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Abstract: The phylogenetic position and taxonomic status of Rhynchocyclidae (Aves: Passeriformes)
have been the subject of debate since their first description. In most models, Rhynchocyclidae
represents a subfamily-level taxon placed within the Tyrant Flycatchers (Tyrannidae). Considering
that this classification does not include cytotaxonomic characters, we tested the hypothesis that the
chromosome organization of Rhynchocyclidae members differs from that of Tyrannidae. Hence, we
selected two species, Tolmomyias sulphurescens, and Pitangus sulphuratus, representing Rhynchocycli-
dae and Tyrannidae, respectively. Results revealed a diploid number (2n) of 60 in T. sulphurescens
and 2n = 80 in P. sulphuratus, indicating significant chromosomal differences. Chromosome mapping
of Gallus gallus (GGA) and Taeniopygia guttata bacterial artificial chromosome (BAC) corresponding to
chromosomes GGA1-28 (except 16) revealed that the genome evolution of T. sulphurescens involved
extensive chromosome fusions of macrochromosomes and microchromosomes. On the other hand,
P. sulphuratus retained the ancestral pattern of organization of macrochromosomes (except the centric
fission involving GGA1) and microchromosomes. In conclusion, comparing our results with previous
studies in Tyrant Flycatchers and allies indicates that P. sulphuratus has similar karyotypes to other
Tyrannidae members. However, T. sulphurescens does not resemble the Tyrannidae family, reinforcing
family status to the clade named Rhynchocyclidae.

Keywords: phylogenetic relationships; chromosomal rearrangements; cytotaxonomy; passerines;
tyrant flycatchers

1. Introduction

The phylogenetic position and taxonomic status of the flycatcher lineage named Rhyn-
chocyclidae (Aves: Passeriformes) have been debated since their proposition. In most
classifications, it represents a subfamily placed within the Tyrant Flycatchers (Tyrannidae),
composing the most diverse Neotropical family of suboscine passerines [1]. Tyrannidae
“lato sensu” exhibits high degrees of morphological, ecological, and behavioral diversity,
drawing the attention of several phylogenetic studies [1–5]. However, some aspects of
their relationships and classification remain controversial. In a recent study of a massive
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dataset resulting in a complete super-tree of the Tyranni passerines (“suboscines”), Tyran-
nidae and Rhynchocyclidae were recovered as monophyletic and well-supported sister
clades which diverged 21.8 million years ago (Mya) [6]. In addition, Onychorhynchidae,
Oxyruncidae, Pipritidae, Platyrinchidae, and Tachurisidae were also well-supported as
separated families [6].

Most of the Tyrant Flycatchers and allies have their diploid number (2n) close to 80.
However, an interesting 2n variation has been found, ranging from 2n = 60 in Platyrinchus
mystaceus (Platyrinchidae) to 2n = 84 in Cnemotriccus fuscatus (Tyrannidae: Fluvicolinae)
(Table 1). The typical 2n of Tyrant Flycatchers and allies represents the most frequent finding
in other Passeriformes and the whole Aves. According to Degrandi et al. [7], approximately
61% of avian species have a karyotype description of 2n between 76 and 82 chromosomes.
Considering that the putative avian ancestral karyotype (PAK) had 2n = 80 [8], the deviation
from this diploid number resulted from different chromosomal rearrangements. Usually,
the decrease or increase of the diploid number can result from fusion or fission events,
respectively [9]. While in some orders, the 2n was increased, such as in Piciformes (up
to more than 100 chromosomes) [10], decreased, such as in Psittaciformes [11,12], in
Passeriformes, the ancestral 2n is conserved in most species [7]. Unfortunately, due to the
poor quality of G-banding in macrochromosomes and the small size of microchromosomes,
classical cytogenetic techniques have provided limited information concerning the process
of karyotypic evolution in birds.

Table 1. Available cytogenetic data for species of Tyrant Flycatchers and related families (classification
according to the relationships found by Harvey et al. [6]).

