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Abstract: The colonization of poly(methyl methacrylate) (PMMA) denture base materials by
pathogenic microorganisms is a major problem associated with the use of prostheses, and the
incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these
materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this
type of material; however, reports demonstrating the stability of these fillers over longer periods
are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into
the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%,
2%, 4%, and 8% (w/w). The survival rates of the gram-positive bacterium Staphylococcus aureus,
gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established
after fungal or bacterial suspensions were incubated with samples that had been previously stored
in distilled water. Storage over a three-month period led to the progressive reduction of the initial
antimicrobial properties. The results of this study suggest that additional microbiological tests should
be conducted for materials that are treated with antimicrobial fillers and intended for long-term use.
Future long-term studies of the migration of silver ions from the polymer matrix and the influence of
different media on this ion emission are required.

Keywords: denture base material; antibacterial properties; antifungal properties; aging; antimicrobial
filler; silver

1. Introduction

Yeast-type fungi, including Candida albicans (C. albicans), can be isolated from the oral cavity
of 30%—45% of healthy adults [1-3]. In general, fungi are normal commensal organisms within
the oral cavity and do not cause problems; however, overgrowth can lead to complications [1].
Wearing dentures produces a micro-environment with low oxygen, low pH, high humidity, elevated
temperature, and reduced opportunities for mucosal self-cleaning by saliva, and these conditions are
favorable for the growth of microorganisms [1,4]. Thus, yeast can be isolated from the mouths of
50%—65% of removable denture wearers [1-3]. The specific conditions in the oral cavity associated
with a newly available surface created by denture insertion leads to the rapid formation of denture
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plaque, which consists of gram-positive streptococci (approximately 40%), gram-positive rods (33%),
gram-negative bacteria (approximately 10%), Staphylococcus aureus (approximately 6%), and yeast-type
fungal colonies [4]. The presence of denture plaque and yeast-type fungi in the oral cavity promotes the
formation of denture-induced stomatitis [4,5], which is an inflammatory reaction of the mucosa under
dentures. Stomatitis affects approximately 50%—65% of denture wearers [6,7] and has a multifactorial
etiology; however, the presence of C. albicans has been reported as the primary etiologic cause [8,9].
In addition, in nearly 90% of stomatitis cases, yeast-type fungal species have been isolated [10].
Van Reenen [11] reported that although gram-positive bacteria were more frequently isolated from
the mucosa of patients with stomatitis, specific organisms were not associated with lesions, which
suggests that the lesions were caused by a community of pathogens. Nyquist [12] reported that the
number of bacteria is specific to the individual; however, when dentures are worn for longer periods,
bacteria generally increase in number.

Popular chemical denture cleansers have only a limited effectiveness in biofilm removal [13]
and can reduce both the mechanical properties [14,15] and color stability [14-16] of dentures.
Antibiotic therapies for the treatment of fungal infections do not always produce positive results [17],
and additional concerns have arisen related to drug resistance among Candida spp. and other
microorganisms that have been reported over the last decade [18]. C. albicans blastospores can penetrate
hard poly(methyl methacrylate) (PMMA)-based materials [19]; thus, to avoid complications related to
dentures and the associated growth of microorganisms, denture base materials that can damage or
strongly resist pathogenic bacteria and fungi are required [20].

Different fillers have been used experimentally to increase the antimicrobial resistance of PMMA
denture base materials. Certain metal nanoparticles [20-23] have been investigated as effective
antimicrobial agents, and ceramic particles can provide enhanced resistance against bacteria and
yeast [24,25]. Several studies have confirmed the antimicrobial effectiveness of silver nanoparticles
incorporated into PMMA denture base materials; however, nanosilver may cause significant color
changes, which represents a strong aesthetic limitation in practice. In addition, the long-term stability
of the antimicrobial effects has not been examined. In this study, the antimicrobial effectiveness of
composites filled with silver sodium hydrogen zirconium phosphate was investigated. Because the
number of silver ions released into the environment decreases over time [26], the aim of the work was
to investigate the antimicrobial effectiveness of these fillers over three months of storage in distilled
water. Our hypothesis was that composites filled with silver sodium hydrogen zirconium would show
decreasing antimicrobial efficacy over time.

