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ABSTRACT

Motivation: Genome-wide association studies are commonly used
to identify possible associations between genetic variations and
diseases. These studies mainly focus on identifying individual single
nucleotide polymorphisms (SNPs) potentially linked with one disease
of interest. In this work, we introduce a novel methodology that
identifies similarities between diseases using information from a large
number of SNPs. We separate the diseases for which we have
individual genotype data into one reference disease and several
query diseases. We train a classifier that distinguishes between
individuals that have the reference disease and a set of control
individuals. This classifier is then used to classify the individuals that
have the query diseases. We can then rank query diseases according
to the average classification of the individuals in each disease set,
and identify which of the query diseases are more similar to the
reference disease. We repeat these classification and comparison
steps so that each disease is used once as reference disease.
Results: We apply this approach using a decision tree classifier to
the genotype data of seven common diseases and two shared control
sets provided by the Wellcome Trust Case Control Consortium.
We show that this approach identifies the known genetic similarity
between type 1 diabetes and rheumatoid arthritis, and identifies a
new putative similarity between bipolar disease and hypertension.
Contact: serafim@cs.stanford.edu

1 INTRODUCTION
Genome-wide association studies (GWAS) are an increasingly
popular approach for identifying associations between genotype and
phenotype. A large number of such studies have been performed
recently to try to identify the genetic basis of a wide variety of
diseases, and explore how this genetic basis differs depending on
the geographic origin of the studied population. High-throughput
genotyping chips are used to obtain the genotype of an individual at
several hundreds of thousands of single nucleotide polymorphisms
(SNPs). These sets of SNPs are able to represent most of the
variability at the single locus level that was identified by the HapMap
project (Frazer et al., 2007). In a GWAS study, several thousands
of disease individuals, and several thousands of healthy controls
are genotyped. Statistical tests are used to identify SNPs that show
a strong association with the disease. Strong association between
a SNP and a disease can be evidence that the SNP is related to
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the disease, or that it is in linkage disequilibrium with SNPs that
are related to the disease. In both cases significant associations
provide promising leads for further experimental investigation into
the genetic etiology of diseases. These studies have led to the
identification of more than 150 risk loci in more than 60 diseases
(Manolio and Collins, 2009). The Wellcome Trust Case-Control
Consortium (WTCCC) genotype 500 000 SNPs in seven common
diseases: type 1 diabetes (T1D), type 2 diabetes (T2D), coronary
artery disease (CAD), Crohn’s disease (CD), bipolar disease (BD),
hypertension (HT) and rheumatoid arthritis (RA) (WTCCC, 2007).
In this article we use the individual genotype data from this study.

Computational methods have been used to identify disease
similarities using a variety of data sources, including gene
expression in cancer (Rhodes et al., 2004) and known relationships
between mutations and phenotypes (Goh et al., 2007). However,
while a large number of GWAS focusing on individual diseases
have been recently published, the attempts to integrate the results
of multiple studies have been limited. Most of these integration
approaches focus on combining multiple studies of the same disease
in order to increase the statistical power (Zeggini et al., 2008),
or use data from other high-throughput measurement modalities
to improve the results of GWAS studies (Chen et al., 2008).
Comparison between the genetic components of diseases have been
done using four different approaches. The first approach is based
on the identification of the association between one SNP in two
different diseases in two independent studies. The second approach
selects a group of SNPs that have been previously associated
with some disease and tests if they are also associated with a
different disease. An example of this approach is the genotyping
of a large number of individuals with T1D at 17 SNPs that have
been associated with other autoimmune diseases, which leads to
the identification of a locus previously associated with only RA
as being significantly associated with T1D as well (Fung et al.,
2009). The third approach pools data from individuals with several
diseases prior to the statistical analysis, and has been used in
the original WTCCC study. Several similar diseases (autoimmune
diseases, metabolic and cardiovascular diseases) are grouped in
order to increase the statistical power for identifying SNPs that are
significantly associated with all the diseases in the pool. The fourth
approach compares the results of multiple GWAS, and has been
previously applied to the WTCCC dataset (Torkamani et al., 2008).
They use the P-values indicating the significance of the association
between a SNP and a single disease, and compute the correlations
between these P-values in pairs of diseases, as well as the size of the
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intersection of the 1000 most significant SNPs in pairs of diseases.
They identify strong similarities between T1D and RA, between CD
and HT, and between BD and T2D.

In this work, we introduce a novel approach to identify similarities
in the genetic architecture of diseases. We train a classifier that
distinguishes between a reference disease and the control set. We
then use this classifier to classify all the individuals that have a query
disease. If there is a similarity at the genetic level between the query
disease and the reference disease, we expect more individuals with
the query disease to be classified as belonging to the disease class
than if there is no similarity. We generalize our procedure to multiple
disease comparison: given a set of multiple diseases, we use each
in turn as the reference disease while treating all others as query
diseases.

