also two

ways to group the fractional products to form proportion vectors. The standard grouping is

formed from the columns of the table with n1 = n2 = 1 to obtain the two vectors

a
aþ c

;
c

aþ c

� �

;
b

bþ d
;
d

bþ d

� �

: ð13Þ

However, we also obtain a second pair of vectors formed from the rows with n1 ¼
a
aþcþ

b
bþd

Table 3. The Yule symmetric table.

Column 1 Column 2 Row sum

Row 1
ffiffiffiffiffi
ad
p ffiffiffiffiffi

bc
p ffiffiffiffiffi

ad
p

þ
ffiffiffiffiffi
bc
p

Row 2
ffiffiffiffiffi
bc
p ffiffiffiffiffi

ad
p ffiffiffiffiffi

ad
p

þ
ffiffiffiffiffi
bc
p

Column sum
ffiffiffiffiffi
ad
p

þ
ffiffiffiffiffi
bc
p ffiffiffiffiffi

ad
p

þ
ffiffiffiffiffi
bc
p

The equivalence class for an odds ratio includes this symmetric table obtained by geometric averaging of the diagonal

elements; j ¼
ffiffiffiffiffiffiffi
b=c

p
and k ¼

ffiffiffiffiffiffiffiffi
d=a

p
in Table 2. This results in the equalization of column and row sums and a loss of

information.

https://doi.org/10.1371/journal.pone.0224460.t003
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and n2 ¼
c
aþcþ

d
bþd yielding

a

aþ b
aþ c
bþ d

;
b

bþ a
bþ d
aþ c

0

B
B
@

1

C
C
A;

c

cþ d
aþ c
bþ d

;
d

d þ c
bþ d
aþ c

0

B
B
@

1

C
C
A: ð14Þ

The proportions in both Eqs (13) and (14) are invariant to scaling of columns, as required. The

second form of proportional variation corresponds to an effect size measure with the normali-

zation needed for experimental work, and has not been previously mentioned in the effect size

literature to the best of my knowledge. Proportion vectors invariant to the scaling of rows are

obtained in a similar way. A more concise way to obtain the proportion vectors is to observe

that a matrix can be factored as a product of a diagonal column sum (Mcsum) or a row sum

(Mrsum) and proportion matrices, Pcsum,c|r or Prsum,c|r, respectively.

a b

c d

 !

¼
n1 0

0 n2

 !
a

n1ðaþ cÞ
b

n1ðbþ dÞ

c
n2ðaþ cÞ

d
n2ðbþ dÞ

0

B
B
B
B
@

1

C
C
C
C
A

aþ c 0

0 bþ d

 !

;

¼ Ncsum;cjrPcsum;cjrMcsum;

ð15Þ

¼
aþ b 0

0 cþ d

 !
a

n1ðaþ bÞ
b

n2ðaþ bÞ

c
n1ðcþ dÞ

d
n2ðcþ dÞ

0

B
B
B
B
@

1

C
C
C
C
A

n1 0

0 n2

 !

;

¼ MrsumPrsum;cjrNrsum;cjr:

ð16Þ

The Ncsum,c|r and Nrsum,c|r proportion normalization factors provide the different scaling struc-

tures (Eq 12) needed for column and row proportion matrices, which correspond to different

projective representations of the relationship between variables (Fig 4). The standard protocol

is to equalize the marginal sums for the response or dependent variable, and calculate the

response effect size for variation of the treatment or independent variable. Depending on

whether the response variable is listed in columns or rows, the corresponding representation

would be either Pcsum,r or Prsum,c, respectively. Examples of corresponding proportion differ-

ence measures, δc,a−c and δr,a−b, are also shown in Fig 4. Our subscript notation is explained by

the following example,

dr;a� b ¼
1

1þ
c
a
aþ b
cþ d

�
1

1þ
d
b
aþ b
cþ d

;

¼
a

aþ c
aþ b
cþ d

�
b

bþ d
aþ b
cþ d

:

Thus, δr,a−b corresponds to the difference between ‘a’ and ‘b’ elements of the Prsum,c proportion

matrix. Then, calculation of an effect size requires the specification of a perspective function

for mapping the relevant (δ, μ) vector to R1
(Section 1.2). Proper practice also requires that an

effect size estimate must be qualified by a confidence interval (Section 1.5).
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1.4 The ϕ coefficient