2. Results

2.1. Scanning Electron Microscopy (SEM) Investigations

SEM images illustrating the morphology of a PMMA powder and filler are presented in Figure 1.
The qualitative SEM examinations showed that using a milling time longer than 5 min damaged, (e.g.,
chipped) the PMMA pearls. SEM images of the PMMA spheres with filler particles on their surface
after 5 min of milling are presented in Figure 2. The characteristically cube-shaped filler particles
were visible on the surfaces of the PMMA spheres. In addition, above a concentration of 2%, the filler
covered the surfaces of certain spheres (Figure 2b), although there were also areas with single particles
or smaller aggregations (Figure 2b,c). The areas covered by filler increased along with increasing
filler concentration.

The morphologies after polymerization are presented in Figure 3. For the resin samples without
filler, the areas of pre-polymerized PMMA spheres and areas of PMMA polymerized during sample
preparation were clearly visible (Figure 3a). After polymerization, the filler particles were distributed
only in areas between the spheres, as expected. At a concentration of 1%, the filler was generally
well distributed in the PMMA matrix between the spheres (Figure 3c). Starting at a concentration of
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2%, there was an increasing tendency for increased aggregation size, especially on the borders of the
pre-polymerized spheres, and PMMA polymerization during sample preparation was observed.
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Figure 1. Representative scanning electron microscopy (SEM) images presenting the morphologies
of the (a) poly(methyl methacrylate) (PMMA) powder; and (b) silver sodium hydrogen zirconium
phosphate particles.
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Figure 2. Representative SEM images presenting the surface of the PMMA spheres after filler
introduction: (a) sphere surface after milling with 0.25% filler; (b) surfaces of spheres with 2% filler
and the corresponding energy-dispersive X-ray spectroscopy (EDS) spectrum, which confirmed the
presence of zirconium, phosphorus and silver; (c) smaller aggregates of filler particles; (d) spheres
covered to a large extent by filler particles when 4% filler was introduced.
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Figure 3. SEM images presenting the morphologies of the fractured samples of polymerized
(a,b) PMMA resin and composites with filler concentrations of (c) 1%; (d) 2%; (e) 4%; and (f) 8%.

2.2. Microbiological Tests

The results of the antifungal and antibacterial tests are presented in Figure 4, and the C. albicans
survival rate (SR) values are listed in Table 1. For different storage durations, increasing the filler
concentration had a significant effect on the SR of the fungi (Table 1). For PMMA without filler,
antifungal effects were not observed before or after storage. Storage duration had a significant
influence (p < 0.05) on the SR of the bacteria for particular filler concentrations starting from 0.5%,
although after 30 days of storage, the SR of fungi at a concentration of 0.5% was 100%. For a filler
concentration of 1%, the SR remained stable below 0.01% over 60 days, whereas the median of SR

increased to 57.21% after 90 days.
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Figure 4. Representative results of the antifungal tests against (a) Candida albicans ATCC 10231;
(b) Escherichia coli ATCC 25922; and (c) Staphylococcus aureus ATCC 25923 after 17 h of incubation with
samples of the PMMA resin and composites previously stored in distilled water.
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Table 1. Survival rate (SR) of Candida albicans ATCC 10231 with the PMMA resin and composites with different filler concentrations stored in distilled water and
Kruskal-Wallis test results (o« = 0.05).

