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Abstract

Introduction: Cognitive impairment is common in hemodialysis (HD) patients; how-

ever, the underlying mechanisms have not been fully understood. The "triple-network

model" that consists of the salience network (SN), central executive network (CEN),

and default mode network (DMN) has been suggested to play an important role in

various cognitive functions. However, dynamic functional connectivity (FC) alterations

within the triple networks have not been investigated in HD patients.

Methods: Sixty-six HD patients and 66 healthy controls (HCs) were included in this

study. The triple networks were identified using a group spatial independent com-

ponent analysis, and dynamic FC was analyzed using a sliding window approach and

k-means clustering algorithm. Furthermore, we analyzed the relationships between

altered dynamic FC parameters and clinical variables in HD patients.

Results: The intrinsic brain FC within the triple networks was clustered into four con-

figuration states. Compared with HCs, HD patients spent more time in State 1, which

was characterized by weak connections between the DMN and CEN and SN. HD

patients showed lower number of transitions across different states than HCs. More-

over, the number of transitions and mean dwell time in State 1 were associated with

cognitive performance in HD patients.

Conclusion: Our findings suggest abnormal dynamic FC properties within the triple

networks in HD patients, which may provide new insights into the pathophysiological

mechanisms of their cognitive deficits from the perspective of dynamic FC.
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1 INTRODUCTION

Chronic kidney disease (CKD) is a substantial health problem world-

wide, affecting 10−12% of the population (Levin et al., 2017). End-

stage renal disease (ESRD) is the terminal stage of CKD, and usu-

ally requires maintenance hemodialysis (HD) to sustain life over the

long term (Webster et al., 2017). Notably, cognitive impairment (CI) is

extremely common in HD patients, across numerous domains, particu-

larly in the domains of orientation and attention and executive func-

tion, and patients often experience multiple deficits simultaneously

(Drew et al., 2017; O’Lone et al., 2016; van Zwieten et al., 2018). Cog-

nitive deficits are associated with poorer quality of life, risk for hospi-

talization, and increased mortality in HD patients (Drew et al., 2015;

O’Lone et al., 2016; van Zwieten et al., 2019). However, up to now, the

underlying pathophysiological mechanisms of CI in HD patients have

not been completely clarified.

Resting-state functional magnetic resonance imaging (Rs-fMRI)-

based functional connectivity (FC) analysis, which quantifies intrin-

sic functional brain organization (Biswal et al., 1995), has become a

valuable and non-invasive tool to investigate the network connectiv-

ity basis of cognitive deficits in HD patients. For example, widespread

weakening of cortical and subcortical network connectivity has been

identified in HD patients (G. Zheng et al., 2014). The highly influential

"triple-network model," which was proposed by Menon (2011), pro-

vides a common framework for understanding the dysfunction in core

neurocognitive networks across multiple psychiatric and neurological

disorders. This model integrates three key intrinsic brain networks—

the default mode network (DMN), central executive network (CEN),

and the salience network (SN) into a single cohesive model that serves

as the basis for normal behavior and cognition. Evidences from pre-

vious studies have demonstrated impaired interactions of the SN-

centered "triple-network model" in various brain diseases, such as

Alzheimer’s disease (C. Li et al., 2019) and major depression disorder

(H. Zheng et al., 2015). Our recent study of large-scale network analy-

sis using graph theory-based approaches have demonstrated disrupted

topological organizations of brain functional networks in patients with

ESRD (Yue et al., 2021); however, we did not focus on cross-network

interactions of the triple networks. More importantly, this previous

whole-brain FC study onESRDpatients assumed that the FCwas static

within the entire RS-fMRI scan, and did not consider the important

dynamic aspect over time.

In recent years,more andmore studies have focused on the dynamic

changes of intrinsic FC across large-scale brain functional networks.

Dynamic functional network connectivity has been identified and

explored in neuroimaging studies of healthy subjects, which was

associated with higher-order cognitions (Kucyi et al., 2017; Shine

et al., 2019; Soreq et al., 2019). Moreover, abnormal dynamic brain

functional network connectivity has also been demonstrated in clinical

patients, such as those with bipolar disorder (Wang et al., 2019),

Parkinson’s disease (Kim et al., 2017), and autism spectrum disorder

(Rashid et al., 2018). In addition, researchers have revealed abnormal

dynamic FC in the triple networks in bipolar and major depressive

disorders (Wang et al., 2020), providing new biomarkers for under-

standing their neural physiopathology. However, up to date, no studies

have investigated the alterations of dynamic functional network

connectivity in ESRD patients undergoing HD.