There are two main differences between our new approach and
existing analyses. First, previous approaches [such as Torkamani
et al. (2008)] compute a significance score for each SNP, and then
use these scores for comparing diseases. In our approach, we first
compute a classification for each individual, and then compare
diseases using these classifications. Second, we train the classifier
using information from all SNPs, and during this learning process
select the SNPs that contribute to the classification based on the
genotype data only. This genome-wide approach makes it possible
to see the classifier as a statistical representation of the differences
between the disease set and the control set.

The use of classifiers in the context of GWAS has been
limited so far. In particular, attempts at using them for predicting
outcome based on genotype have been unsuccessful. For example,
a recent prospective study in T2D (Meigs et al., 2008) found
that using 18 loci known to be associated with T2D in a logistic
regression classifier together with known phenotypic risk factors
does not significantly improve the risk classification, and leads to a
reclassification in only 4% of the patients. A particular challenge
in the context of outcome prediction is that the prevalence of
most diseases is relatively low and that it is therefore necessary
to achieve high precision in order for the classifier to be usable. Our
goal is not predicting individual outcomes, and we only compare
predictions made by a single classifier. We can therefore ignore
disease prevalence.

A second challenge in the use of a classification approach
for finding disease similarities is that the classifier does not
explicitly identify genetic features of the disease, but rather learns to
distinguish the disease set from the control set. Differences between
the two sets that are due to other factors might therefore lead
to incorrect results. In most GWAS, a careful choice of matched
controls limits this risk. However, when using a classifier trained
on one GWAS to classify individuals from a different study, there
is a risk that the background distribution of SNPs is very different
between the populations in which the datasets have been collected,
which could lead to errors, particularly when comparing diseases
using datasets from different geographic origins. This risk can be
limited by using disease data from a single source. In this work,
we use genotype data provided by the WTCCC study, in which
all individuals were living in Great Britain and individuals with
non-Caucasian ancestry were excluded.

In this article, we first provide a detailed description of the analysis
approach. We then show that we are able to train classifiers that
achieve a classification error that is clearly below the baseline
error for T1D, T2D, BD, HT and CAD. We use these classifiers

to identify strong similarities between T1D and RA, as well as
between HT and BD, and weak similarities between T1D and both
BD and HT. We also show that we are able to train a classifier
that distinguishes between the two control sets in the WTCCC data.
We use this classifier to identify similarities between some diseases
and individual control sets. This finding matches observations made
during the quality check phase of the original study. The implications
of this finding on our approach are addressed in the Section 5.
Finally, we discuss the implications of the similarities we find, and
propose extensions of this approach. A detailed description of the
dataset used in this work, the data pre-processing, the decision tree
classifier and the comparison procedure are provided in Sections 3
and 4, respectively, at the end of the article.

2 APPROACH
In this section, we define the general classifier-based approach to
identify genetic similarities between diseases. The approach can be
separated into four steps: data collection, preprocessing, classifier
training and disease comparison. Figure 1 provides an overview of
the training and comparison steps.

The data collection step consists of collecting samples from
individuals with several diseases, as well as matched controls, and
genotyping them. Alternatively, existing data can be reanalysed.
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Fig. 1. Overview of the approach. This figure presents the classification and
comparison steps of our analysis pipeline. These steps are repeated using
a different reference disease each time. The classifier returns a real value
between 0.0 and 1.0 which we call disease-class probability. The histograms
represent the distribution of the disease-class probability of the individuals
with the reference disease (left) and of the controls (right). In the situation
depicted in this figure, there is evidence that query disease C is more similar
to the reference disease than the other query diseases.
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In both cases, it is important to limit the differences between the
disease sets and the control sets that are not related to the disease
phenotype. Similarly, differences between the different disease sets
should also be limited. In particular, it is recommended to use
individuals with the same geographic origin, the same ancestry, and
a single genotyping technology for the whole study. In this work,
we use existing data from the WTCCC which satisfies these criteria.

In the preprocessing step, the data are filtered and uncertain
genotype measurements, as well as individuals and SNPs that do
not fit quality requirements are discarded. It is important to develop
preprocessing steps that ensure good data quality. Approaches that
analyze each SNP individually can afford to have a more stringent,
often manual post-processing step on the relatively few SNPs that
show strong association. The SNPs that do not pass this quality
inspection can be discarded without affecting the results obtained
on other SNPs. In our approach however, classifier training is done
using genome-wide information, and removing even a single SNP
used by the classifier could potentially require retraining the entire
classifier. It is therefore impractical to perform any kind of post-
processing at the SNP level. The Section 3 of this article describes
the data used in this work, as well as the quality control measures
we take.