Survival Rate (SR) of Candida albicans ATCC 10231 (%)

Filler Non-Stored 7 Days 30 Days 60 Days 90 Days
Concentration % (p =0.048) ¥ (p =0.003) ¥ (p =0.004) ¥ (p =0.004) ¥ (p =0.002) ¥
Median Min/Max Median Min/Max Median Min/Max Median Min/Max Median Min/Max
(= 09217) + 107.24 92.35/123.29 96.75 87.11/101.96 100 * 100 * 119.59 99.18/132.78
v :%ii3) + 57.2 48.89/89.35 100.03 66.06/112.48 100 * 100 * 88.14 85.11/139.3
(= 3:304) + 525 0.92/11.77 24.5 17.07/34.38 100 * 100 * 99.65 64.18/141.4
(= 0.1042) + 0 0/7.04 0.06 0/0.12 <0.01 <0.01/0.02 <0.01 # 57.21 45.93/68.49
(= 501) + 0 0/1.84 0 * <0.01 0/<0.01 <0.01 # 10.29 6.86/30.11
(= 0%007) + 0.52 0/1.84 0 * <0.01 0/<0.01 <0.01 0/<0.01 18.43 8.72/45.69
(= 0§035) + 0.23 0/0.92 0 * <0.01 0/<0.01 <0.01 0/<0.01 0.12 0.12/0.34

p-values marked *: refer to the SR differences listed in rows (different storage durations for a particular material); and those marked ¥: refer to the SR differences listed in columns
(different filler concentrations for a particular storage duration); *: no changes in quadruplicate; #: both were below 0.01 but more than 0.
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Table 2. Survival rate (SR) of the Escherichia coli ATCC 25922 standard strain for the investigated materials stored in distilled water and Kruskal-Wallis test results

(x=0.05).
Survival Rate (SR) of Escherichia coli ATCC 25922 (%)
Filler. Non-Stored 7 Days 30 Days 60 Days 90 Days
Concentration % (p < 0.001) ¥ (» <0.001) ¥ (» <0.001) ¥ (p <0.001) ¥ (p <0.001) ¥
Median Min/Max Median Min/Max Median Min/Max Median Min/Max Median Min/Max
@ :01) + 100 * 100 * 100 * 100 * 100 *
v <%20501) + <0.01 # 100 * 100 * 100 * 100 *
(v < 8'301) + 0 * 100 * 100 * 100 * 100 *
(= 01002) + 0 * 0 * 0 * <0.01 # <0.01 #
(= 02406) + 0 * 0 * 0 * 0 * 0 0/<0.01
v =41) + 0 * 0 * 0 * 0 * 0 *
v 281) + 0 * 0 * 0 * 0 * 0 *

p-values marked *: refer to the SR differences listed in rows (different storage durations for a particular material); and those marked ¥: refer to SR differences listed in columns; *: no
changes in quadruplicate; #: both below 0.01 but more than 0.
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Table 3. Survival rate (SR) of the Staphylococcus aureus ATCC 25923 standard strain for the investigated materials stored in distilled water and Kruskal-Wallis test
results (o = 0.05).

Survival Rate (SR) of Staphylococcus aureus ATCC 25923 (%)

Filler Non-Stored 7 Days 30 Days 60 Days 90 Days
Concentration % (p = 0.005) ¥ (p = 0.001) * (p = 0.001) ¥ (p = 0.001) ¥ (p = 0.001) ¥
Median Min/Max Median Min/Max Median Min/Max Median Min/Max Median Min/Max
(p< 09001) t <0.01 # 100 * 107.69 * 100.0 * 106.25 *
(v <%i)501) t <0.01 # 100 * 107.69 * 100.0 * 106.25 *
(= 8:301) + <0.01 0/<0.01 <0.01 # 107.69 * 100.0 * 106.25 %
(= 0.1003) t <0.01 # <0.01 # <0.01 # <0.01 # <0.01 #
(= 02_02) + <0.01 0/<0.01 <0.01 # <0.01 # <0.01 # <0.01 #
(= 0%013) + <0.01 0/<0.01 <0.01 # <0.01 # <0.01 # <0.01 #
(= 0?637) + 0 0/<0.01 <0.01 0/<0.01 <0.01 0/<0.01 <0.01 0/<0.01 <0.01 0/<0.01

p-values marked *: refer to the SR differences listed in rows (different storage durations for a particular material); and those marked ¥: refer to SR differences listed in columns.
*: no changes in quadruplicate; #: both below 0.01 but more than 0.
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Although increases in the SR were observed after 90 days of storage with filler concentrations of
2% and 4% introduced to the PMMA resin, these increases were smaller than those observed for lower
filler concentrations. For the highest filler concentration, the SR was generally similar over 3 months of
storage, whereas the SR increased from below 0.01% after 60 days to 0.17% after 90 days. For filler
concentrations from 2% to 8%, the SR values were 0% after 30 days, and only a few fungal colonies
survived after prolonged storage.