Species 2n Family Reference

Platyrinchus mystaceus 2n = 60 Platyrinchidae [13]
Elaenia parvirostris 2n = 78 Tyrannidae [13]
Elaenia spectabilis 2n = 80 Tyrannidae [14]

Serpophaga subcristata 2n = 82 Tyrannidae [15]
Pitangus sulphuratus 2n = 80 Tyrannidae [15]

Tyrannus melancholicus 2n = 78 Tyrannidae [13]
Tyrannus savana 2n = 78 Tyrannidae [13]
Myiarchus ferox 2n = 76 Tyrannidae [13]

Knipolegus cyanirostris 2n = 78 Tyrannidae [16]
Satrapa icterophrys 2n = 82 Tyrannidae [15]

Cnemotriccus fuscatus 2n = 84 Tyrannidae [13]
Empidonax alnorum 2n = 82 Tyrannidae [17]

Empidonax flaviventris 2n = 82 Tyrannidae [17]
Empidonax hammondii 2n = 82 Tyrannidae [17]
Empidonax minimus 2n = 82 Tyrannidae [17]

Empidonax traillii 2n = 82 Tyrannidae [17]

Fortunately, the use of fluorescence in situ hybridization (FISH) can overcome these
limitations. Experiments of comparative chromosome painting with several sets of probes
have been performed in different bird lineages to clarify the chromosomal rearrangements
involved in the reorganization of avian karyotypes [7,8,18]. Among them, the most widely
used sets were from Gallus gallus (GGA) and Leucopternis albicollis [7,8,18,19].

Chromosome painting studies using macrochromosomes probes from these species
have been applied only in four Tyrant Flycatcher species, Elaenia spectabilis (2n = 80),
Serpophaga subcristata (2n = 82), Pitangus sulphuratus (2 = 80), and Satrapa icterophrys
(2n = 82) [14,15]. These studies have revealed the fission of chicken chromosome 1 in
all these species, which can be considered as a candidate synapomorphy for Passeriformes
since it was found in all Passeriformes studied so far [7,18]. In addition, S. icterophrys
has fission in chicken chromosome 2 [15]. Compared to PAK [8], it is likely that the kary-
otype evolution of Tyrant Flycatchers involved mostly fissions events. However, only the
macrochromosomes have been analyzed in this lineage.
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Although macrochromosomes represent approximately 77% of the average avian
genome size, microchromosomes contain around 50% of the avian genes [20–22]. Despite
the importance of microchromosomes, their organization was studied in few avian orders,
and interchromosomal rearrangements involving them have been found only in few or-
ders [12,23–26]. Among the Passeriformes, only five species have been investigated: four
oscine members, Taeniopygia guttata, Turdus merula, Serinus canaria, and Sicalis flaveola, and
one suboscines member, Willisornis vidua [24,27,28]. No evidence of interchromosomal rear-
rangements involving the microchromosomes was observed in these oscine species [24,28].
On the other hand, a fusion involving G. gallus chromosome pairs 5 and 17 was observed
in W. vidua [28]. Apart from this, the organization of the microchromosomes in Tyrannidae
and Rhynchocyclidae flycatchers remains virtually unknown, as in most birds. In the latter,
even the macrochromosomes organization has not been explored. Therefore, further stud-
ies must search for chromosome signatures to understand the phylogenetic relationship
and chromosome organization in this group.

This study aimed to compare the chromosome organization of members belonging
to Rhynchocyclidae and Tyrannidae to verify if cytotaxonomic characters corroborate the
family-level status of Rhynchocyclidae. With this in mind, we selected Tolmomyias sul-
phurescens as a representative member of Rhynchocyclidae and P. sulphuratus from Tyran-
nidae. T. sulphurescens was selected randomly from the Rhynchocyclidae members and the
P. sulphuratus was selected because it has a typical karyotype for Tyrannidae members, as
indicated on previously study [15]. Our results indicated considerable chromosomal differ-
ences between both species, and the comparison with previous studies in Tyrant Flycatchers
and allies reinforces that T. sulphurescens does not resemble the family Tyrannidae.

2. Materials and Methods
2.1. Specimens and Chromosome Preparation

Two male individuals of T. sulphurescens (from Porto Vera Cruz city, Rio Grande do Sul
State, Brazil) and one male of P. sulphuratus (from São Gabriel city, Rio Grande do Sul State,
Brazil) were used in this study. The animals were captured in their natural environment
using mist nests (permissions 026/2012 and 018/2014—CEUA/Universidade Federal do
Pampa, and SISBIO 33860-3—ICMBio). From each individual, skin biopsies were used to
establish fibroblast cell culture, according to Furo et al. [11]. The chromosome preparations
were obtained by standard arrest with colcemid (1 h), hypotonic treatment with 0.075 M
KCl (15 min), and cell fixation in methanol–acetic acid (3:1).