The classifier training and comparison steps are interleaved. We
start with a list of diseases and a set of individual genotypes for
each disease, as well as at least one set of control genotypes. We
pick one disease as reference disease, and refer to the remaining
diseases as query diseases. We train a classifier distinguishing the
corresponding disease set from the control set. For any individual,
this classifier could either return a binary classification (with values 0
and 1 indicating that the classifier believes the individual is part of,
respectively, the controls class or the disease class) or a continuous
value between 0 and 1. This continuous value can be seen as
the probability of the individual to be part of the disease class,
as predicted by the classifier. We refer to this value as disease-
class probability. For simplicity, we will only use the disease-class
probability values for the rest of this section, but the comparison
step can be performed similarly using binary classifications. During
the comparison step, we classify individuals from the query disease
sets using the classifier obtained in the training step, and for each
query disease, compute the average disease-class probability. The
training and comparison steps are then repeated so that each disease
is used once as reference disease.

We can compare the average disease-class probability of the
different query diseases to identify similarities between them.
Diseases that have a higher average disease-class probability are
more likely to be similar to the reference disease than diseases with
a lower average disease-class probability. Using cross-validation,
we can obtain the average disease-class probability of the reference
disease set and the control set used for training the classifier, and
compare them with the values of the other diseases. One particular
caveat that needs to be considered in this analysis is that while the
classifier does distinguish the control set from the disease set, there is
no guarantee that it will only identify genetic features of the disease
set. It is also possible that it will identify and use characteristics
of the training set, especially if there are data quality issues. This
case can be identified during the comparison step if the average
disease-class probability of most query diseases is close to the
average disease-class probability of the reference disease, but very
different from the average disease-class probability of the control set.

It is therefore important to look at the distribution of the average
disease-class probabilities of all query diseases before concluding
that an individual disease is similar to the reference disease.

It is important to note that the disease-class probability of a given
individual does not correspond to the probability of this individual
actually having the disease. The disease frequency is significantly
higher in the datasets we use for training the classifier than in the
real population. In a machine learning problem in which the test data
are class-imbalanced, training is commonly done on class-balanced
data, and class priors are then used to correct for the imbalance. Such
priors would, however, scale all probabilities linearly, and would not
affect the relationships we identify, nor their significance. Estimating
the probability of an individual having the disease is not the goal of
this project and we can therefore ignore class priors.

A large variety of classifiers can be integrated into the analysis
pipeline used in our approach. The Section 4 provides a more formal
description of the classification task. In this article, we use a common
classifier, decision trees, to show that this approach allows us to
identify similarities. The specific details about the decision tree
classifier, and how its outputs are used in the analysis step are
described in the Section 4.

3 RESULTS
We evaluate the ability of our analysis approach to identify
similarities between diseases using the set of seven diseases provided
by the WTCCC. In this section, we first evaluate the performance
of individual classifiers that distinguish one disease from the
joint control set. We then show that these classifiers can identify
similarities between diseases. Finally, we use our classifier to
identify differences between the two control sets, and provide
evidence indicating that these differences do not affect the disease
similarities we identify.

3.1 Classifier performance
We first train one classifier for each disease using both the 58C
and the UKBS sets as controls. The performance of each classifier
is evaluated using cross-validation, and reported in Table 1. We
compare our classifier to a baseline classifier that classifies all
individuals into one class without using the SNP data at all. The
best error such a classifier can achieve during cross-validation is the

Table 1. Classifier performance (cross-validation)

Disease Baseline
(%)

Error
(%)

Precision
(%)

Recall
(%)

�p Leaves

T1D 40.05 22.93 71.65 70.71 0.383 9
RA 38.43 33.45 59.12 42.09 0.130 12
BD 38.24 33.59 62.60 30.18 0.087 11
HT 39.92 36.77 57.98 28.64 0.080 12
CAD 39.05 36.62 55.25 32.73 0.075 12
T2D 39.5 38.0 54.12 25.05 0.052 14
CD 36.63 36.28 29.83 18.43 0.046 11

Baseline corresponds to the baseline error; Error, Precision and Recall to the cross-
validation performance of the decision tree classifier; �p to the difference between
the average disease-class probability of the control set and the average disease-class
probability of the disease set; and Leaves to the maximum number of leaves in the
pruned classifiers for this disease.

i23



[10:11 15/5/2009 Bioinformatics-btp226.tex] Page: i24 i21–i29

M.A.Schaub et al.

frequency of the smaller class in the training set. We refer to this
value as the baseline error.

The disease for which the classifier performs best is T1D, with
a classification error of 22.93%, compared with a baseline error
of 40.05%. The classification error obtained by the decision tree
classifier is also below the baseline error for several other diseases,
although by a substantially smaller margin. This is the case for
RA (with an error of 33.45% versus 38.43%), BD (33.59% versus
38.24%), HT (36.77% versus 39.92%) and CAD (36.62% versus
39.05%). For two diseases, T2D and CD, the improvement compared
with the baseline error is only minimal, and we choose not to
use these classifiers in our analysis. While the classifiers that we
keep only provide small improvements in terms of classification
error (with the exception of T1D), they have a significantly better
trade-off between precision (at least 55%) and recall (at least 28%)
than the baseline classifier (which would classify all individuals as
controls).

