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To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular
mechanisms should be illuminated. Central sensitization is a generator of pain
hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway.
Neuronal excitability depends on two components, the synaptic inputs and the intrinsic
excitability. Previous studies have focused on the synaptic plasticity in different forms of
pain. But little is known about the changes of neuronal intrinsic excitability in neuropathic
pain. To address this question, whole-cell patch clamp recordings were performed to
study the synaptic transmission and neuronal intrinsic excitability 1 week after spared
nerve injury (SNI) or sham operation in male C57BL/6J mice. We found increased
spontaneous excitatory postsynaptic currents (sEPSC) frequency in layer II/III pyramidal
neurons of anterior cingulate cortex (ACC) from mice with neuropathic pain. Elevated
intrinsic excitability of these neurons after nerve injury was also picked up, which was
reflected in gain of input-output curve, inter-spike interval (ISI), spike threshold and
Refractory period (RP). Besides firing rate related to neuronal intrinsic excitability, spike
timing also plays an important role in neural information processing. The precision of
spike timing measured by standard deviation of spike timing (SDST) was decreased in
neuropathic pain state. The electrophysiological studies revealed the elevated intrinsic
excitation in layer II/III pyramidal neurons of ACC in mice with neuropathic pain, which
might contribute to central excitation.

Keywords: anterior cingulate cortex, intrinsic excitability, neuropathic pain, spontaneous excitatory postsynaptic
currents, spike threshold, refractory period

INTRODUCTION

Neuropathic pain is increasingly attracting the attentions of physicians and scholars worldwide.
Although great efforts have been made to reveal the molecular mechanisms for this disease,
there are still rarely effective treatment options for neuropathic pain patients currently (Finnerup
et al., 2016). To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular
mechanisms should be illuminated, and treatment strategy for neuropathic pain on the cellular
level may be a potential choice in the future.

Central sensitization is a generator of pain hypersensitivity, arising from different forms
of structural and/or functional plasticity (Latremoliere and Woolf, 2009; Woolf, 2011;
Huang et al., 2016). Synaptic plasticity in the nociceptive pathway plays an important
role in central sensitization (Zhuo, 2014). In the past, researchers focused on the plastic
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changes in peripheral nociceptive nerve, dorsal root ganglia
and spinal cord in different forms of pain (Latremoliere and
Woolf, 2009). Nowadays, clinical trials and animal experiments
reveal the importance of neuronal plasticity in cerebral cortex in
neuropathic pain state, including the anterior cingulate cortex
(ACC), the somatosensory cortex, the prefrontal cortex and
the insular cortex (LaGraize et al., 2006; Zhuo, 2014). ACC
is an important component in limbic system which is related
to emotion, memory and behavior (Bush et al., 2000). Several
studies have shown that ACC is involved in encoding the
emotional aspect of pain. Frontal cingulumotomy including
the ACC in patients with pain could relief pain syndrome by
altering the emotional responses to pain (Foltz and White,
1962; Bushnell et al., 2013). Animal studies by destruction of
neurons also revealed that neurons in ACC were necessary for
the emotional aspect of pain (Johansen et al., 2001). Functional
imaging with positron emission tomography or fMRI provided
direct evidence linking ACC activity with pain affect in patients
or normal human volunteers (Rainville et al., 1997; Bushnell
et al., 2013). All these studies emphasize the importance of ACC
in pain. So, we choose ACC as our target brain area in the
current study.

A typical neuron receives thousands of synaptic inputs from
presynaptic neurons (van Vreeswijk and Sompolinsky, 1996). If
the summated postsynaptic currents exceed spike threshold, a
single spike will be generated. So, the excitability of a neuron
depends on two components, the synaptic inputs and the
intrinsic excitability. Previous studies focused on the synaptic
inputs in neuropathic pain (Zhao et al., 2006; Gong et al.,
2010; Zhuo, 2014). But little is known about the changes of
neuronal intrinsic excitability in the pain pathway after nerve
injury. However, neuronal intrinsic excitability indeed changed
during some pathological status, such as Alzheimer’s disease
(Brown et al., 2011), Angelman syndrome (Kaphzan et al.,
2011), seizer (Villeneuve et al., 2000), MELAS syndrome (Iizuka
et al., 2002), or by hydrogen peroxide (Ohashi et al., 2016)
and Pumilio-2 (Driscoll et al., 2013). Here, we studied the
intrinsic excitability of layer II/III pyramidal neurons from
ACC in neuropathic pain, including input-output curve, inter-
spike interval (ISI), spike threshold and Refractory period (RP).
Besides firing rate related to neuronal intrinsic excitability,
spike timing is another information carrier in the central
nervous system (Schneidman et al., 1998; Tiesinga et al., 2008).
We studied the precision of spike timing by the standard
deviation of spike timing (SDST) in this study (Chen et al.,
2006a). The electrophysiological studies revealed that intrinsic
excitability of layer II/III pyramidal neurons in ACC was
increased after nerve injury, which might contribute to the
central excitation.