Considering the important roles of the triple networks in cognitive,

perceptual, affective, and social functions and the important dynamic

aspect of FC over time, we hypothesized that HD patients had abnor-

mal dynamic FC in the triple networks and the altered dynamic FC

properties might be the neural mechanisms underlying their cogni-

tive dysfunction. To test our hypotheses, we investigated the dynamic

FC alterations in HD patients compared with healthy controls (HCs)

using a spatial group independent component analysis (ICA), a sliding

window approach and k-means clustering algorithm, and explored the

underlying neural mechanisms underlying CI in HD patients.

2 METHODS

2.1 Participants

This prospective study was approved by the local Ethics Committee

and followed the ethical guidelines of theDeclaration of Helsinki; writ-

ten informed consent was acquired from each subject before inclu-

sion. A subset of our prior study sample (Yue et al., 2021) was included

in this new analysis. In total, 66 patients with ESRD who received

maintenance HD thrice weekly (HD group; 32 males and 34 females;

mean age 33.03 ± 8.29 years, range from 19 to 45 years) were

included in our study. Patients were included if they (1) had a history

of chronic glomerulonephritis (disease duration > 6 months), and had

reached ESRDwith an estimated glomerular filtration rate of less than

15 mL/min per 1.73 m2; (2) received HD for at least 6 months; (3)

aged > 18 years; and (4) right handed and had normal sight. The fol-

lowing exclusion criteria were used in our study: (1) history of drug

abuse or alcohol addiction; (2) presence of organic brain lesions, such

as tumor or stroke; (3) history of head trauma; (4) history of neuro-

logical or psychiatric disorders; (5) history of diabetic nephropathy, or

hypertensive nephropathy, or nephrotic encephalopathy; (6)metabolic

or cardiovascular diseases, such as diabetes and hypertension; and (7)

head movement greater than 1.0 mm or 1.0◦, or mean framewise dis-

placement value exceeding themean 0.2mm.

Additionally, 66 age-, sex- and education-matched HCs (HC group;

36 males and 30 females; mean age 32.89 ± 7.82 years, range from 19

to46 years) from the local community participated in the study. All HCs

were right handed and had normal sight. The exclusion criteria used for

the HC group were the same as those used for the HD group, and no

HCswere excluded according to this exclusion criteria.

2.2 Neuropsychological tests

Before MR scanning, a battery of neuropsychological tests, includ-

ing the Montreal Cognitive Assessment (MoCA), Trail Making Test

A (TMT-A), Symbol Digit Modalities Test (SDMT), and 17-item ver-

sion of the Hamilton Depression Rating Scale (HAMD) were per-

formed by a neurologist (a non-author with 15 years of experience in
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neuropsychological scale test). Specifically, theMoCA is a psychometri-

cally valid instrument in assessment of the global cognitive function for

all subjects. TheTMT-A is regardedas auseful validmeasureof concen-

tration, mental tracking, and audio visuomotor speed, and the SDMT is

widely applied tomeasurepsychomotor speed.Moreover, theHAMDis

a primary and sensitive tool for themeasurement of subjective depres-

sion level of individuals.Neuropsychological testingwas performed the

day after the patient’s second dialysis session of the week. This was to

avoid the immediate changes in cognition during and immediately after

a dialysis session (Murray et al., 2007).

2.3 Laboratory examinations

Blood and urine tests were performed for all HD patients within

3 days before MRI examinations. The hemoglobin, serum creatinine,

and blood urea nitrogen levels were recorded. No biochemistry tests

were performed in HCs.

2.4 MRI data acquisition

MR imaging data were acquired using a 3T GE Discovery MR750

scanner (General Electric Healthcare, Milwaukee, WI) with a 16-

channel head coil. All subjects were instructed to be quiet, keep their

eyes closed but stay awake, and try not to think about anything.