We do not use these classifiers in a binary way, but rather use
the disease-class probability, which is the conditional probability
of an individual to be part of the disease-class given its genotype,
under the model of the reference disease learned by the classifier
(see Section 7 for a precise definition for decision trees). It is
therefore interesting to consider the distributions of the disease-class
probability, as obtained during cross-validation. Figure 2 illustrates
that these distributions differ significantly for T1D. It can also be
seen that there are individuals for which the disease-class probability
is close to 50%, meaning that there are leaf nodes in the classifier that
represent subsets of the data that cannot be distinguished well. Our
approach takes this into account by using disease-class probabilities
rather than binary classifications. In order to evaluate the ability of
our classifiers to distinguish between the disease set and the control
set using the disease-class probability metric, we use the difference
�p of the average disease-class probability between the two sets.
The classifiers that we keep all have values of �p above 0.075. This
illustrates that while there are only small improvements in binary
classification performance, the classifiers are able to distinguish
between the disease set and the control set in the way we intend
to use them.

3.2 Disease similarities
For each of the five classifiers with sufficiently good performance,
we compute the average disease-class probability of each of the
six query diseases. In summary, we identify strong symmetrical
similarities between T1D and RA, as well as between BD and HT.
Furthermore, we find that T1D is closer to both BD and HT than
other diseases, even though we did not find the symmetrical relation
using the T1D classifier. This section provides a detailed presentation
of these results.

For T1D, the average disease-class probability for the control
set and the disease set, as computed using cross-validation, are
0.259 and 0.642, respectively. Figure 2 shows the distribution of
the average disease-class probabilities for the query diseases. RA,
another autoimmune disease, is clearly the closest to T1D (average
disease-class probability of 0.337). This result is significant, with
P-value <10−5 (see the Section 4 for details on how P-values
are obtained). All other diseases have an average disease-class
probability that is close to that of the control set, which means that
there is no evidence of similarity with T1D.
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Fig. 2. Distribution of the disease-class probabilities for the T1D classifier.
The two histograms show the distribution of the disease-class probability of
the individuals, respectively, in the joint control set (top) and in the T1D
set (bottom), as computed during cross-validation. The red lines represent
the average disease-class probabilities, and the black line indicates the 0.5
probability cut-off used for binary classification. The plot in between the
histograms shows the average disease-class probabilities of the six other
diseases on the interval between the average disease-class probabilities of
the control set and of the disease set.

For RA, the average disease-class probabilities are 0.303 for
the control set and 0.433 for the disease set. The distribution of
the average disease-class probabilities for the other diseases are
shown on Figure 3a. We can observe that T1D (average disease-
class probability of 0.397) is closest to RA (P< 10−5), meaning
that we find a symmetrical similarity between the two diseases. All
other diseases have an average disease-class probability close to the
one of the control set.

For BD, the average disease-class probabilities are 0.297 for the
control set and 0.384 for the disease set. The distribution of the
average disease-class probabilities for the query diseases are shown
in Figure 3b. We can observe that there is a wider spread in the
average disease-class probabilities, and that there is no cluster of
diseases close to the control set. We can also observe that HT
(average disease-class probability of 0.359, P < 10−5) is closest to
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Fig. 3. Disease-class probabilities comparisons. The plots represent the
interval between the average disease-class probabilities of the control set
and of the disease set for RA (a), BD (b), HT (c) and CAD (d), respectively.
The average disease-class probabilities for all the query diseases are shown
in blue on every plot. Note that while all plots on this figure use the same
scale, different scales are used for the central plots of figures 2 and 4.

BD, followed by T1D (average disease-class probability of 0.354,
P-value of 0.001).

For HT, the average disease-class probabilities are 0.315 for
the control set and 0.395 for the disease set. The distribution of
the average disease-class probabilities for the other diseases are
shown in Figure 3c. We can observe that BD (average disease-class
probability of 0.381, P-value <10−5) is clearly closest to HT. T1D
(average disease-class probability of 0.368, P < 10−5) is also closer
to HT than the remaining diseases.

For CAD the average differences between the query diseases are
smaller than for all the other classifiers (Fig. 3d). Furthermore,
the classifier for CAD is the one with the worst performance
amongst the ones we use in the comparison phase. Therefore,
we believe that the results are not strong enough to report
putative similarities identified using this classifier, even though some
differences between diseases have significant P-values.

Table 2. Separate training set classifier performance

Experiment Baseline
(%)

Error
(%)

Precision
(%)

Recall
(%)

�p Leaves

UKBS/58C 49.62 41.15 58.33 64.05 0.093 11
R1/R2 50.03 49.45 50.59 46.42 −0.003 11

UKBS/T1D 42.62 23.15 79.53 80.34 0.402 8
58C/T1D 42.99 24.46 76.60 82.22 0.370 8
UKBS/RA 44.29 36.42 66.21 70.72 0.144 10
58C/RA 44.66 38.11 64.89 67.83 0.135 9

Baseline corresponds to the baseline error; Error, Precision and Recall to the cross-
validation performance of the decision tree classifier; �p to the difference between
the average disease-class probability of the control set, and the average disease-class
probability of the disease set; and Leaves to the maximum number of leaves in the
pruned classifiers for this experiment. R1 and R2 represent two random splits of the
joint control set.