The E. coli SR values are listed in Table 2. For different storage durations, increases in filler
concentration had a significant effect (p < 0.05) on the SR of the bacteria (Table 2). For PMMA without
filler, an antimicrobial effect was not observed before or after storage. Storage duration had a significant
influence (p < 0.05) on the SR of the bacteria for filler concentrations of 0.25% to 1% in the PMMA
resin. Starting from a filler concentration of 2%, an antimicrobial effect was also noted, although
no significant effects (p > 0.05) on the SR were observed over the 3-month experiment. For a filler
concentration of 2%, only a few bacterial colonies survived after 90 days of storage.

The S. aureus SR values are listed in Table 3. For different storage durations, increases in the
filler concentration had a significant effect (p < 0.05) on the SR. The storage duration had a significant
influence (p < 0.05) on the SR of the bacteria for all the tested filler concentrations except 8% (p = 0.637).
The initial antibacterial effects of all the materials are noted. After the first seven days of storage, the
number of viable S. aureus colonies increased, and the SR was below 0.01% at filler concentrations
of 0.5% and above. After 30 days, reduced SR values were noted, starting from a filler concentration
of 1%. Beginning at a concentration of 1%, the median of SR values were below 0.01% for all of the
materials and storage durations, although small changes in the number of viable S. aureus colonies
were still observed.

3. Discussion

The use of antimicrobial fillers is a common method of enhancing the antimicrobial properties
of PMMA denture base materials, and several investigations that have tested antimicrobial fillers
in vitro have reported increased material resistance against fungi and bacteria [27]. Commercially
available, two-component, powder-liquid systems are typically used as a matrix in these types of
investigations, and because of practical and technological reasons, such a system was also used in
this study. Two methods of incorporating antimicrobial fillers into PMMA denture base materials are
commonly reported—i.e., fillers can be mixed into either the liquid component [21,28,29] or the powder
component [30-32]. Both methods allow the filler particles to be located between the pre-polymerized
spheres after sample polymerization, which reduces the polymerization-induced shrinkage of the
material. In the current investigation, the filler was mixed with the powder component in a ball
mill. The filler was not introduced into the liquid component because the large differences in density
between the silver sodium hydrogen zirconium phosphate (2914 kg/m?) [33] and the MMA-based
liquid (950 kg/m?) would have increased the risk of sedimentation during component storage prior to
sample polymerization.

The distribution of filler particles and their aggregation between spheres is visible in Figure 2. Such
a distribution is a technological limitation and has not been addressed in related studies of nanofiller
and microfiller incorporation into commercially available PMMA denture base materials. This problem
can be resolved by introducing additional filler particles during the suspension polymerization
process that produces the PMMA spheres. At the laboratory scale, this approach requires additional
investigation for the development of novel materials with suitable properties for use as denture
base materials. Therefore, when testing new fillers for PMMA denture base materials, it is common
practice to use commercially available products in the first process step. Examples of the process of
manufacturing pre-polymerized spheres during or before filler introduction have only been presented
by Acosta-Torres et al. [21,34]. In our study, the milling process did not allow the production of
a homogenous filler distribution either across the surface of the spheres before polymerization or
between the spheres after polymerization. These inhomogeneities, which were confirmed by SEM
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investigations, were greater with higher filler concentrations. The problems associated with filler
aggregation in the polymeric matrix have been well-documented by laboratory-scale investigations [27],
and such issues may affect the antimicrobial effectiveness and reduce the mechanical properties of the
material. The large aggregations, such as those observed with higher filler contents near the borders
of the pre-polymerized PMMA spheres, can act as stress concentrators, thus reducing mechanical
properties such as flexural and impact strength. In addition, future investigations should examine the
influence of filler introduction on the sorption, solubility, and residual monomer of the material.