In this section, we discuss why ϕ does not serve as a well-behaved effect size measure and fur-

ther explain the connection between δs and diagonally symmetric 2 × 2 tables. The ϕ coeffi-

cient is of particular importance in GWAS because it serves as a standard measure of linkage

disequilibrium between molecular markers [3, 5]. The popularity of ϕ is due to its correspon-

dence with Pearson’s correlation coefficient. Binary {0, 1} representations are invoked for the

categorical variables, then the correlation coefficient formula is applied to obtain

� ¼
ad � bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ

p ; ð17Þ

which is also often referred to as ‘r’. However, the limitations of ϕ as an association measure

Fig 4. Four forms of proportional variation for a 2 × 2 table. Separate proportion matrices are obtained in factoring a 2 × 2

matrix for scaling by the column sum (csum) or the row sum (rsum). Columns and rows of a proportion matrix correspond to

different representations of the relationship between categorical variables.

https://doi.org/10.1371/journal.pone.0224460.g004
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are well known [3, 5, 6, 11, 22]. Alternatively, ϕ is obtained from the relation with Pearson’s

chi-squared statistic, χ2 = (a + b + c + d)ϕ2 [3, 23], which also averages over rows and columns

resulting in confounding effects. Introducing the ratio product for marginal sums,

oM ¼
ðaþ bÞðcþ dÞ
ðaþ cÞðbþ dÞ

; ð18Þ

ϕ can be written as the row sum factorization

� ¼
ffiffiffiffiffiffiffi
oM
p ad � bc

ðaþ bÞðcþ dÞ
;

¼
ffiffiffiffiffiffiffi
oM
p a

aþ b
�

c
cþ d

� �

;

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞðbþ dÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
cþ d
aþ b

r

a �
ffiffiffiffiffiffiffiffiffiffiffi
aþ b
cþ d

r

c

 !

;

which corresponds to the scaling of Prsum,r

ffiffiffiffiffiffiffi
oM
p

a
aþ b

b
aþ b

c
cþ d

d
cþ d

0

B
B
@

1

C
C
A ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞðbþ dÞ

p

ffiffiffiffiffiffi
cþd
aþb

q
a

ffiffiffiffiffiffi
cþd
aþb

q
b

ffiffiffiffiffiffi
aþb
cþd

q
c

ffiffiffiffiffiffi
aþb
cþd

q
d

0

B
@

1

C
A:

Therefore, ϕ corresponds to u-scaling of the 2 × 2 table with j ¼
ffiffiffiffiffiffi
aþb
cþd

q
and k ¼

ffiffiffiffiffiffi
cþd
aþb

q
. Alterna-

tively, the column sum factorization for ϕ is

� ¼
1
ffiffiffiffiffiffiffi
oM
p

a
aþ c

�
b

bþ d

� �

;

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞðcþ dÞ

p

ffiffiffiffiffiffiffiffiffiffiffi
bþ d
aþ c

r

a �
ffiffiffiffiffiffiffiffiffiffiffi
aþ c
bþ d

r

b

 !

;

which corresponds to the u-scaling of the 2 × 2 table with j ¼ k ¼
ffiffiffiffiffiffi
bþd
aþc

q
. The following factori-

zations also hold:

� ¼ dr;a� b

aþ c aþbcþd

� �
b cþdaþbþ d
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ

p ; ð19Þ

≕ dr;a� bMr;a� b; ð20Þ

¼ dc;a� c

aþ b aþc
bþd

� �
c bþdaþc þ d
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ

p ; ð21Þ

≕ dc;a� cMc;a� c: ð22Þ

Consequently, each proportion difference, δi, is associated with a factorization ϕ =Miδi, where

Mi depends on marginal sums. Therefore, ϕ corresponds to a weighted average of the δi. The

multiplication of row and column sums together in eachMi has a compounding effect because

the sums are not independent.
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Consider a diagonally symmetric 2 × 2 table with d = a and c = b in Table 1, and equal row

and column sums. Then, Eq (12) becomes

ob2 � a2

ðaþ bÞ2
¼ 0;

which corresponds to the proportion vectors 1

aþb ða; bÞ and 1

aþb ðb; aÞ, and proportion difference

δs (Eq 2). Since 1

aþb ½ða; bÞ þ ðb; aÞ� ¼ ð1; 1Þ, the41 coordinates are ds;
1

2

� �
, so there is only one

degree of freedom. Thus, there is a correspondence between 2 × 1 tables [23] and diagonally

symmetric 2 × 2 tables. However,Mi = 1 for diagonally symmetric tables, and Eq (17) simpli-

fies to give ϕs = δs. Thus, δs and ϕs are equivalent measures of proportional variation. Con-

versely, the δi in Fig 4 can be regarded as constituting an extension of ϕs to asymmetric tables.