3.3 Differences between control sets
The original WTCCC study found several SNPs that are significantly
associated with one of the two control sets. These SNPs are filtered
out during preprocessing, both in the WTCCC study and in this work.
However, the mere existence of differences between two control sets
prompted the question whether a classifier could distinguish the two
sets, and if so, what the implications of this finding would be on the
validity of results obtained with these control sets.

We perform several experiments using the two control sets
separately, and report the results in Table 2. First, we train a
control–control classifier that distinguishes the two control sets from
each other. This classifier achieves an error of 41.15% compared
with a baseline error of 49.62%, and a �p of 0.093. This shows
that we are able to distinguish to some extent between the two
control sets. Figure 4 shows the distribution of the 58C class
probability (which corresponds to the value called disease-class
probability when the classifier distinguishes between one disease
and the controls). In order to verify that this result is due to
differences between the two specific control set, and not the ability of
our classifier to distinguish between any two sets, we randomly split
all control individuals into two sets, R1 and R2. We train a classifier
to distinguish between these two sets. We find that this classifier does
only minimally improves the classification error (error of 49.45%,
baseline error of 50.03%, �p of −0.003).

We apply the comparison step of our pipeline using the control–
control classifier in order to identify possible similarities between the
disease set and one of the control sets. Figure 4 shows the distribution
of the average 58C class probabilities for each disease. The
average disease-class probabilities obtained during cross-validation
are 0.477 for the UKBS set and 0.561 for the 58C set. Both HT
(average 58C class probability of 0.521, P < 10−5) and BD (average
58C class probability of 0.514, P-value of 0.0002) are closer to the
58C control set, whereas both RA (average 58C class probability of
0.487, P < 10−5) and CAD (average 58C class probability of 0.489,
P-value of 0.0003) are closer to the UKBS control set.

Given the differences between the control sets, and the unexpected
similarities between control sets and diseases, we are interested in
verifying that the performance of the disease classifiers used in the
analysis is not an artifact caused by these differences. We therefore
train two new classifiers for each disease, one using only UKBS as
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Fig. 4. Distribution of the class probabilities for the control–control classifier
distinguishing the UKBS control set from the 58C control set. The two
histograms show the distribution of the 58C class probability of the
individuals, respectively, in the UKBS control set (top) and in the 58C control
set (bottom), as computed during cross-validation. The red lines represent the
average class probabilities, and the black line indicates the 0.5 probability
cut-off used for binary classification. The plot in between the histograms
shows the average disease-class probabilities of all seven other diseases on
the interval between the average class probabilities of the two control sets.

control set, and one using only 58C as control set. The performance
of these classifiers for T1D and RA is shown in Table 2, and is
similar to the performance of the classifiers that use both control
sets together. For the remaining diseases (including HT and BD),
the classifiers using only one of the control sets do not achieve
a classification error below the baseline error, most likely due to
the smaller training set (i.e. overfitting). For each of the classifiers
for T1D and RA, we compute the average disease-class probability
for the other six diseases as well as the unused control set. The
similarities between the two diseases are significant in all four
classifiers. Furthermore, the average disease-class probability of the
unused control set is similar to the average disease-class probability
of the other five diseases, and not significantly closer to T1D or RA.
Therefore, we can conclude that the results obtained using the T1D
and RA classifiers are not due to differences between the control sets.
Furthermore, the results using a single control set provide further
evidence indicating that the classifiers do identify relevant features

of T1D and RA, respectively, rather than relevant features of the
control set.

4 DISCUSSION
In this work, we introduce a novel approach for identifying genetic
similarities between diseases using classifiers. We identify genetic
similarities between several diseases. In this section, we first discuss
the implications of these findings. We then consider challenges in
the application of classifiers to GWAS data. Finally, we propose
possible extensions of this approach.

We identify a strong similarity between T1D and RA. Genetic
factors that are common to these two autoimmune diseases were
identified well before the advent of GWAS, and linked to the
HLA genes (Torfs et al., 1986, Lin et al., 1998). The original
WTCCC study (WTCCC, 2007) identifies several genes that appear
to be associated with both diseases. We look at the classifiers
corresponding to these two diseases. The SNP with the highest
information gain in T1D is rs9273363, which is located on
chromosome 6, near MHC class II gene HLA-DQB1, and is also the
SNP that is most strongly associated with T1D in the initial analysis
of the WTCCC data, with a P-value of 4.29×10−298 (Nejentsev
et al., 2007). This is the strongest association reported for any disease
in the WTCCC study, which explains to a large extent why the
T1D classifier so clearly outperforms the classifiers for the other
diseases. This SNP is also significantly associated with RA (P-value
of 6.74×10−11). The SNP with the highest information gain in
RA is rs9275418, which is also part of the MHC region, and is
strongly associated with both RA (P-value of 1.00×10−48) and
T1D (P-value of 7.36×10−126). This shows that our approach is
able to recover a known result, and uses SNPs that have been found
to be significantly associated with both diseases in an independent
analysis of the same data.