2.2. Giemsa Staining

Chromosome morphology and diploid numbers (2n) were determined based on the
analysis of at least 30 stained metaphases (5% Giemsa in phosphate buffer pH 6.8 for
5 min) from each individual. Karyotypes were arranged according to chromosome size
and morphology following Guerra [29].

2.3. Fluorescence In Situ Hybridization (FISH)

Two G. gallus or T. guttata Bacterial artificial chromosome (BAC) probes corresponding
to each pair GGA1-28 (except GGA16) were selected and positioned as close as possible to
the end of each chromosome arms and applied to metaphases of T. sulphurescens (Table S1).
In P. sulphuratus, only BAC probes for microchromosomes GGA11-28 (except GGA16)
were used because the macrochromosomes have been previously published by Rodrigues
et al. [15] (Table S1). The GGA16 was not tested in both species because there are no
BAC probes available for this chromosome. Most of the BAC probes were chosen from
G. gallus, however, for some chromosomes, the T. guttata probes give stronger signals
than G. gallus ones in Passeriformes species. In this case, we chose T. guttata probes. The
preparation of probes and hybridization were performed following O’Connor et al. [24].
At least 15 metaphase spreads per individual and for each probe were analyzed to confirm
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the FISH results. The chromosomes were counterstained with DAPI (blue), and the BAC
probes were labeled with (Texas Red) (red) or FITC (green).

Although we used BAC probes from G. gallus and T. guttata, all karyotype comparisons
were performed with the chicken karyotype, since it has a similar karyotype to the ancestral
avian lineage (Palaeognathae) [30] and is the reference in cytogenetics and genetics studies.

3. Results
3.1. Karyotype Description

The flycatchers analyzed here showed distinct karyotypes. T. sulphurescens had a
lower diploid number (2n = 60), consisting of 11 macrochromosomes, including the sex
chromosomes, and 19 microchromosomes (Figure 1A). On the other hand, P. sulphuratus
had a typical avian diploid number (2n = 80), consisting of 12 macrochromosomes, includ-
ing the sex chromosomes, and 28 microchromosomes (Figure 1B). The Z chromosome is a
submetacentric in both species.
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Figure 1. Conventionally stained complete karyotypes of Tolmomyias sulphurescens with 2n = 60 (A)
and Pitangus sulphuratus with 2n = 80 (B) showing homologies to Gallus gallus (right). The homologies
of P. sulphuratus macrochromosomes were based on Rodrigues et al. [15].

3.2. Fluorescence In Situ Hybridization (FISH) Experiments

The hybridizations of BAC probes from G. gallus chromosome 1–28 (except 16) re-
vealed extensive chromosome rearrangements in T. sulphurescens. Out of 27 chromosomes
tested, only 12 chromosomes (GGA1, 2, 5, 17, and 19–27) were not involved in interchromo-
somal rearrangements (Figures 1A and 2). The following associations were observed in
T. sulphurescens: GGA3/4q (TSU 1), GGA4p/11 (TSU 8), GGA6/14/12 (TSU 4), GGA7/8
(TSU 5), GGA9/10 (TSU 7), GGA15/18 (TSU 9), GGA13/micro (TSU 10); GGA28/micro
(TSU 11). It was clear that G. gallus chromosomes 13 and 28 are fused with other elements,
because the signals were observed in larger chromosomes, if we compare with the sizes of
G. gallus chromosomes 13 and 28. Probably, one of the microchromosome pairs not used
in our analysis (GGA16, 29–38) fused with the GGA13 and 28 to originate the TSU10 and
11, respectively. On the other hand, there was no evidence of rearrangements involving
microchromosomes in P. sulphuratus (Figures 1B and 3).
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Figure 2. Representative cross-species hybridization results using G. gallus (CH261) and T. guttata
(TGMCBA) BAC probes on Tolmomyias sulphurescens metaphases. (A) G. gallus macrochromosome
1 CH261-36B5 (green) and CH261-118M1 (red); (B) G. gallus macrochromosome 3 TGMCBA-295P5
(green) and CH261-169K18 (red); (C) G. gallus macrochromosome 4 CH261-83E1 (green) and G.
gallus microchromosome 11 CH261-121N21 (red); (D) G. gallus microchromosome 12 CH261-60P3
(green), and G. gallus macrochromosome 6 CH261-49F3 (red); (E) G. gallus microchromosome 26
CH261-186M13 (green) and CH261-170L23 (red); (F) G. gallus microchromosome 28 CH261-64A15
(green) and CH261-72A10 (red).
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Figure 3. Representative cross-species hybridization results using G. gallus (CH261) and T. guttata
(TGMCBA) BAC probes on Pitangus sulphuratus metaphases. (A) G. gallus microchromosome 13
CH261-115I12 (green) and TGMCBA-321B13 (red); (B) G. gallus microchromosome 20 TGMCBA-
250E3 (green) and TGMCBA-341F20 (red); (C) G. gallus microchromosome 22 CH261-40J9 (green)
and CH261-18G17 (red); (D) G. gallus microchromosome 26 CH261-186M13 (green) and CH261-
170L23 (red).
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4. Discussion