The ϕ coefficient per se does not account for the loss of symmetry whenMi� 1, because it

does not distinguish between the δi. However, whenMi≊ 1 the four expressions collapse into

one or nearly so, and the values of ϕ and δi will be approximately the same. This includes the

case where either b = c = 0 or a = d = 0 resulting in a diagonal 2 × 2 table. The connection with

ϕ suggests that Cohen’s recommendations of effect sizes of 0.1, 0.3 and 0.5 for small, medium,

and large effects, respectively, for ϕ [6, 24] can also be invoked for the various forms of δi, but

this assumes that the μi coordinate is irrelevant.

1.5 Confidence interval for proportional effects

Each step of a data acquisition process is subject to stochastic effects, and data quality can vary

between data sets. Therefore, the specification of a confidence interval (CI) for the effect size is

an integral part of data analysis [25, 26]. A contingency table for experimental data is associ-

ated with a distribution of tables, PðyÞ, and corresponding distributions for the effect size. The

specification of PðyÞmust be based on a realistic assessment of all sources of error and uncer-

tainty to form an error model for the data, EðyÞ. For binary variables, a common approach is

to estimate variance from a binomial distribution; the normal distribution is a useful approxi-

mation for large sample sizes. Then, estimating the CI for an effect size requires a propagation

of error calculation, which is often not straightforward. Analytical approaches for estimating

confidence intervals for ratios [27, 28], proportion and difference of two proportions [29, 30],

correlation coefficients [31, 32], and odds ratios [9] are already quite involved. Fractional

transformation, the bounded range, and the discrete properties of an effect size for propor-

tional variation introduce complications that make it difficult to obtain convenient expressions

for error propagation. Alternatively, Monte Carlo (MC) methods [33, 34] provide a more prac-

tical approach to estimate confidence intervals for quantities such as δr,b−a and δc,c−a. In an MC

simulation, a 2 × 2 MC table is obtained by generating the N = a + b + c + d events by making

random draws according to specified sample proportions [9] and EðyÞ. A set of MC tables is

obtained by repeating the sampling process many times; MC distributions are formed for pro-

portions and effect size from the MC tables. Many MC runs are performed, collecting the rele-

vant statistics for each MC distribution, including the mean, median, variance, and histogram.

Finally, the degree of convergence for the MC simulation is estimated from the statistics for

the MC runs. Fig 5A and 5C shows constrained MC simulations with fixed column sums n1 =

a + c and n2 = b + d and sampling proportions 1

aþc ða; cÞ and 1

bþd ðb; dÞ, respectively. Fig 5B and

5D shows greater internal scatter because only the overall sum, N, is fixed, with corresponding

sampling proportions 1

N ða; b; c; dÞ. Even though the underlying distributions are discrete, the

±2σ interval for a normal distribution serves as a good approximation for the δc,c−a confidence

interval in this example. More generally, the distribution of effect size is asymmetric which

would be represented by separate confidence intervals for positive and negative deviation from
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the median. The advantage of the MC method is that the simulation can accommodate a

detailed specification of EðyÞ, including heteroscedasticity [25, 35] and correction for attenua-

tion from misclassification [35, 36]. This capability is essential in accounting for the effects of

instrumental and other operational factors on the quality of data produced by a data acquisi-

tion system.