MATERIALS AND METHODS

Animals
Male C57BL/6J mice were purchased from the Laboratory
Animal Center of Anhui Medical University, and were fed with
standard laboratory diet and tap water in climate- and light-
controlled conditions under 12-h light-dark cycles. The mice

were housed for at least 1 week prior to the experiments and
8 week at the time of operation (Smith et al., 2013). This study
was carried out in accordance with the recommendations of
Animal Care and Use Committee of Anhui Medical University.
The protocol was approved by the Ethics Committees of Anhui
Medical University. Forty mice were used in this study, 20 for
the recording of spontaneous excitatory postsynaptic currents
(sEPSC) and 20 for the recording of intrinsic excitability.

The Spared Nerve Injury (SNI) Model of
Neuropathic Pain
Spared nerve injury (SNI) and sham surgery were performed
under 1% pentobarbital anesthesia (50 mg/kg ip) according to the
operative methods described previously (Decosterd and Woolf,
2000; Shields et al., 2003). For mice in SNI model group, axotomy
and ligation of the tibial and common peroneal branches were
performed after exposing the sciatic nerve and its three terminal
branches, and leaving the sural nerve intact. Muscle and skin
layers were carefully closed. For mice in control group (sham-
operated), the nerves were only exposed without axotomy and
ligation, and the muscle and skin were carefully closed. Caution
was taken not to stretch the intact sural nerve during the surgery.
Mechanical withdrawal threshold was measured by an Electronic
Von Frey Apparatus (Martinov et al., 2013). After acclimation
for 15 min in chambers prior to the measurement, the hind paw
is stimulated with the probe. Increasing the pressure gradually,
the pressure to induce nociceptive response behaviors, such as
hind paw retraction, hind paw licking, or four-paw jumping, is
defined as mechanical withdrawal threshold. The average of three
measurements for each mouse is taken as mechanical withdrawal
threshold. Mechanical withdrawal thresholds were measured on
the day before surgery, as well as 7 days after surgery (Decosterd
and Woolf, 2000).

Electrophysiology Study
The coronal brain slices containing ACC (400 µm) were
prepared in mice 1 week after operation. Mice were anesthetized
with 1% pentobarbital (50 mg/kg ip) and decapitated with a
guillotine (Yang et al., 2014, 2017). The slices were cut with
vibratome in the oxygenated (95% O2 and 5% CO2) ACSF
(124 mM NaCl, 3 mM KCl, 1.2 mM NaH2PO4, 26 mM NaHCO3,
0.5 mM CaCl2, 4 mM MgSO4, 10 mM dextrose and 5 mM
HEPES; pH 7.35) at 4◦C (Yang et al., 2017). The slices were held
in oxygenated ACSF (126 mM NaCl, 2.5 mM KCl, 2 mM MgSO4,
2 mM CaCl2, 26 mM NaHCO3, 1.25 mM NaH2PO4 and 25 mM
dextrose; pH 7.35) at 25◦C for at least 1 h. A slice was transferred
to a submersion chamber (Warner RC-26 G) that was perfused
with the oxygenated ACSF at 32◦C. Layer II/III pyramidal
neurons in ACC were recorded by whole-cell patch clamp
under DIC optics (Olympus BX51WI). Pipettes were filled with
solutions containing (in mM) 150 K-gluconate, 5 NaCl, 5 HEPES,
0.4 EGTA, 4 Mg-ATP, 0.5 Tris-GTP and 5 phosphocreatine
(pH 7.35 adjusted by 2M KOH, 295–305 mOsmol). The junction
potential for these solutions was 18, and we had not corrected
for it. All patch clamp recordings were sampled at 50 kHz and
low-pass filtered at 10 kHz. Series resistance was compensated.
If the changes of series resistance during the experiment were
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larger than 10%, we would exclude the data (Kaphzan et al.,
2011).