Reducing discoloration caused by additives such as nanosilver was one of the reasons why a white
filler was used in this study. PMMA resin without pigments was used in previous investigations, and
we observed increased white coloration and reduced transparency with increasing filler concentrations.
When pigmented PMMA materials were used experimentally, the color changes were much less
apparent; however, the impact on transparency was approximately the same as previously observed.
These unfavorable changes are typical and are associated with the use of nano- and microfillers.
The additives did not affect the taste or odor of the materials.

The morphology of the material with pre-polymerized spheres also influenced the choice of the
method used in the microbiological tests. The powder-liquid ratio recommended by the manufacturer
was 3.5 g/1.4 mL; therefore, the filler in the samples was dispersed within a sample mass of
approximately 28%, which created areas that were polymerized from the liquid component between
spheres. The local filler concentrations in the areas between pre-polymerized spheres for different
initial filler concentrations mixed with PMMA powder were 0.6%, 1.2%, 2.4%, 4.8%, 9.7%, and 19.4%
respectively (w/w). For the total sample mass, the filler concentrations were 0.18%, 0.36%, 0.72%, 1.45%,
2.9%, and 5.8% (w/w). Therefore, for the microbiological assays, the samples were incubated with
microorganism suspensions, and the emission of silver ions into the medium determined the SR of
the tested microorganisms (i.e., fungi or bacteria). The comparative effectiveness of the studied
materials has yet to be determined using different microbiological tests, such as live/dead cell
viability assays [35], where the surface colonization of the samples is analyzed using fluorescence
microscopy because the filler-free areas may potentially be colonized. However, for samples with
low microorganism SR values in the environment, the viability of microorganisms on the material
surface should also be very low. Furthermore, although the local environment in the oral cavity
under dentures is wet, the reduced self-cleaning by saliva [1] could allow the number of silver ions
present to increase with increasing time wearing the denture. It is important to consider that the
reduced mucosal self-cleaning by saliva under dentures is a significant factor that favors the growth
of fungi and bacteria [1,4]. To confirm these assumptions, microbiological tests should be performed
to investigate the adherence of bacteria on sample surfaces, which should be more representative of
denture surface areas that do not have continuous and direct contact with the mucosa and are cleaned
by saliva during denture wearing. A non-homogenous distribution of antimicrobial fillers should
also be considered with respect to the cytotoxicity of the obtained materials. Indeed, the cytotoxic
potential of different antimicrobial agents has been reported [36—40], and the concentrations required
to enhance the antimicrobial resistance of modified denture base materials have been reported to be
both non-cytotoxic and non-genotoxic [21,34,41]. The concentration of silver in the filler was 10%;
thus, the concentration of silver in the investigated materials was not greater than 80 ppm in the total
volume. Toxicological data [33] have shown that the composites used in our study should not present
cytotoxic risks, but these low values can be locally enhanced because of the noted inhomogeneities
caused by using pre-polymerized spheres. Silver ions have been reported to cause material toxicity [27].
In addition, studying the migration of silver ions from fillers in a polymer matrix can be combined
with abrasion studies. When dentures are worn, more silver could be released from the polymer
matrix through contact with the mucosa or while chewing, thereby improving antimicrobial activity.
In contrast, selective abrasion of the antimicrobial filler from the matrix may lead to an accelerated loss
of the ability to release silver ions into the environment. Another remaining question is the influence
of these suggested abrasion effects on the toxic potential of the filler. For these reasons, the release



Materials 2016, 9, 328 11 of 17

of ions from and the cytotoxic potential of proposed materials must be extensively investigated over
long periods.