1.6 Decomposition of proportional effects for an r × c table

A table with more than two rows or columns is commonly referred to as an r × c table. The

matrix factorization (Eqs 15 & 16) extends in a straightforward way to produce the r × c pro-

portion matrices. For independent and dependent variables with r and c categories, respec-

tively, proportional variation is represented as r points in the standard4c−1 simplex, with

r(c − 1) degrees of freedom. Various multicategorical association measures have been proposed

for r × c tables. However, we choose Cramer’s V2 [37, 38] as an example to illustrate the diffi-

culties. V2 is defined as a normalization of Pearson’s χ2 such that χ2 = n(q − 1)V2, where n is

the total event count and q =min(r, c). V is equivalent to ϕ for 2 × 2 tables. Similarly, it is

straightforward to show that Goodman and Kruskal’s τc and τr [37] are both equivalent to ϕ2

for 2 × 2 tables. These equivalences confirm that Pearson’s χ2, V2, τc and τr are composite sta-

tistical quantities that average over alternative forms of variation and are therefore subject to

ambiguous interpretation. The Rrðc� 1Þ 7!R1 mappings consist of multidimensional sums and

products across rows and columns, resulting in confounding effects because of dependence

between them.

Fig 5. Two sets of constrained Monte Carlo (MC) simulations of the distribution of proportional variation, (δc,c−a, μc,c+a), for a 2 × 2 table with a,

b, c, d = [10, 30, 30, 20]. A,C: MC with fixed column sums, n1 = a + c and n2 = b + d. B,D: MC with fixed overall sum N = a + b + c + d. A,B: Data for

10000 MC tables. The dashed lines indicate the expected values, δc,c−a = 0.18 and μc,a+c = 0.473. C,D: Each histogram is the mean of 64 MC runs with

10000 MC tables per run. Each whisker is the ±2 standard deviation interval. The normal distribution, μ = 0.18 and σ = 0.0506, is shown as a dashed

curve.

https://doi.org/10.1371/journal.pone.0224460.g005
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In the absence of an engineering or functional model, the specification of a vector basis for

proportional variation for an r × c table is not a well-posed problem [39]; i. e., there isn’t a

unique solution. This constitutes a fundamental limitation for the formulation of an effect size

measure. Consider a two-component proportional system represented by vectors, u, v 24N

with N> 1, and u; v 2 RNþ1. The two default center-of-mass vectors are μ = (u + v)/2, and δ =

(u − v)/2. However, there isn’t a standard procedure for choosing the additional 2N − 2 vectors

needed to form a complete basis. Alternatively, a single coordinate or a sum of coordinates

could serve as the basis for estimating an effect size. This corresponds to choosing a41 ×41

subspace for the representation of proportional variation; e. g., δ = (ui + uj) − (vi + vj), with {(ui
+ uj, 1 − ui − uj), (vi + vj, 1 − vi − vj) 241}. A representation of the 2N degrees of freedom for a

two-component4N ×4N system would require the specification of N 2 × 2 tables. Therefore,

the 2 × 2 table serves an elementary role in the decomposition of multiproportional variation

due to the minimal properties of41. The recommended approach is to adopt a multidimen-

sional representation of proportional variation and “reduce any multiple-level or multiple-var-

iable relationship to a set of two-variable relationships” [25]. Similar advice has been given for

avoiding the compounding effect of the ANOVA null hypothesis, to break down “complicated

hypotheses into smaller, more easily understood pieces” [40]. Ways in which an r × c table

might be partitioned and marginalized have been described by Kateri [41]. The objective is to

construct a set of 2 × 2 tables that encompass relevant forms of proportional variation for the

particular application. This multidimensional representation should be combined with the

specification of cost-benefit trade-offs in assessing the effect size for proportional variation. In

the next section, we discuss the use of 2 × 2 tables in the CART algorithm. However, high-

dimensional search is still a developing area [42, 43], and a detailed assessment of the pros and

cons for various approaches is beyond the scope of this paper.

1.7 Gini information gain and ϕ2

In this section, we examine connections between effect size and information gain (IG) mea-

sures used in standard implementations of the CART algorithm. CART creates a binary deci-

sion tree by the recursive partitioning of the association between response and independent

variables [44–46]. Each node of the tree corresponds to a binary partition of the range of an

independent variable. Each terminal node is a classification identified by a unique combina-

tion of intervals of the independent variables. In standard implementations, the partition

parameters for a node are determined by maximizing IG for the response variable in an

exhaustive search of associations over all independent variables. In each iteration, the set of sta-

tistics obtained for the binary partitions of an independent variable constitutes a CART associ-

ation graph. Our objective is to compare CART graphs for effect sizes including IG. To

simplify the discussion, we consider the case where the response variable is binary. Then, the

data for a partition correspond to a 2 × 2 table [47]. Then, IG is defined as the parent node

impurity, I(S), minus the weighted impurities for the subnodes I(S1) and I(S2),

IGðS1; S2Þ ¼ IðSÞ � x1IðS1Þ � x2IðS2Þ; ð23Þ

where the weight factor is xi ¼
ni
n , ni is the number of elements in node Si, and n = n1 + n2. Two

popular impurity measures are the entropy, E = −∑pjlnpj, and Gini impurity, G ¼ 1 �
P
p2
j ,

where pj is the proportion of class ‘j’ items in a set [16]. For a binary proportion vector,