In order to illustrate the changes of excitatory synaptic
transmission in neuropathic pain state, the sEPSC of layer II/III
pyramidal neurons in ACC were recorded. These cells were
identified by the cellular type and their firing characteristics
(adaptation) as previous study (Zhao et al., 2005; Qiu et al., 2014).
Layer II/III pyramidal neurons in ACC have different firing
pattern in vivo and in vitro: regular spiking (RS), intermediate
(IM) and intrinsic bursting (IB; Cao et al., 2009; Koga et al., 2010).
We do not observe any firing profile conversion after nerve
injury. sEPSC was recorded at a holding potential of −70 mV
for 5 min, in the continuous presence of 20 µM bicuculline
(antagonist of GABAA receptors). We also administrated CNQX
(10 µM) and D-AP5 (40 µM) to certify the sEPSC at the
end of the experiment. Except for sEPSC recordings, the other
recordings about intrinsic excitation were made at the resting
membrane potential, in the absence of bicuculline. sEPSC
events were automatically detected by template matching using
ClampFit 10 (Axon Instruments; Matta et al., 2013). The
frequency and amplitude in Figure 1 are the mean values of all
the sEPSC events.

We then studied the neuronal intrinsic excitability of layer
II/III pyramidal neurons in ACC. The gain of input-output
curves and ISIs were investigated to indicate the spiking ability
of a neuron. The input-output curve is conducted by gradually
increasing the stimulus intensity of depolarizing pulse (1,000 ms;
Yang et al., 2017), and the first amplitude of the stimulus
current is 10 pA, increasing by 20 pA. The gain of input-output
curve is defined as the slope of the linearly fitted curve (Zhang
and Arsenault, 2005; Thurley et al., 2008). ISI was analyzed by
evoking a spike train by somatic depolarizing pulse (1,000 ms) at
the intensity of spike threshold. ISI is the time duration between
two neighboring spikes (Chen et al., 2006a). The first ISI in

Figure 3 refers to the ISI between the first and the second spike,
and the steady-state ISI refers to the mean ISI in the steady-state
firing.

The neuronal intrinsic excitability also includes spike
threshold for initiating a spike and RP after a spike. The spike
threshold in this study referred to the current threshold, and
was detected by increasing stimulus intensity until inducing a
spike at 50% chance by somatic depolarizing pulse (10 ms; Chen
et al., 2006a). The spike threshold reflects the difficulty degree
for a neuron to turn synaptic inputs into spikes. RP is measured
by injecting paired depolarizing pulses (amplitude: four times
of spike threshold; time: 3 ms) into a neuron to induce a pair
of spikes. By changing inter-pulse interval, we define RP as the
time duration from a complete spike to its subsequent spike
at 50% probability (Chen et al., 2006a). It should be noted
that the RP investigated in this study was the absolute RP.
The RP determined the theoretically maximal firing rate for a
neuron.

Spike timing plays an important role in temporal encoding
and time coding for neuronal information processing (Borst
and Theunissen, 1999). Precision is one important index for
spike timing. We studied the precision of spike timing by the
SDST. SDST was analyzed by evoking spike trains with somatic
depolarizing pulses (amplitude: spike threshold; time: 1,000 ms).
The first SDST in Figure 6 refers to the SDST of the first spike,
and the steady-state SDST refers to the mean SDST in the steady-
state firing. The increased SDST reflected decreased precision of
spike timing, and vice versa.

Statistical Analysis
Results were expressed as Mean ± SEM. Statistical comparisons
under different conditions were done by t-test, or two-way
ANOVA (repeated measurements). In all cases, differences were
considered statistically significant at ∗p < 0.05 and ∗∗p < 0.01.