The effect of storing samples in distilled water on the SR of microorganisms was also investigated
in our study. Numerous studies have investigated the initial antimicrobial properties of denture
base materials with different additives [27]. Pereira-Cenci et al. [42] showed that the delivery of new
dentures manufactured from commercially available materials significantly decreased the number
of Candida species after the first month of wear; however, the Candida levels increased over the
following month. This result shows that the regular replacement of dentures may not prevent
yeast colonization. The overall conclusion from these studies is that the most important aspect
of new antimicrobial denture base materials is the stability of the resulting efficacy. In our study
of a commercially available material, antifungal and antibacterial effects were not observed, which
corresponds with investigations that have shown a lack of resistance to C. albicans colonization [22,27].
In our investigations of S. aureus, the SR decreased for samples that were not stored in distilled
water. This unexpected result was confirmed by duplicating the tests, and it may have been related
to the release of residual leachable components into the environment. Moreover, similar results
have been reported for other dental materials [19,42—44]. Denture base resins contain polymerizable
methylacrylate/acrylate monomers and methacrylate copolymers. The antimicrobial activity of certain
acrylic and methacrylic copolymers has been demonstrated [45,46]. The manufacturer that supplied
the resin used in this study recommends storing new dentures for at least 12 h in tepid water prior to
use to reduce the concentration of rinsable or soluble components; however, this was not performed
for the non-stored samples. This step of the experimental protocol appeared to have an effect on the
findings because a reduction in the surviving number of bacteria was not confirmed for the samples
stored in distilled water. Similar antibacterial activity for the non-stored and non-filled samples was
not observed for E. coli, although Farah et al. [47] and Lu et al. [48] investigated the use of polymeric
materials and reported significantly higher antibacterial activity against S. aureus than for E. coli.
Several studies have reported that for antimicrobial additives and polymers, the effect against S. aureus
was lower than that against E. coli [45,49,50], a difference that indicates significant variability in
the results.

In our study, a C. albicans strain was used as a representative typical pathogenic microorganism
associated with denture wearing [4]. The C. albicans SR increased for samples after longer storage
periods. Although the composites with 0.25% filler initially showed low antifungal properties, these
properties were generally lost after the first week. Strong antifungal properties after two months of
storage were confirmed with filler concentrations of 1% or greater. After three months, the composites
with a filler concentration of 1% to 4% showed an increase in SR, although the value was still relatively
low. When analyzing SR results, the surviving number of fungi in CFU/mL (Table 2) should be
considered, because small differences in the SR may result from methodological limitations.

E. coli and S. aureus are not typical pathogenic microorganisms associated with denture wearing;
therefore, they were used as representative strains of gram-positive and gram-negative bacteria.
The results for these bacterial strains showed that after one week of storage, the samples with filler
concentrations of 0.25% and 0.5% lost their antibacterial activity, whereas the samples with the largest
filler concentrations presented low SR values (i.e., below 0.01%). Even when there were no changes or
only small changes in the SR, the surviving number of bacteria and fungi in CFU/mL slightly increased
over time. Prolonged storage may lead to further increases in SR and reductions in antimicrobial
properties; this would be consistent with other results obtained for dental materials, in which the
emission of antimicrobial Pt or Ag ions decreased strongly during the first hour of storage [20,26].
In addition, Nam et al. [23] and Sokotowski ef al. [26,51] showed that ion emissions reduced with
increasing storage duration. Kampmann et al. [52] reported that the antimicrobial activity of the used
filler was activated under humid conditions and that the mechanism of silver ion release was based
on the exchange of ions from the wet environment with silver from the inorganic, insoluble carrier.
This mechanism could be favorable for PMMA denture base resins due to their water sorption and
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porosity by reducing the possibility of microorganisms penetrating the material. In contrast, the results
obtained by Qin et al. [53] for silver sodium hydrogen zirconium phosphate-containing chitosan fibers
suggested that in liquid media, such as saliva, the presence of sodium chloride and proteins can
increase the number of silver ions released into the environment. This increase could lead to a faster
release of silver ions in vivo and an earlier loss of antimicrobial activity.