ðpm=n; pn=mÞ ¼ 1

mþn ðm; nÞ, and the Gini impurity becomes G(pm/n, pn/m) = 2pm/n pn/m. However,

the xi are subject to the same limitations as the weight factors for sM (Eqs 9 & 10), and both IGE

and IGG depend on the marginal sums. More concretely, we show that IGG and ϕ2 are equiva-

lent in CART. Let the rows and columns of Table 1 correspond to the subnodes and categories
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for the response variable, respectively. Then, G(S) for the parent node is

GðSÞ ¼ 2
ðaþ cÞðbþ dÞ
ðaþ bþ cþ dÞ2

:

G(S1) and G(S2) are calculated from proportions for the row vectors (a, b) and (c, d), respec-

tively. Then,

IGGðS1; S2Þ ¼
2

aþ bþ cþ d
ðaþ cÞðbþ dÞ
aþ bþ cþ d

�
ab
aþ b

�
cd
cþ d

� �

;

¼ GðSÞ�2
;

ð24Þ

with substitution of the ϕ coefficient from Eq (17). Since G(S) is a constant for binary parti-

tions at a parent node, we conclude that IGG is equivalent to ϕ2. This confirms that IGG

depends on marginal sums due to the xi, in which the normalization factor N = a + b + c + d
does not distinguish between rows and columns. Information gain measures of the form Eq

(23) will be subject to this limitation, including IGE. It is known that IGE and IGG yield very

similar results in CART [48], which confirms that IGE is subject to dependence on marginal

sums (Table 4). The limitations of IGG raise the question of whether the column sum invariant

δc,a−c statistic might be more appropriate for CART, which we consider in the next section.

2 Data analysis and results

2.1 Data preparation

The Centers for Medicare and Medicaid (CMS) conduct regular inspections of nursing homes

to assess compliance with regulations and survey residents to assess the quality of patient care.

The CMS quality measures data and Five-Star rating assignments are publicly available from

the Nursing Home Compare (NHC) website [49]. The analysis of NHC data is an important

problem in itself [50–52] and is the subject of our ongoing work [53]. Nursing homes are

dynamic systems where the measurement of performance is essential for managing cost, but

this constitutes a complex problem for which there is not a unique or ‘best’ solution. The chal-

lenge is to develop data analysis methods that can help identify public health criteria for classi-

fying the quality of patient care in nursing homes, or some approximation thereof. However,

in this work our interest is limited to the comparison of CART association graphs for effect

size measures. First Quarter, 2018 NHC data for eighteen quality measures were retrieved,

selecting only those nursing homes with either a 1 star or 5 star overall rating, corresponding

to 1394 and 2649 nursing homes, respectively. Selecting ‘1 star, 5 star’ rating data creates a

binary response data set, which is convenient for our purpose; otherwise, data for all five rat-

ings would be included in the CART analysis. The distributions of NHC ‘Percentage of short-

stay residents who were rehospitalized after a nursing home admission’ (Rehospitalized)

Table 4. Classification tree partitions for NHC ‘short-stay rehospitalized’ data.

Impurity Measure Split Value S1 N, (1 star, 5 star) S2 N, (1 star, 5 star)

IGG, IGE 22.0 1966, (0.41, 0.59) 2077, (0.58, 0.42)

δc,a−c, lower 13.3 301, (0.30, 0.70) 3742, (0.51, 0.49)

δc,a−c, upper 32.6 3874, (0.49, 0.51) 169, (0.71, 0.29)

CART association split value, sample size (N), and (1-star, 5-star) proportions for subnodes S1 and S2, for Gini (IGG)

and entropy (IGE) information gain, and proportion difference (δc,a−c).

https://doi.org/10.1371/journal.pone.0224460.t004
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quality measure data for 1 star and 5 star overall ratings are broad and largely overlap (Fig 6A).