First, conventional T1-weighted, T2-weighted, and T2-weighted fluid-

attenuated inversion recovery imaging sequences were acquired to

exclude organic brain lesions. Then, the Rs-fMRI data were obtained

using an echo-planar imaging (EPI) sequencewith the following param-

eters: 32 axial slices; repetition time (TR)/echo time (TE)=2000/41ms;

field of view (FOV) = 240 × 240 mm2; matrix size = 64 × 64; slice

thickness = 5 mm; slice gap = 0.4 mm; flip angle = 90◦. Each func-

tional image comprised 180 brain volumes and lasted 360 s. High-

resolution three-dimensional T1-weighted anatomical images were

acquired using a three-dimension brain volume imaging sequence with

the following parameters: 188 sagittal slices; inversion time= 450 ms;

TR/TE = 8.2/3.2 ms, FOV = 256 × 256 mm2; matrix size = 256 × 256;

slice thickness= 1mm; flip angle= 12◦.

2.5 Image preprocessing

TheData Processing &Analysis for Brain Imaging toolbox (DPABI, ver-

sion 4.1; http://rfmri.org/dpabi) (Yan et al., 2016) was used for pipeline

data analysis of Rs-fMRI. Briefly, the first 10 volumes of the Rs-fMRI

dataset of each subject were discarded to allow for MR signal equi-

librium; thus, the remaining 170 volumes were used for further anal-

yses. Then, the remaining Rs-fMRI data were corrected for the tem-

poral differences between slices, and were realigned to the first vol-

ume for the correction of head motion. Next, the corrected Rs-fMRI

data were spatial normalized to the standard Montreal Neurological

Institute (MNI152) space (resampling voxel size = 3 × 3 × 3 mm3)

by using diffeomorphic anatomical registration through exponentiated

Lie algebra (DARTEL) (Ashburner, 2007). Finally, the normalized Rs-

fMRI images were spatially smoothed with a 6-mm full-width at half-

maximumGaussian kernel.

2.6 Group ICA and identification of intrinsic brain
networks

To decompose the preprocessed Rs-fMRI data into different inde-

pendent components (ICs), spatial group ICA was performed using

the Group ICA of fMRI Toolbox (GIFT, version 4.0b; http://icatb.

sourceforge.net). The ICA included three steps: (1) data reduction; (2)

ICs decomposition; and (3) back reconstruction. Specifically, we first

used a two-step principal component analysis (PCA) to reduce the data

into 37 ICs. This averaged IC number was determined using the min-

imum description length (MDL) criteria (Y. O. Li et al., 2007) and was

used for each subject for ICA decomposition. Second, ICs estimation

was performed using the Infomax algorithm (Bell & Sejnowski, 1995).

In this step, the spatial map and the time course of blood oxygena-

tion level-dependent (BOLD) signal were generated for each IC. This

step was repeated 100 times using the ICASSO algorithm to iden-

tify the most stable and reliable components (Himberg et al., 2004).

Finally, subject-specific spatial maps and time courses for each ICwere

obtained using group ICA back reconstruction algorithm (Calhoun et

al., 2001), and the subject-specific maps were converted to z-scores.

Subsequently, all ICs were evaluated based on the group ICmaps by

following the criteria suggested by previous studies (Allen et al., 2014;

Cordes et al., 2000; Kim et al., 2017): (1) peak activations of spatial

maps located in gray matter; (2) low spatial overlap with known vas-

cular, ventricular, motion, and susceptibility artifacts; (3) time courses

dominated by low-frequency signals (ratio of powers below 0.1 Hz to

0.15−0.25 Hz in spectrum); and (4) time courses characterized by a

highdynamic range (a rangedifferencebetween theminimumandmax-

imumpower frequencies).Using the spatial sorting functionofGIFT,we

selected five ICs that correspond to the anterior DMN (aDMN), poste-

rior DMN (pDMN), left CEN (LCEN), right CEN (RCEN), and SN, based

on the maximum spatial correlation with the spatial network template

(Shirer et al., 2012).