The in vitro findings presented here must be confirmed with further experiments conducted under
in vivo conditions. Because of the numerous additional factors related to in vivo conditions, such as
the deposition of salivary proteins on the dentures, differentiated specificity of cleaning materials by
saliva, direct contact with various foods and liquids and other environmental properties, in vitro tests
are only a starting point for evaluating the possibility of enhancing the antimicrobial properties of the
studied materials.

4. Materials and Methods

4.1. Material Preparation

As a matrix, the commercially available PMMA heat-cured denture base resin Meliodent Heat
Cure (Heraeus Kulzer, Hanau, Germany) was used. The material is a two-component “powder—liquid”
system. To eliminate the possibility of sedimentation during material storage, the filler was added only
to the “powder” component. As an antimicrobial filler, silver sodium hydrogen zirconium phosphate
(Milliken Chemical, Spartanburg, SC, USA) was used. The filler was introduced into the PMMA
component by mixing with a Pulverisette 5 planetary ball mill (Fritsch, Idar-Oberstein, Germany).
During milling, 50 ZrO; balls with a diameter of 10 mm were used. In the first stage, different milling
times (1, 3, 5, 10, 30 min) with a frequency of rotation of 400 rpm were used to establish the milling
parameters. Experimental millings were performed with 10 g of material sample and 3% (w/w) filler.
To determine the best parameters, two evaluation criteria were established: the uniform distribution
of filler particles on the PMMA spheres and a lack of visible damage to the PMMA spheres. For the
obtained powder—filler compositions, samples were collected from randomly selected locations, placed
on carbon tape (Agar Scientific, UK) and qualitatively examined with a Zeiss SUPRA 35 (Carl Zeiss,
Konstanz, Germany) scanning electron microscope at accelerating voltages of 1 and 5 kV. The best
results were obtained at a milling time of 5 min, and this condition was used for all of the material
preparations. For the following investigations, powder—filler compositions with filler concentrations
of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w) were produced.

4.2. Preparation of Polymerized Samples

Plates measuring 65 mm in length, 45 mm in width, and 2.5 mm in thickness were used to prepare
samples for microbiological tests, and SEM investigations were performed using a standard flasking
procedure used in prosthetics. The materials were polymerized in accordance with the instructions of
the resin manufacturer.

The polymerized plates were preliminarily wet-ground using 220-grit abrasive papers (Struers
A/S, Copenhagen, Denmark) to eliminate any possible unevenness and to initially standardize the
thickness. After this grinding process, the thickness of the plates was 2.2 + 1 mm. Square pieces
measuring 12 = 1 mm on a side were cut from the plates for the microbiological test, and rectangular
pieces measuring 10 + 1 x 20 + 1 mm were cut for the SEM investigation. The edges and surfaces of
the samples were wet-ground using 220-grit abrasive paper to remove imperfections on the edges after
cutting (all samples) and to standardize the dimensions (only samples for the microbiological tests).

The samples for the microbiological tests were then rinsed and wet-ground using 500-grit abrasive
paper to remove the scratches made by the previous grinding process; these samples were then
rinsed again. The final samples were 10.0 + 0.2 mm on a side and 2.0 + 0.2 mm thick. Next, the
samples were stored in distilled water at 37 + 1 °C for 7 days + 2 h, 30 days £ 2 h, 60 days + 2 h
or 90 days + 2 h. Each group of samples (i.e., material type-storage duration-microorganism strain)
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was placed separately into 250 + 10 mL of distilled water in a glass crystallizer and covered with
a petri dish. The crystallizers were placed in stainless steel chambers that contained distilled water
and were equipped with a heater, a pump for water motion, and a temperature controller. The water
in the crystallizers and chambers was replaced weekly. After being stored, the samples were placed
inside desiccators containing freshly dried silica gel and were dried at 37 + 1 °C for 4 h. An additional
sample group was not stored in distilled water. All samples were packed for plasma sterilization.