This result implies that theMi for the corresponding contingency tables will tend to be much

less than 1, as required for our demonstration.

2.2 Effect size in CART

In demonstrating the marginal sum dependence of various effect size measures, we must

choose an elementary contingency table analysis problem. CART analysis for a binary response

variable (bCART) is well suited for this purpose. In searching for an optimal binary partition of

an independent variable, bCART generates a set of 2 × 2 tables where the sample sizes, n1 and

n2, of the two subnodes vary over almost the entire range of the fixed sum N = n1 + n2; a mini-

mum size is usually specified because a partition where either of the subnodes is too small is

not informative. We let the rows and columns of Table 1 correspond to the two subnodes and

the ‘1 star, 5 star’ rating for the response variable, respectively. Effect size results for a bCART

scan for association between the Rehospitalized quality measure and NHC ‘1 star, 5 star’ overall

rating are shown in Fig 6. The exact match between IGG and ϕ2 (Fig 6A) is consistent with Eq

(24) because G(S) is constant. The parabolic variation of ϕ2 is explained by Eq (21) because the

variation in the marginal sum factor,Mc,a−c, outweighs the much smaller variation in the pro-

portional effect, δc,a−c (Fig 6B). The parabolic variation ofM2
c;a� c is in turn explained by the

approximate similarity with ωM. Replacing each marginal sum in Eq (18) by the corresponding

proportion yields

oM ¼
paþbpcþd
paþcpbþd

;

¼
paþbð1 � paþbÞ
paþcð1 � paþcÞ

:

The denominator corresponds to the binomial variance for the parent set, which is constant.

Fig 6. CART association graph. A: Stacked histograms for First Quarter, 2018 ‘Percentage of short-stay residents who were rehospitalized after a

nursing home admission’ data for nursing homes with a 1 star or 5 star overall rating; the dashed line is the median value. CART associations between

Nursing Home Compare ‘Rehospitalized’ quality measure and ‘1 star, 5 star’ overall rating for IGG and ϕ2 are also shown. IGG was scaled to match ϕ2.

BothM2
c;a� c and ωM were scaled by 1/50. B: Column scaling invariant center-of-mass coordinates, (δc,a−c, μc,a+c), for the two-component proportional

variation in the standard one-simplex,41.

https://doi.org/10.1371/journal.pone.0224460.g006
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The numerator corresponds to the binomial variance for subnode size proportions, (a + b):

(c + d), so ωM has a maximum when a + b = c + d, which coincides with the median Rehospital-

ized value. Consequently, the parabolic dependence of ϕ2, with the maximum near the median

value, largely reflects the variation in the subnode sample size instead of ‘1 star, 5 star’ composi-

tion. In contrast, δc,a−c is column sum invariant and yields very similar results to Yule’s Q,

which is invariant to scaling of either rows or columns (Fig 7); the correlation is higher than

0.99 for 16 NHC quality measures, and the lowest is 0.91. Note that this similarity does not rep-

resent a special relation with Q and results from the numerical properties of δc,a−c and μc,a+c for

these data (Eq 4). The lower correlation (r = 0.78) between δc,a−c and δr,a−c confirms that differ-

ent forms of proportional variation can be distinguished; δr,a−c also measures the difference in

subnode composition but is row sum invariant. The U-shaped δc,a−c association graph has two

maxima, so there are two possible CART partitions (Table 4). The relatively small subnode

with Rehospitalized below 13.3% is enriched in the 5 star rating, corresponding to better than

average patient care. Above 32.6%, the patient care is worse than average because it is associated

with enrichment of the 1 star rating. The middle range from 13.3-32.6% includes the majority

of nursing homes with average performance. In comparison, IGG and IGE produce subnodes

that are nearly equal in size and with much lower degrees of enrichment in the ‘1 star, 5 star’

proportions. Thus, δc,a−c is more effective than IGG and IGE in identifying partitions that corre-

spond to a difference in the ‘1 star, 5 star’ composition.