Passerines usually show a 2n close to 80 chromosomes, however, Tyrant Flycatchers
and allies have a remarkable variation, from 2n = 60 in P. mystaceus (Platyrinchidae) to
2n = 84 in C. fuscatus (Tyrannidae) [13]. To the best of our knowledge, the karyotype
of T. sulphurescens (2n = 60) is described here for the first time, and the karyotype of
P. sulphuratus (2n = 80) agrees with its recent description [15]. Hence, our results reinforce
the chromosomal variation observed previously among Tyrant Flycatchers and allies.

Low diploid numbers, such as seen in T. sulphurescens and P. mystaceus, both with
60 chromosomes, are rare among Passeriformes [7]. This may indicate a common ancestor
in these species. According to the phylogenetic relationships found by Harvey et al. [6],
Rhynchocyclidae and Tyrannidae are sister groups to Tachurisidae, and Platyrinchidae
is the sister group to the former families (Figure 4). Tachurisidae represents a monotypic
family, with Tachuris rubrigastra as the unique member. Despite the fact that there are no
cytogenetic studies in this species, and considering the phylogenetic relationships proposed
by Harvey et al. [6], a parsimony-based view would predict it has a low diploid number,
similar to T. sulphurescens and P. mystaceus. Alternatively, the diploid number found in
T. sulphurescens (Rhynchocyclidae) and P. mystaceus (Platyrinchidae) may be a result of
independent karyotype reorganization. However, considering that low diploid number
is rare in birds, especially Passeriformes, and both species have similar chromosomal
morphology, this alternative seems not to be parsimoniously supported.
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diploid numbers (2n) for Rhynchocyclidae and Platyrinchidae are based in the data obtained to
Tolmomyias sulphurescens (present study) and Platyrinchus mystaceus [13]. The 2n for Tyrannidae is
considered as ~80 because most of the species karyotyped so far in this family have approximately
80 chromosomes (Table 1).

Unfortunately, few species of Tyrant Flycatchers and allies have been karyotyped
(Table 1). Among the Rhynchocyclidae members, the first karyotype description is from
T. sulphurescens (present study). However, Gunski et al. [13] described in their paper un-
published data that Corythopis delalandi, another Rhynchocyclidae member, has a similar
karyotype to P. mystaceus, and consequently, similar to T. sulphurescens. These observations
indicate that low diploid number may be a common feature among the Rhynchocycli-
dae members.

Although T. sulphurescens and P. sulphuratus have a similar number of macrochro-
mosomes, 11 and 12 pairs, respectively, they differ substantially in the number of mi-
crochromosomes, 22 pairs in T. sulphurescens and 28 in P. sulphuratus, highlighting the
role of chromosome rearrangements involving microchromosomes in T. sulphurescens.
In fact, our molecular cytogenetic results revealed that several microchromosomes and
macrochromosomes were involved in fusion events in T. sulphurescens. At the same time,
no evidence of this type of rearrangement was found in P. sulphuratus. Fusion involv-
ing microchromosomes are rare events in birds and have been found extensively in few
avian orders [24–26]. Here, we also demonstrated extensively fusion involving microchro-
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mosomes in Passeriformes, e.g., T. sulphurescens. Recent studies demonstrated that four
songbirds, Taeniopygia guttata, Turdus merula, Serinus canaria, and Sicalis flaveola [24,28], and
here P. sulphuratus, have the ancestral pattern of microchromosome organization. Hence,
interchromosomal rearrangements involving microchromosomes represent an unusual fea-
ture of T. sulphurescens and probably also in closely related species, e.g., Rhynchocyclidae,
Tachurisidae, and Platyrinchidae (Figure 4).