To remove physiological and scanner noise sources, we performed

post-processing steps to the time courses of ICs, which included: (1)

detrending linear, quadratic, and cubic trends; (2) multiple regression

of the six realignment parameters and their temporal derivatives; (3)

removal of detected outliers; and (4) low-pass filtering with a high-

frequency cutoff of 0.15 Hz. The outliers were detected based on the

median absolute deviation, which is implemented in 3D DESPIKE. The

outlierswere replacedwith the best estimate using a third-order spline

fit to the clean portion of the time courses. At last, the remaining time

courses were used for further dynamic FC analyses.

2.7 Dynamic FC computation

Aslidingwindowapproachwas applied for the computationof dynamic

FC using the Temporal dFNC toolbox in GIFT. In each window, the

http://rfmri.org/dpabi
http://icatb.sourceforge.net
http://icatb.sourceforge.net
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Pearson’s correlation coefficients of time courses of each pair of

the five resting-state networks were calculated, resulting in a 5 × 5

correlation matrix. We used a tapered window, created by convolving

a rectangle (width = 30 TRs, i.e., 60 s) with a Gaussian (σ = 3 TRs), and

the window was shifted with step size of 1 TR each time, resulting in

140 consecutive windows across the entire Rs-fMRI scan. The window

length of 30 TRswas chosen based on a previous study (Yu et al., 2015),

which suggests that this window size may provide a good trade-off

between the quality of the FC estimate and the temporal resolution.

To characterize the full covariance matrix, we estimated covariance

from the regularized precision matrix or the inverse covariance matrix

(Smith et al., 2011). To promote sparsity in estimation, a penalty on

the L1 norm (i.e., the sum of the absolute values of the elements of

the precision matrix) was imposed in the graphic LASSO framework

with 10 repetitions (Friedman et al., 2008). Values in the resulting FC

matrices were converted to z-scores using Fisher’s r-to-z transforma-

tion to improve the normality of the distribution of Pearson’s r and

were then residualized with known confounding variables, such as

age and gender. The resulting individuals’ 140 FC matrices represent

the dynamic changes of FC during the whole Rs-fMRI scan period and

were used for further FC state analysis.

2.8 Dynamic FC state analysis

2.8.1 Clustering analysis

We applied a k-means clustering algorithm on all the windowed 5 ×

5 FC matrices for all subjects to estimate reoccurring FC patterns

(states) with a random initialization of the centroid positions. The k-

means clustering algorithm was repeated 500 times to increase the

chance of escaping the local minima. The optimal number of clusters

was estimated to be four (k = 4) using the elbow criterion (Allen et al.,

2014). The correlation distance method was chosen because it is more

sensitive to the dynamic FC pattern irrespective of magnitude (Rashid

et al., 2018). Subsequently, these resulting centroids were used as

starting points to cluster the dynamic FC windows for all the subjects.

From these data, we obtained a state transition vector representing

their state status across time. Final cluster centroids were obtained as

themedian of all state-assigned FCmatrices across time.

2.8.2 Temporal properties

We calculated three temporal properties of dynamic FC states derived

from each subject’s state vector, including the reoccurrence fraction

and mean dwell time in each state, as well as the total number of tran-

sitions across different states. The interpretation andmeaning of these

three dynamic FCpropertieswere as follows (Kimet al., 2017): (1) frac-

tionalwindow is the proportion of time spent in each state asmeasured

by percentage; (2) themean dwell time represents how long the partic-

ipant stayed in a certain state, which was calculated by averaging the

number of consecutive windows belonging to one state before chang-

ing to the other state; and (3) the number of transitions represents how

many times either state changed from one to the other, counting the

number of times a switch occurred, withmore transitions representing

less stability over time.

2.8.3 FC strength

The subject-specific centroid of each state was computed by calculat-

ing the median value of each FC matrix for that state. To determine

between-group differences in connectivity strength, we calculated

the group-specific centroids of the four states by averaging subject-

specific centroids of both HD patients andHCs, respectively.

2.9 Statistical analysis

2.9.1 Group differences in demographic and
clinical data

A chi-square test was used to determine gender-ratio difference

between theHD group andHC group, and an independent two-sample

t-test was used to compare the clinical variables and neuropsycholog-

ical test results between the two groups. Statistical analysis was per-

formed using software (SPSS, version 21.0; IBM Corp, Armonk, NY).