FIGURE 1 | Increased spontaneous excitatory postsynaptic current (sEPSC) in layer II/III pyramidal neurons of anterior cingulate cortex (ACC) after nerve injury.
(A,B) Representative sEPSC from these neurons in Control group and in spared nerve injury (SNI) group. (C) The mean frequency of sEPSC recorded from these
neurons in Control group (n = 10) and in SNI group (n = 10). (D) The mean amplitude of sEPSC recorded from these neurons in Control group (n = 10) and in SNI
group (n = 10). NS, no significant difference. ∗∗p < 0.01.

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 436

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Yang et al. Elevated Intrinsic Excitability in Neuropathic Pain

RESULTS

The mechanical withdraw threshold was measured to ensure
the success of SNI surgery. As mentioned in other researches,
the decreased mechanical withdraw threshold indicated
allodynia-like behavior in SNI group (normalized withdrawal
threshold: 1 ± 0.07 before surgery vs. 0.12 ± 0.02 7 days
after surgery, n = 10, P < 0.01). But, there was no significant
change of mechanical withdraw threshold before and after
operation in Control group (normalized withdrawal threshold:
0.99 ± 0.05 before surgery vs. 0.98 ± 0.04 7 days after surgery,
n = 10, P = 0.87). We then studied the neuronal excitability
of layer II/III pyramidal neurons in ACC by patch clamp
recordings. Excitatory synaptic transmission was one important
component of neuronal excitability. So, we firstly studied the
difference of sEPSC of these neurons between Control and SNI
groups.

Increased sEPSC Frequency in Layer II/III
Pyramidal Neurons of ACC in Mice With
Neuropathic Pain
Increased excitatory synaptic transmission in pain pathway has
been invested in some pathological pain state. We measured
the frequency and amplitude of sEPSC in layer II/III pyramidal
neurons of ACC. Typical sEPSC traces in these neurons were
shown (Figures 1A,B). A significant increase in sEPSC frequency
was detected in mice with neuropathic pain compared with
controls (Control: 2.56 ± 0.29 Hz; SNI: 4.26 ± 0.29 Hz;
P < 0.01, independent sample t-test; Figure 1C). But no
significant difference in the amplitude of sEPSCs was detected
between the two groups (Control: 12.52 ± 1.16 pA; SNI:
14.93± 1.10 pA; P = 0.15, independent sample t-test; Figure 1D).
The increased excitatory synaptic transmission means that these
neurons receive more excitatory inputs in neuropathic pain state,
thus may contribute to neuronal hyperexcitability in pain. On
the other hand, neuronal excitability also depends on neuronal

intrinsic excitability, but its role in neuropathic pain remains
elusive. Then, the intrinsic excitability of these neurons was
revealed by whole-cell patch clamp recordings. Sixteen neurons
were recorded from 10 mice in Control group and 17 neurons
were recorded from 10 mice in SNI group.

Increased Spiking Ability of Layer II/III
Pyramidal Neurons in ACC in Mice With
Neuropathic Pain
The gain of input-output curve (the slope of the curve) was
measured to illustrate the spiking ability for a neuron (Zhang and
Arsenault, 2005; Thurley et al., 2008). By taking spike frequency
as a function of the stimulus intensity, we could obtain input-
output curve. The gain of input-output curve was increased
in these neurons after nerve injury (Figures 2A,B; P < 0.01,
two-way ANOVA (repeated measurements)). The normalized
gain was 1± 0.06 in Control group and 1.34± 0.08 in SNI group
(Figure 2C). In order to find out the foundation for the increased
gain in neuropathic pain, we studied the ISI. ISI is the time
duration between two successive spikes in a spike train. The first
ISI was not changed after nerve injury, but the steady-state ISI
was significantly decreased in SNI group compared with Control
group (Figure 3C, P = 0.02, independent sample t-test). The first
ISI was 16.07± 0.76 ms in Control group and 15.77± 0.53 ms in
SNI group. The steady-state ISI was 52.36 ± 2.22 ms in Control
group and 46.26± 0.91 ms in SNI group. We also measured spike
frequency adaptation (SFA) ratio, which equaled the steady-state
ISI divided by the first ISI (Fernandez et al., 2011). The SFA
ratio was decreased in mice with neuropathic pain (Figure 3D,
control 3.23 ± 0.09, SNI 2.8 ± 0.17; (P = 0.03, independent
sample t-test)), which might contribute to the decreased spiking
ability. From these results we can come to the conclusion that
the spiking ability of layer II/III pyramidal neurons in ACC
is increased in neuropathic pain. The intrinsic excitability also
includes threshold for initiating a spike and RP after a spike.
We then compared the spike threshold and RP of these neurons
between the two groups.