Considering the high chromosomal differences between T. sulphurescens and P. sulphu-
ratus, our data indicate that, at least from the cytogenetic point of view, these species belong
to different lineages. Hence, our findings reinforce the diagnosability and recognition of
the Rhynchocyclidae family [2,4–6,31–34].

A recent study found evidence that the microchromosomes GGA10, GGA13, and
GGA14 are more prone to interchromosomal rearrangements than others. Moreover,
only GGA10 was supported with statistical significance after adjusting the number of
tests performed [25]. Here, we reinforce these findings since, in T. sulphurescens, these
microchromosomes were also involved in fusion events (Figure 1A). In addition, we
reinforce that the microchromosomes GGA22, GGA24, GGA26, and GGA27 seem not
prone to interchromosomal rearrangements.

The most unexpected finding in T. sulphurescens was that the G. gallus chromosome 1
(GGA1) probe hybridizes in only one pair: up to now, all Passeriformes analyzed showed
centric fission in this chromosome [18]. Hence, two hypotheses may be highlighted: (1) the
GGA1 as an entire chromosome represents a plesiomorphic (ancestral) character retained
in T. sulphurescens, or (2) T. sulphurescens had the fusion of GGA1p and GGA1q, restoring
the ancestral character. Considering that the centric fission in this chromosome was found
in all Passeriformes and Psittaciformes (Passeriformes sister group) species previously
studied [7,18], it is likely that the second hypothesis is more plausible.

Together with previous studies, our results indicate that the karyotype of Tyrannidae
evolved with few interchromosomal rearrangements. On the other hand, these rearrange-
ments are likely to be the most frequent events in Rhynchocyclidae when compared to
PAK [8]. In general, chromosomal rearrangements occur in breakpoint regions, usually
associated with genomic features, including transposable elements, and conserved noncod-
ing elements [35,36]. Hence, the presence of these genomic features in Rhynchocyclidae
members and not in Tyrannidae members might facilitate the extensive chromosome
reorganization in the former.

The Passeriformes order represents more than half of all living birds and displays
great diversity in richness within subgroups, morphological and ecological diversifica-
tion [37,38]. Interestingly, the rise of this great diversity was not accompanied by a high
rate of interchromosomal rearrangements (e.g., fissions and fusions) [7,18], except in T.
sulphurescens (present study). This may indicate that, in general, the maintenance of the
ancestral pattern of karyotype in Passeriformes was crucial to the successful diversification
seen in this clade. However, it remains unclear why extensive chromosome rearrangements
evolved in some avian lineages, such as in T. sulphurescens and probably in other closely
related species, while other Passeriformes retained the ancestral pattern of karyotype
organization (~80 chromosomes). Moreover, it is known that Passeriformes underwent a
high number of intrachromosomal rearrangements, such as paracentric and pericentric
inversions [39,40].

In conclusion, our results indicate that the chromosome evolution of T. sulphurescens
involved extensive chromosome fusions of macrochromosomes and microchromosomes,
while P. sulphuratus retained the ancestral pattern of organization of macrochromosomes
and microchromosomes, except for the fission of G. gallus chromosome 1. The comparison
of our results with previous studies in Tyrant Flycatchers and allies indicates that the kary-
otype of P. sulphuratus is similar to other Tyrannidae members, however, T. sulphurescens
does not resemble the Tyrannidae family, reinforcing the status of the family to Rhynchocy-
clidae. The high chromosomal differences observed in Tyrant Flycatchers and allies make
these birds an ideal model to investigate the role of chromosomal rearrangements in speci-
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ation and to detect what contributed to chromosomal rearrangements Rhynchocyclidae,
but not in Tyrannidae members.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10102650/s1, Table S1: List of BAC applied to Tolmomyias sulphurescens (TSU) and
Pitangus sulphuratus (PSU).
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