Statistical significance was defined as p< .05.

2.9.2 Group differences in dynamic FC

Between-group differences in temporal properties of dynamic FC

states strengthwere testedusing aMann–WhitneyU-test in SPSS soft-

ware, andbetween-groupdifferences in FC strength of each statewere

tested using an independent two-sample t-test in GRETNA software

(http://www.nitrc.org/projects/gretna). The significance level was set

to false-discovery rate-corrected p< .05.

2.9.3 Relationship between altered dynamic FC
properties and clinical variables

A partial correlation analysis was used to estimate the relationships

between those dynamic FC parameters showing significant between-

group differences and the clinical variables in the HD group (p < .05,

uncorrected), with age, sex and educational level as covariables.

The clinical variables comprised the neuropsychological test results,

duration of HD, hemoglobin level, serum creatinine level, and serum

urea level.

3 RESULTS

3.1 Demographic and clinical characteristics

Thedemographic andclinical characteristics are summarized inTable1.

There were no significant differences in age (p = .923), sex (p = .486),

http://www.nitrc.org/projects/gretna
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TABLE 1 Demographics and clinical characteristics of HD patients
and healthy controls

HD (n= 66) HCs (n= 66) p value

Sex (M/F) 32/34 36/30 .486†

Age (year) 33.03± 8.29 32.89± 7.82 .923‡

Education (year) 11.26± 3.09 11.83± 3.19 .295‡

Disease duration (month) 28.83± 6.36 — —

Dialysis duration (month) 15.76± 6.11 — —

Hemoglobin (g/L) 91.25± 23.26 — —

Serum creatinine (μmol/L) 732.43± 203.09 — —

Urea (mmol/L) 20.04± 8.15 — —

MoCA (score) 22.47± 4.07 27.45± 1.11 <.001‡

TMT-A (s) 70.58± 18.17 55.67± 19.68 <.001‡

SDMT (score) 38.77± 9.90 47.97± 10.62 <.001‡

HAMD-17 (score) 17.27± 4.00 12.93± 1.96 <.001‡

Note.—All quantitative data are expressed as mean ± standard deviation;

numbers for sex data.
†The p value was calculated by using chi-square test.
‡The p value was calculated by using independent two-samples t-test.
Abbreviations:HAMD-17, 17-itemversionof theHamiltonDepressionRat-

ing Scale.; HCs, healthy controls; HD, hemodialysis;MoCA,Montreal Cogni-

tive Assessment; SDMT, Symbol Digit Modalities Test; TMT-A, Trail Making

Test A.

and education level (p = .295) between the two groups. The MoCA

(p < .001) and SDMT (p < .001) scores of the HD group were signifi-

cantly lower than those of the HC group, and HD patients spent longer

time in the completion of TMT-A than HCs (p < .001). Moreover, the

HAMD-17 score of the HD group was significantly higher than that of

the HC group (p< .001).

3.2 Intrinsic FC networks

As shown in Figure 1, the five ICs, aDMN (IC12), pDMN (IC8), RCEN

(IC27), LCEN (IC20), and SN (IC8), were selected from the 37 ICs. The

spatial maps of those ICs were similar to those found in previous stud-

ies (Liu et al., 2021; Wang et al., 2020) and covered most of the grey

matter.

3.3 Dynamic FC state analysis

Using the k-means clustering algorithm,we identified four highly struc-

tured FC states that recurred throughout individual scans and across

subjects (Figure 2). In State 1, which accounts for 26% of all windows,

the DMN showed negative FC with CEN and SN, and the SN had posi-

tive FCwithCEN. In State2,which accounts for 25%of allwindows, the

DMN had negative FC with RCEN and SN but positive FC with LCEN.

In State 3, which accounts for 27% of all windows, the DMN had posi-

tive FCwith CEN but negative FCwith SN, and the SN had negative FC

with CEN. In State 4, which only accounts for 22% of all windows, the

CEN had positive FC with aDMN and SN but negative FC with pDMN,

and the SN had positive FC with aDMN but negative FC with pDMN.

Notably, the FC values between the DMN and CEN and SN in State 1

aremuchweaker than in other states.

The group-specific medians for each state are shown in Figure 3.