FIGURE 2 | Increased spiking ability in layer II/III pyramidal neurons of ACC after nerve injury. (A) Representative spike train from these neurons in SNI group (red,
top) and in Control group (black, middle); depolarizing pulse (1,000 ms) as stimulus waveform (black, bottom). (B) The increased gain of input-output curve (n = 16,
Control group; n = 17, SNI group). (C) The normalized gain in the two groups. ∗∗p < 0.01.
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FIGURE 3 | Decreased inter-spike interval (ISI) in layer II/III pyramidal neurons of ACC after nerve injury. (A,B) Representative spike train from these neurons in
Control group (A, black) and in SNI group (B, red). (C) First and Steady-state ISI (n = 16, Control group; n = 17, SNI group). (D) Decreased spike frequency
adaptation (SFA) ratio after nerve injury. NS, no significant difference. ∗p < 0.05.

Decreased Spike Threshold in Layer II/III
Pyramidal Neurons of ACC in Mice With
Neuropathic Pain
In order to illustrate the changes of intrinsic excitability in
neuropathic pain, we studied the spike threshold of layer
II/III pyramidal neurons in ACC. Postsynaptic currents from
thousands of presynaptic neurons summate to reach spike
threshold, and then a spike will generate. So, the spike
threshold reflects how easy a neuron turns synaptic input
into spikes. The spike threshold (the least current to induce
a spike) was decreased in neuropathic pain (Figures 4A,B,
P < 0.01, independent sample t-test). The spike threshold was
202.65 ± 13.24 pA in Control group and 154.25 ± 9.09 pA
in SNI group. The decreased spike threshold means that
neurons will need less excitatory synaptic input to induce a

spike, i.e., increased intrinsic excitability for these neurons in
neuropathic pain.

Decreased Refractory Period in Layer II/III
Pyramidal Neurons of ACC in Mice With
Neuropathic Pain
The RP referred to the shortest interval between action potentials
at a given strength of the testing stimulus (Farmer et al.,
1960), which determined the theoretically maximal firing rate
for a neuron. By changing the inter-pulse interval of the
depolarizing pulses, we defined RP as the time duration from
a spike to a subsequent spike at 50% of firing probability
(Chen et al., 2006a; Figure 5A). The RP was decreased from
8.16 ± 0.32 ms in Control group to 7.44 ± 0.13 ms in SNI
group (Figure 5B, P = 0.04, independent sample t-test). The

FIGURE 4 | Decreased spike threshold in layer II/III pyramidal neurons of ACC after nerve injury. (A) Representative spike threshold to induce spike at 50% chance
(black in Control group; red in SNI group). (B) Decreased spike threshold after nerve injury (n = 16, Control group; n = 17, SNI group). ∗∗p < 0.01.
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FIGURE 5 | Decreased spike Refractory period (RP) in layer II/III pyramidal neurons of ACC after nerve injury. (A) Representative spike RP in Control group (black,
top) and in SNI group (red, bottom). (B) Decreased spike RP after nerve injury (n = 16, Control group; n = 17, SNI group). ∗∗p < 0.01.

decreased spike threshold and RP reflect the elevated intrinsic
excitability for these neurons in neuropathic pain. The passive
properties of these neurons were also considered. There was
no significant difference in the resting membrane potential
(Control: −61.2 ± 1.1; SNI −60.7 ± 1.2; P = 0.76) and cell
resistance (Control: 172.2 ± 11.6; SNI: 187.6 ± 14.0; P = 0.41)
between the two groups. And AHP had little change after nerve
surgery (Control: 10.75 ± 0.72 mV; SNI 11.13 ± 0.92 mV;
P = 0.75). Afterhyperpolarization (AHP) was defined as the
differences between the peak hyperpolarizing voltage deflection
following a spike and the voltage threshold (Ohashi et al., 2016).