The similarity we identify between HT and BD is interesting,
since there does not appear to be previous evidence of a link
between the two diseases at the genetic level. However, a recent
study identified an increased risk of HT in patients with BD
compared with general population, as well as compared to patients
with schizophrenia in the Dannish population (Johannessen et al.,
2006). The WTCCC study only identified SNPs with moderate
association to HT (lowest P-value of 7.85×10−6) and a single
SNP with strong association with BD (P-value of 6.29×10−8).
The decision trees for both diseases use a large number of SNPs
that have a very weak association with the respective disease. Both
classifiers have a classification error that is clearly below the baseline
error, and provide evidence of similarity between the two diseases.
This indicates that our classifier-based approach is able to use the
weak signals of a large number of SNPs to identify evidence for
similarities that would be missed by comparing only SNPs that show
moderate or strong association with the diseases. Further analyzes
are necessary to identify the nature and implications of the similarity
we find between HT and BD, as well as the weaker similarity we
identified between these two diseases and T1D.

We also show that we can train a classifier that can distinguish
the two control sets, and we use it to identify diseases that are
more similar to one of the control set than the other. This is not an
unexpected finding, since SNPs that were strongly associated with a
control set were identified and discarded in the WTCCC study. These
SNPs were also removed in the preprocessing step of our study, and
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the results we obtain when trying to distinguish the two control sets
therefore show that the decision tree classifier is able to achieve a
classification error below the baseline error even though the SNPs
with the strongest association could not be used by the classifier. The
similarities between some diseases and one of the control sets can
most likely be explained by some subtle data quality issue. During
quality control, the authors of the WTCCC study found several
hundreds of SNPs in which some datasets exhibited a particular
probe intensity clustering [see the Supplementary Material of the
original WTCCC study (WTCCC, 2007) for details]. This particular
pattern was always observed in 58C, BD, CD, HT, T1D, T2D, but not
in UKBS, RA and CAD. This matches the result obtained using our
classifier-based approach, in which RA and CAD were predicted to be
most similar to UKBS, and could therefore be a possible explanation
of the similarities we find.

While we do find several interesting similarities between diseases,
we also observe that training a classifier that distinguishes between
individuals with a disease and controls using SNP data poses
numerous challenges. The first is that whether someone will develop
a disease is strongly influenced by environmental factors. The
genetic associations that can be identified using GWAS are only
predispositions, and it is therefore likely that some fraction of
the control set will have the predispositions, but will not develop
the disease. Furthermore, depending on the level of screening, the
disease might be undiagnosed in some control individuals, and
individuals that are part of a disease set might have other diseases
as well. This is especially true for high-prevalence diseases like HT.

Obtaining good classifier performance by itself is not, however,
the main goal of our approach. We show that we can find
similarities even when the classifier performance only shows small
improvements compared with the baseline error. In this work, we
focus on the comparison approach, not on developing a classifier
specially suited for the particular task of GWAS classification.
We use decision trees because they are a simple, commonly used
classification algorithm.

This work shows that classifiers can be used to identify similarities
between diseases. This novel approach can be expanded into several
directions. First, classification performance can be potentially
improved by using a different generic classifier, or by developing
classifiers that do take into account the specific characteristics of
SNP data. Second, further analysis methods need to be developed
in order to analyze the trained classifiers, and identify precisely the
SNPs that do lead to the similarities this approach detects. Such
a methodology would be useful, for example, to further analyze
the putative similarity between HT and BD. Third, building on
the fact that our approach considers the whole genotype of an
individual, it could be possible to identify subtypes of diseases, and
cluster individuals according to their subtype. Finally, modifying the
approach to allow the integration of studies performed in populations
of different origins or using different genotyping platforms would
allow the comparison of a larger number of diseases.

Our approach identifies similarities between the genetic
architecture of diseases. This is, however, only one of the many axes
along which disease similarities could be described. In particular,
both genetic and environmental factors interact in diseases, and
the genetic architecture for two diseases could be similar, but
the environmental triggers could be different, leading to low co-
occurrence. There is therefore a need for methods that integrate
similarities of different kinds that were identified using different

measurement and analysis modalities. An example of such an
approach is the computation of disease profiles that integrate both
environmental ethiological factors and genetic factors (Liu et al.,
2009).

5 CONCLUSION
GWAS have been used to identify candidate loci likely to be linked
to a wide variety of diseases. In this article, we introduce a novel
approach that allows identifying similarities between diseases using
GWAS data. Our approach is based on training a classifier that
distinguishes between a reference disease and a control set, and
then using this classifier for comparing several query diseases to
the reference disease. This approach is based on the classification
of individuals using their full genotype, and is thus different from
previous work in which the independent statistical significance of
each SNP is used for comparing diseases.