Notably, not all subjects had thewindows assigned to each state, which

contributed to changes of the number of subject-specific matrices in

different states (see Figure 3 for subject counts of each state). No sig-

nificant between-group differences in FC strength were found in each

state after FDR correction.

Between-group differences in temporal properties of FC states are

shown in Table 2 and Figure 4a–c. HD patients had significantly higher

F IGURE 1 Spatial distributionmaps for the five identified independent components, which correspond to the anterior default mode network
(aDMN), posterior default mode network (pDMN), right central executive network (RCEN), left central executive network (LCEN), and salience
network (SN)
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F IGURE 2 Cluster centroid and its total number of occurrence (percentage) for each state. The color bar represents z value of functional
connectivity. Abbreviations: aDMN, anterior default mode network; LCEN, left central executive network; pDMN, posterior default mode
network; RCEN, right central executive network; SN, salience network

F IGURE 3 Group-specific centroidmatrices for each state. The color bar represents z value of functional connectivity. Abbreviations: aDMN,
anterior default mode network; LCEN, left central executive network; pDMN, posterior default mode network; RCEN, right central executive
network; SN, salience network

reoccurrence fraction (p= .009, FDR corrected) and longermean dwell

time (p = .039, FDR corrected) in State 1 compared with HCs. More-

over, the HD group showed significantly lower number of transitions

across states comparedwith the HC group (p= .014, FDR corrected).

3.4 Associations between altered dynamic FC
properties and clinical variables

For the HD group, the number of transitions across states positively

correlated with the SDMT score (r = 0.516, p < .001, uncorrected)

(Figure 4d), and the mean dwell time in State 1 positively correlated

with the completion time of TMT-A (r = 0.530, p < .001, uncorrected)

(Figure 4e). No significant correlations were found between altered

dynamic FC properties and other clinical variables.

4 DISCUSSION

ByusingRs-fMRI in combinationwith clusteringalgorithmandFCstate

analysis, the present work is the first study to analyze the dynamic FC

alterations in HD patients based on the "triple-network model," focus-

ing on the temporal properties and FC strength of dynamic FC states.

Three main findings were found in our study. First, the dynamic FC
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TABLE 2 Between-group differences in temporal properties of dynamic functional connectivity states

HDPatients Healthy controls Statistics

Median Interquartile range Median Interquartile range z value p value*

Fractional windows (%)

State 1 29.29 (14.29, 45.71) 18.21 (1.96, 31.79) −3.201 .009

State 2 18.21 (6.07, 39.46) 19.64 (5.54, 39.82) −0.009 .993

State 3 26.43 (9.64, 47.50) 19.64 (1.96, 36.25) −1.445 .234

State 4 6.07 (0.00, 23.57) 10.36 (0.00, 46.25) −1.736 .185

Mean dwell time (windows)

State 1 20.50 (10.37, 28.23) 13.00 (1.88, 23.13) −2.488 .039

State 2 12.25 (5.75, 24.69) 15.13 (6.25, 29.08) −0.620 .603

State 3 16.33 (6.75, 23.17) 14.00 (2.00, 30.00) −0.782 .558

State 4 7.25 (0, 17.50) 10.00 (0.00, 31.88) −1.418 .234

Number of transitions (time) 5.00 (3.00, 6.00) 6.00 (4.00, 7.00) −2.957 .014

*Statistical results were correctedwith false-discovery rate.

Abbreviation: HD, hemodialysis.

within the triple networks could be clustered into four discrete connec-

tivity configurations across all subjects. In particular, State 1 was char-

acterized by weak connections between the DMN and SN and CEN.

Second, the dynamic FC state analysis revealed that HD patients spent

longer time in State 1 and switched less frequently across states com-

pared with HCs. Third, the altered dynamic FC properties were associ-

atedwith cognitiveperformance inHDpatients. These findingsprovide

new insights into the pathophysiological mechanisms underlying CI in

HD patients, and underscore the importance of evaluating dynamic

changes of brain connectivity.

An important finding of our study was the decreased ability to

switch between different FC states within the triple networks in HD

patients, as characterized by the lower number of state transitions.