Fig 7. Scaling invariant effect size statistics for CART. Yule’sQ and δc,c−a yield similar results in the CART association between the First

Quarter, 2018 Nursing Home Compare ‘Rehospitalized’ data and ‘1 star, 5 star’ overall rating. δc,c−a and δr,c−a are the column and row

scaling invariant proportion differences, respectively. Q is invariant to scaling of either columns or rows.

https://doi.org/10.1371/journal.pone.0224460.g007
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The logistic regression method provides a graphical view of the effect of sample size param-

eters on proportional variation in categorical data analysis (Fig 8A). The ‘1 star, 5 star’ rating

data were analyzed using the LogisticRegression function in the scikit-learn library with the

‘lbfgs’ solver [54]. A moving average of the ‘5 star’ rating proportion is included in the graph as

a reference for the logistic curve. The normalized ‘5 star’ proportion adjusted for inequality in

the ‘1 star, 5 star’ sample sizes and the corresponding adjusted logistic curve are shown in (Fig

8B). The variation in proportion confirms that the left and right tails of the Rehospitalized dis-

tribution correspond to nursing homes with above and below average performance, respec-

tively, consistent with the CART association results. The logistic model for the ‘5 star’

proportion, y ¼ c5
c1þc5

, is usually expressed as

y ¼
1

1þ e� ðaþbxÞ
; ð25Þ

where parameters, (a, b), are determined from the curve fit. The adjustment for the logistic

curve was obtained using the change in coordinates

a ¼ � bx0 � ln
n1

n5

� �

;

where n1 and n5 are the sample sizes for the 1 star and 5 star ratings in the data set, respectively.

Substitution into Eq (25) yields

y ¼
1

1þ
n1

n5
e� bðx� x0Þ

such that yðx0Þ ¼
n5

n1þn5
. In a data set where n1 = n5, y(x0) = 1/2, and x0 correspond to the mid-

point value for the logistic curve. Then, there are two sample-size-independent parameters, b
and x0.

Fig 8. Sample size effects in logistic regression. A: Logistic model for Nursing Home Compare ‘Rehospitalized’ data and ‘1 star, 5 star’ overall rating.

The moving average ‘5 star’ proportion is included for reference. The ‘5 star’ sample size proportion,
n5

n1þn5
¼ 0:66, is shown as a horizontal line; n1 =

1394, and n5 = 2649. B: Normalized ‘5 star’ proportion adjusted for unequal sample sizes, and the adjusted logistic curve. The midpoint value, x0 = 22.4,

for the logistic curve is shown as a vertical line; the ‘Rehospitalized’ median is 22.2.

https://doi.org/10.1371/journal.pone.0224460.g008
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3 Discussion

The renewed warnings from the statistics community about the limitations of statistical signifi-

cance methodology has created a perplexing situation, given that there is a wide range of opin-

ion on the underlying causes and solutions [55, 56]. Claims have also been made about effect

size [25, 26, 57] as a better alternative, but the lack of consensus on the utility of commonly

used association coefficients, such as the odds ratio [8, 10], the simple matching coefficient

and ϕ [5, 11], hinders development of this approach. In this paper, we describe a rigorous

framework for representing proportional variation in a 2 × 2 table, which helps in resolving

the marginal sum dependence problem for association coefficients. We show that a 2 × 2 table

is associated with four forms of proportional variation resulting from the factorization as a

product of proportion and diagonal row or column sum matrices. Association coefficients,

such as ϕ, the odds ratio, and the simple matching coefficient, which do not distinguish

between rows or columns, correspond to averages of proportional effects and lack clear inter-

pretation. The two-component structure implies that there are two degrees of freedom corre-

sponding to the displacement of two point vectors in the standard one-simplex,41. An effect

size measure then requires the specification of a perspective function of the center-of-mass

coordinates, (δ, μ), which is potentially unique for each application because of differences in

cost-benefit trade-offs. In practice, classification problems vary widely in difficulty depending

on the degree of overlap between the underlying distributions. Fisher’s irises data set [58] is an

example of a classification problem for well separated distributions, where different association

coefficients achieve similar results because of degeneracy, particularly when the 2 × 2 table is

diagonally symmetric or the effects are highly correlated. Conversely, differences in perfor-

mance between association coefficients are best observed when the underlying distributions

overlap. We also show that both Gini and entropy information gain are subject to dependence

on marginal sums, which degrades the performance of the CART algorithm. Alternatively, the

proportion difference with marginal sum invariance for the response variable provides a sig-

nificant improvement in the performance of the CART algorithm. We conclude that the

results in this paper demonstrate that equalization of either row or column sums of a 2 × 2

table serves as a correction for unbalanced sample sizes, as suggested by Goodman and Kruskal

[2].
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