We apply this approach to the genotype data of seven common
diseases provided by the WTCCC, and show that we are able
to identify similarities between diseases. We replicate the known
finding that there is a common genetic basis for T1D and RA, find
strong evidence for genetic similarities between BD and HT, as well
as evidence for genetic similarities between T1D and both BD and
HT. We also find similarities between one of the control sets used
in the WTCCC (UKBS) and two disease sets, RA and CAD. This
similarity can possibly be a consequence of the subtle differences
in genotyping quality that were observed during the initial quality
control performed by the WTCCC.

Our results demonstrate that it is possible to use a classifier-
based approach to identify genetic similarities between diseases,
and more generally between multiple phenotypes. We expect that
this approach can be improved by using classifiers that are more
specifically tailored for the analysis of GWAS data, and by the
integration of a larger number of disease phenotypes. The ability
to compare similarities between diseases at the whole-genome level
will likely identify many more currently unknown similarities.
Genetic similarities between diseases provide new hypotheses to
pursue in the investigation of the underlying biology of the diseases,
and have the potential to lead to improvements in how these diseases
are treated in the clinical setting.

6 DATA
We use the individual genotypes provided by the WTCCC. These genotypes
come from a GWAS (WTCCC, 2007) of seven common diseases: T1D, T2D,
CAD, CD, BD, HT, and RA. The data consist of a total of 2000 individuals
per disease and 3000 shared controls, with 1500 control individuals from
the 1958 British Birth Cohort (58C control set) and 1500 individuals from
blood donors recruited specifically for the project (UKBS control set).
The genotyping of 500 568 SNPs per individual was performed using the
Affymetrix GeneChip 500 K Mapping Array Set. In the original analysis of
this dataset by the WTCCC, a total of 809 individuals and 31 011 SNPs
that did not pass quality control checks are excluded. In addition, SNPs that
appear to have a strong association in the original study have been manually
inspected for quality issues, and 578 additional SNPs were removed. In this
work, we exclude all individuals and SNPs that were excluded in the WTCCC
study, as well as an additional 9881 SNPs that do not appear in the WTCCC
summary results.

One concern with these quality control steps is the identification of SNPs
for which the genotype calling is of poor quality. In the WTCCC study, this
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is done after the analysis, which makes it possible to visually inspect the
small subset of SNPs that are potentially significant. In a classifier-based
approach, it is impractical to perform any kind of visual inspection, and
we must try to minimize the errors due to genotype calling prior to the
analysis. The WTCCC study only uses genotype calls made by a custom
algorithm, Chiamo (Marchini et al., in preparation), but the genotype calls
made using the standard Affymetrix algorithm BRLMM are also available.
While the study does show that Chiamo has, on average, a lower error rate
than BRLMM, there are SNPs that are discarded during the quality control
process that show errors in the genotype calls made by Chiamo. We use the
two genotype sets to create a consensus dataset in which the genotype of a
given individual at a given SNP is used only if there is agreement between the
call made by Chiamo and the call made by BRLMM, and is considered to be
unknown if the calls are different. This approach individually considers the
call made for every individual at every SNP, and does not discard entire SNPs.
The handling of SNPs that have a high proportion of unknown genotypes is
left to the classification algorithm, and will be discussed in the corresponding
section. While this approach does reduce the errors in genotype calling, this
comes at the cost of discarding cases in which Chiamo is right but BRLMM is
not. Overall, the frequency of unknown genotypes is 2% using the consensus
approach, compared with 0.65% using Chiamo and 0.74% using BRLMM.
Furthermore, BRLMM genotype calls are entirely missing for a total of 184
individuals, which are thus excluded from our study.

After performing these preprocessing steps, the data set used in this study
consists of 459 075 SNPs measured in 2938 control individuals (58C: 1480,
UKBS: 1458), 1963 with T1D, 1916 individuals with T2D, 1882 individuals
with CAD, 1698 individuals with CD, 1819 individuals with BD, 1952
individuals with HT and 1834 individuals with RA.

7 METHODS
In this section, we first formally define the classification task that is central
to our approach, then describe the specific classifier we use in this work
and how we evaluate its performance, and finally describe how we use the
classification results to infer relationships between diseases.

7.1 Classification Task
The data consist of a list of individuals i, a list of SNPs s∈S, and the
measurement of the genotype g(s,i) of individual i at SNP s. We use
Gi ={g(1,i),...,g(|S|,i)} to denote the genotype of individual i at all the
SNPs in the study. The genotype measurement is a discrete variable which
can take four values: homozygote for the major allele, homozygote for the
minor allele, heterozygote and unknown: g(s,i)∈{maj,min,het,unk}. Each
individual belongs to one of several disease sets, or to the control set. For
the WTCCC data used in this work, we have seven disease sets: T1D, T2D,
CAD, CD, BD, RA, HT, and we use the union of the 58C and UKBS sets as
control set.