HCs dynamically switch between different FC states and are there-

fore probably faster in recruiting necessary resources in the face of

changing task demands (Yu et al., 2015). Thus, a lower total number of

transitions across states in HD patients may suggest a slower speed

to recruit necessary resources when faced with different cognitive

tasks, which may lead to the decline in cognitive performance. Indeed,

recent studies have demonstrated the association between network

flexibility and cognitive task performance (Garrett et al., 2013; Mad-

hyastha et al., 2015; Spreng & Schacter, 2012; Thompson et al., 2013).

Furthermore, the positive correlation between number of transitions

and SDMT scores revealed that worsening of cognitive function was

associated with decreasing of the total number of transitions in those

patients. Therefore, this study may suggest that the dynamic FC prop-

erties, especially thenumber of transitions,may act as a reliablemarker

for monitoring the progression of CI in HD patients.

Another important finding of this study was that HD patients, rela-

tive to controls, spent more time in State 1. Notably, the FC between

the DMN and CEN and SN are weaker than in other states. It is

reported that the interactions within the triple networks are respon-

sible formaintaining information processing, such as cognitive, percep-

tual, affective, and social functions (Menon, 2011). Thus, HD patients

who spent longer time in State 1 might reflect a decreased abil-

ity of information communication among different networks. In fact,

our further correlation analysis revealed that the mean dwell time in

State 1 was positively associated with the completion time of TMT-

A, which is widely used to measure executive function, concentration,

mental tracking, and audio visuomotor speed. Considering the existed

decreased information communication ability across states, our results

may suggest that the decreased information communication is state

independent in HD patients.

We acknowledge several limitations of this study. First, the dynamic

FC analysis is a relatively new approach, and the gold standard in the

setting of analysis parameters, such as window length and overlap,

has not been established. This inconsistency in setting parametersmay

affect the analysis results. Second, the Rs-fMRI scanning parameters

should be mentioned when conducting dynamic FC analysis. It is con-

sidered that high temporal resolution and a sufficient length of acqui-

sition are both important factors for reliable results in the dynamic FC

analysis (Kim et al., 2017). In the present study, we used a typical TR

(TR = 2s) to acquire Rs-fMRI images. Previous studies have demon-

strated the reliability of this typical TR in sampling the dynamics of

low-frequency fluctuation (Allen et al., 2018; Liao et al., 2014). How-

ever, to increase the estimation power of FCmatrices calculatedwithin

small windows in the sliding window approach, it would be beneficial

to use a rapid Rs-fMRI acquisition, such as the simultaneous multi-

band multi-slice EPI acquisition (Moeller et al., 2010), that could sam-

ple more dense time series. Third, although we found an association

between the number of transitions and the SDMT score, one might

have expected the number of transitions to be associated also with

the completion time of TMT-A given its relevance to processing speed.

Actually, our partial correlation analysis revealed a negative correla-

tion between these two measures; however, this result was not sig-

nificant, which might be attributed to the relatively small sample size.
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F IGURE 4 Between-group comparison of temporal properties and the partial correlation analysis results. The temporal properties (a–c) of
functional connectivity state analysis are shown using violin plots. Transverse solid and dotted lines represent medians and quartiles, respectively.
Asterisks indicate a significant between-group difference (p< .05, FDR corrected). For hemodialysis patients, (d) the number of transitions
positively correlated with the SDMT score , (e) and themean dwell time in State 1 positively correlated with the completion time of TMT-A.
Abbreviations: SDMT, Symbol DigitModalities Test; TMT-A, Trail Making Test A

Finally, the sample size of our study was relatively small, which may

affect the statistical power. Future studies with large sample sizes are

needed to verify the reproductivity of our findings.

5 CONCLUSIONS

In summary, the present study investigated the dynamic FC properties

in the triple networks in HD patients using Rs-fMRI data in combina-

tion of ICA, slidingwindows approach, and k-means clustering analysis.

Our study demonstrated altered dynamic FC properties in the triple

networks in HD patients compared with HCs, including increased time

in the weakly connected State 1 and decreased number of transitions.

In addition, the altered dynamic FC properties were associated with

cognitive performance in HD patients. Thus, this study provides new

insights into the pathophysiological mechanisms of CI in HD patients

from the perspective of dynamic FC.
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