Reduced Spike Timing Precision in Layer
II/III Pyramidal Neurons of ACC in Mice
With Neuropathic Pain
Besides spike rate related to neuronal spiking ability, spike
timing was another important information carrier, and might
play an important role in building neuronal code or information
processing (Mainen and Sejnowski, 1995; Stanley, 2013). Spike
timing precision could change in some physiological and
pathological states (Foffani et al., 2007; Orduz et al., 2013).
We used SDST to reflect spike timing precision in this

FIGURE 6 | Decreased spike timing precision in layer II/III pyramidal neurons in ACC after nerve injury. (A,B) Representative spike train in Control group (A, black)
and in SNI group (B, Red). Note the different dispersion degree for spikes in the two groups. (C) First and Steady-state standard deviation of spike timing (SDST;
n = 16, Control group; n = 17, SNI group). NS, no significant difference. ∗∗p < 0.01.
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study, which was calculated from 20 traces of spike train
induced by repetitive identical stimuli. The first SDST was
not changed after nerve injury, but the steady-state SDST was
significantly increased in SNI group compared with Control
group (Figure 6C, P < 0.01, independent sample t-test).
The first SDST was 0.62 ± 0.06 in Control group and
0.67 ± 0.03 ms in SNI group. The steady-state SDST was
5.02 ± 0.2 in Control group and 6.7 ± 0.3 in SNI group.
These results revealed that spike timing precision was decreased
in neuropathic pain. The decreased spike timing precision
might participate in information processing in neuropathic
pain.

DISCUSSION

As mentioned in previous studies, excitatory synaptic
transmission was enhanced during pain. In layer II/III pyramidal
neurons of ACC in mice with neuropathic pain, we also found
increased sEPSC frequency. More importantly, we measured the
intrinsic excitability of these neurons in neuropathic pain. The
spiking ability represented by gain of input-output curve and ISI
was elevated in these neurons after nerve injury. And it might
attribute to the decreased spike threshold and RPs in neuropathic
pain. On the other hand, the precision of spike timing in these
neurons was declined in neuropathic pain, which might affect
the neuronal code or information processing. A recent study
also revealed elevated intrinsic excitability in the somatosensory
cortex in tibial nerve injury (TNI) and tSCI mice models (Xiong
et al., 2017). This study focused on the homeostatic plasticity
in response to lesion-induced somatosensory deprivation and
activity loss, which was revealed to induce the elevated intrinsic
excitability. We studied the intrinsic excitability of layer II/III
pyramidal neurons in ACC from SNI mice model. Spike rate
and spike timing were two important information carrier in
the central nervous system (Prescott and Sejnowski, 2008). So,
we focused on neuronal intrinsic excitation, which was related
to neuronal spiking ability and spike timing precision, in this
study. In our opinion, this is the first systematic study about
intrinsic excitability and spike timing precision in mice with
neuropathic pain, although sparse evidence about intrinsic
excitability has been mentioned in pain state in previous
studies.

Neurons convey information through complex patterns
of spikes which are driven by integrated synaptic inputs.
Synaptic transmission is one of the most important parts
in neuronal information processing. Many studies have
been carried out focusing on synaptic transmission in
ACC during pain (Gong et al., 2010; Li et al., 2014; Zhuo,
2014; Bliss et al., 2016). And some researchers even take
cortical plasticity in ACC (Zhuo, 2014) or in insular cortex
(Zhuo, 2016), as a new endpoint measurement for chronic
pain. As mentioned in other pain pathway (Zhuo, 2016,
2017), we found that the excitatory postsynaptic currents
of layer II/III pyramidal neurons in ACC were increased
in neuropathic pain. The increased excitatory synaptic
inputs certainly induce more spikes in these neurons,
and thus contribute to neuronal hyperexcitability. Besides

enhanced excitatory synaptic transmission in neuropathic
pain, reduced inhibitory synaptic transmission might also
contribute to central sensitization (Gong et al., 2010). Referring
to presynaptic or postsynaptic mechanisms underlying
hyperexcitability, a previous study has revealed enhanced
presynaptic neurotransmitter release during chronic pain by
measuring the paired pulse ratio and miniature EPSC (Zhao
et al., 2006).