4.3. SEM Investigations of Polymerized Samples

Samples for the SEM investigations after wet-grinding were placed inside desiccators containing
freshly dried silica gel and were then dried at 40 + 1 °C for 2 h; then, a freeze-fracturing process was
used. The samples were immersed in liquid nitrogen, broken, etched with an 85% (w/w) solution of
orthophosphoric acid (Avantor, Gliwice, Poland) for 15 s, and then sputtered with silver. The obtained
fractures were observed by SEM using a Zeiss SUPRA 35 scanning electron microscope at accelerating
voltages of 1 and 5 kV.

4.4. Microbiological Tests

The in vitro antimicrobial activities of the composites were examined according to the methods
described by Melaiye et al. [54] and Xu et al. [55], with certain modifications. The following standard
strains of microorganisms were used: gram-positive Staphylococcus aureus ATCC 25923 (S. aureus),
gram-negative Escherichia coli ATCC 25922 (E. coli) and the yeast-type fungus Candida albicans ATCC
10231 (C. albicans). These standard microorganism strains were acquired from the American Type
Culture Collection (ATCC). Polymerized and sterilized samples of the studied composites were
introduced individually in 2 mL of fungal or bacterial suspensions in tryptone water, which contained
approximately 1.5 x 10° CFU/mL (CFU—colony forming units) of C. albicans, E. coli, or S. aureus.
Suspensions of 1.5 x 10° CFU/mL of fungi or bacteria in tryptone water were tested as a positive
control. Pure tryptone water was tested as a negative control. All of the samples with microorganism
suspensions were incubated in a shaking incubator for 17 h at 37 °C for E. coli and S. aureus and at
35 °C for C. albicans. After incubation, 20 uL of each suspension was seeded onto Sabouraud agar
plates for C. albicans, Columbia agar with 5% sheep blood plates for S. aureus and MacConkey agar
plates for E. coli. The Sabouraud agar, Columbia agar, and MacConkey agar were purchased from
bioMerieux (Marcy I'Etoille, France). The cultured plates were incubated at 37 °C for 24 h (bacteria) or
35 °C for 48 h (yeast). Then, the number of bacterial or fungal colonies (CFU) were counted. These
counts were used to calculate the surviving number of bacteria or fungi [56]. Each material-storing
condition with each standard strain of microorganisms was tested in quadruplicate.

The SR was calculated according to the following equation:

SR = - x 100%, 1)

where SR is the survival rate (%), V. is the number of viable fungal or bacterial colonies of the positive
control, and V is the number of viable fungal colonies of the test specimen.

4.5. Statistical Analysis

The results were subjected to a statistical analysis using Statistica software (version 10, StatSoft,
Tulsa, OK, USA), and the non-parametric Kruskal-Wallis test (« = 0.05) was also used.

5. Conclusions

The PMMA denture base material was successfully modified with ceramic antimicrobial filler,
and the obtained composites showed a low initial SR for the tested fungi and bacteria. The hypothesis
that the composites filled with silver sodium hydrogen zirconium would show decreased antimicrobial
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efficacy over time was confirmed. Within the limits of this study, the following conclusions were
formulated.

e  The increased SRs with prolonged storage duration indicate that further storage would result
in a loss of resistance against microorganisms. For materials modified with antimicrobial fillers,
additional long-term storage tests should be conducted. For denture base materials (and other
similarly used materials), it is important to consider that new dentures may not be colonized
immediately and that the initial resistance against fungi and bacteria should only be used as a
starting point.

e  The use of commercially available, two-component, PMMA denture base materials presents
limitations because the pre-polymerized spheres are a major cause of inhomogeneity among the
obtained composites. This inhomogeneity creates areas free of filler, which affects the properties
of the materials. Therefore, additional research should be performed on the introduction of fillers
to these spheres during suspension polymerization to obtain better distributions at lower filler
concentrations and to improve the antimicrobial properties.

e Long-term studies of the migration of silver ions from the polymer matrix and the influence of
different media on ion emission need to be performed. Future results should be coupled with the
presented research as well as with cytotoxicity studies.
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