The neuronal excitability depends both on the synaptic
inputs and on the intrinsic properties (Beck and Yaari, 2008).
In the present study, we also measured neuronal spiking
ability by gain of input-output curve and ISIs, and found
that spiking ability of layer II/III pyramidal neurons in ACC
was increased in neuropathic pain. Neuronal input-output
properties determine neuronal response, and the modulation
of its gain is an important computational feature (Devanne
et al., 1997). Gain modulation of pyramidal neurons might
arise from noisy input (Arsiero et al., 2007), gamma rhythms
(Sohal et al., 2009) and neurotransmitter application (Zhang
and Arsenault, 2005; Thurley et al., 2008). Gain modulation in
ACC might be the basis for central sensitization in neuropathic
pain. In order to evaluate the intrinsic excitability in mice
with neuropathic pain, we also measured spike threshold
and RP. The spike threshold distinguished suprathreshold
depolarization from subthreshold (Yi et al., 2015). And it
was the foundation of neuronal input-output properties. The
changes of spike threshold might induce gain modulation
(Azouz and Gray, 2003). The RP after each spike reflected the
time latency to elicit another spike by outside stimulus, and
it underlay neuronal spiking ability and spike timing (Chen
et al., 2006a). The decreased spike threshold and RP might
cause gain modulation, participating in central sensitization in
neuropathic pain.

With regard to mechanisms for the elevated intrinsic
excitability, voltage-gated sodium channel (VGSC) might be
preferred. VGSC was the hotspot in neuropathic pain studies,
especially sodium channel subtypes expressed in the peripheral
nervous system or spinal cord, such as Nav1.7, Nav1.8 and
Nav1.9 (Lampert et al., 2010). Nowadays, sodium channel
subtypes expressed in the cerebral cortex, such as Nav1.2 and
Nav1.6, were also believed to participate in neuropathic pain
(Priest et al., 2004; Liao et al., 2010; Xie et al., 2013). The mRNA
expression of Nav1.1, Nav1.2, Nav1.6, Navb1 and Navb3, was
significantly increased by paclitaxel treatment (Masocha, 2016).
Cannabinoid could alleviate neuropathic pain by inhibiting the
functions of VGSCs (Okura et al., 2014). Besides its role in
pain, VGSC was also the most important candidate underlying
intrinsic excitability (Chen et al., 2006b; Goldfarb et al., 2007).
The subcellular distribution and biophysical properties of VGSC
determined intrinsic excitability of neurons (Goldfarb et al.,
2007). So, the roles of VGSC in the elevated intrinsic excitability
during pain will be the goal of our future research. And this might
help us to develop drugs for neuropathic pain.

Besides spike rate related to neuronal intrinsic excitability,
spike timing was believed to be another important information
carrier in the central nervous system (Schneidman et al.,
1998; Tiesinga et al., 2008). Spike timing was the basis for
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temporal encoding and time coding during neuronal information
processing (Borst and Theunissen, 1999). Precision was one
important index for spike timing, and reduced spike timing
precision was related to some pathological state (Foffani et al.,
2007). Peripheral injuries increased the spike timing jitter in
neurons of ACC in vivo (Li et al., 2014). We also found
reduced spike timing precision in neuropathic pain by measuring
SDST in the two groups. The roles of reduced spike timing
precision in neuropathic pain remained unknown. And this
might be an important issue for revealing the pathological state
of neuropathic pain.

In summary, our research demonstrated increased intrinsic
excitability and reduced spike timing precision in layer II/III
pyramidal neurons of ACC in mice with neuropathic pain.
The change in spike frequency and spike timing precision
has been discussed in previous studies (Prescott et al.,
2006; Prescott and Sejnowski, 2008). Steven A Prescott
and collaborator revealed that a pyramidal neuron encoded
time-averaged input with firing rate at low conductance state,
but encoded transient inputs with precisely timed spikes at
high conductance state. So, the shift of cell conductance
switched the operational mode from integration to coincidence
detection (Prescott et al., 2006). The spike-rate coding and

spike-time coding, were all affected by SFA (Prescott and
Sejnowski, 2008). Calcium-activated K current, which underlay
SFA, improved spike-rate coding at the cost of spike-time
coding. Voltage-activated M-type K current (IM), which
represented another mechanism for SFA, improved spike-time
coding but destroyed spike-rate coding. So, more in-depth
researches are needed to reveal the mechanisms for the changes
of spike-rate coding and spike-time coding in neuropathic
pain.
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