For each disease d, we train a classifier that distinguishes between that
disease set and the controls. The individuals that are not part of these sets
are ignored during the training of this classifier. For each individual i used
during training, a binary class variable ci indicates whether the individual
belongs to the disease set (ci ==disease) or to the control set (ci ==control).
The supervised classification task consists of predicting the class ci of an
individual i given its genotype Gi. In this work, we use a decision tree
classifier, but any algorithm able to solve this classification task can be easily
integrated into our analysis pipeline.

7.2 Decision trees
In this section, we describe the decision tree classifier (Breiman et al., 1984).
We use cross-validation in order to train the classifier, prune the trained
decision tree and evaluate its performance on distinct sets of individuals.

We train a decision tree T by recursively splitting the individuals in each
node using maximum information gain for feature selection. We use binary

categorical splits, meaning that we find the best rule of the form g(s,i)==γ ,
where γ ∈{maj,min,het}. Binary splits make it possible to handle cases in
which only one of the three possible genotypes is associated with the disease
without unnecessarily splitting individuals that have the two other genotypes.
Unknown values are ignored when computing information gain. This is
necessary since there is a correlation between the frequency of unknown
values and the quality of the genotyping, which in turn is variable between the
different datasets. Counting unknown values during training could therefore
lead to classifiers separating the two sets of individuals based on data quality
differences, rather than based on genetic differences. However, if a large
number of measurements are unknown for a given SNP, the information
gain for that SNP will be biased. This is particularly true if the fraction of
unknowns is very different between the cases and the controls. In order to
avoid this situation, we discard all SNPs that do have >5% of unknown
genotypes amongst the training individuals in the node we are splitting. In
each leaf node L, we compute the fraction fL of training individuals in that

node of that are part of the disease class: fL =
∑

i∈L (ci==disease)
|L| .

In order to choose a pruning algorithm, we compare the cross-validation
performance obtained using Cost-Complexity Pruning (Breiman et al.,
1984), Reduced Error Pruning (Quinlan, 1986), as well as a simple approach
consisting of limiting the tree depth. We find that Reduced Error Pruning
outperforms Cost-Complexity Pruning, and performs similarly well than
limiting the tree depth, but results in smaller decision trees. We therefore use
Reduced Error Pruning, which consists of recursively eliminating subtrees
that do not improve the classification error on the pruning set (which only
contains individuals that were not used during training).

The classification of an individual i using a decision tree T is done by
traversing the tree from the root towards a leaf node L(i) according to the
genotype of the individual which is classified. If fL(i) >0.5, then the individual
is classified as disease, else the individual is classified as control. We can
consider the decision tree T as a high-level statistical model of the difference
between the disease and the control sets. Under this model, the fraction fL(i)

represents the conditional probability of individual i to be part of the disease
class given its genotype: PT (ci ==disease | Gi)= fL(i). This value is the
disease-class probability of individual i. In order to compute the fractions fL
over sufficiently large numbers of individuals, we further prune our tree to
only have leaf nodes containing at least 100 training individuals. The benefit
of using this probability rather than the binary classification is that it allows
to distinguish leaf nodes in which there are mainly training individuals from
one class from those in which both classes are almost equally represented.

In order to assess the performance of our classifier, we perform 5-fold
cross-validation. We start by separating the data into five random sets
containing 20% of the individuals each. A decision tree T is trained using four
of these sets, while one set is reserved for pruning and testing. The unused set
is split randomly into two equal sets. The first of these sets is used to obtain
pruned tree T ′ from tree T , and the individuals in the second set are used
to evaluate the performance of tree T ′. The last step is then repeated using
the second set for pruning, and the first for testing. Finally, we repeat the
training and evaluation four more times, each time leaving out a different set
for pruning and testing. This ensures that for every individual in our dataset,
there is one pruned decision tree for which the individual was used neither
for training nor for pruning. We can therefore evaluate the performance of
the classifier on unseen data. We can also compute the average disease-class
probability p(C) of the control individuals, and the average disease-class
probability p(d) of the individuals with disease d. The difference �p between
those two probabilities indicates how well the classifier is able to distinguish
controls from diseases. We use the cross-validation results to compare the
performance of the classifier against a baseline classifier which simply
assigns the most frequent label amongst the training set to all individuals.
Classifiers that do not outperform this baseline classifier, or for which the
difference �p is small, are not used to identify similarities between diseases.

Given the cross-validation scheme used, we end up training not one, but
several possibly distinct decision trees. Rather than arbitrarily choosing one,
we use the set Td of all decision trees trained during cross-validation for a

i28



[10:11 15/5/2009 Bioinformatics-btp226.tex] Page: i29 i21–i29

Classifier-based approach to identify genetic similarities

given disease d. In order to classify a new individual i, we first classify i
using each classifier independently, and then return the average classification.
Similarly, we average the results of individual classifiers to obtain the average

disease-class probability: PTd (ci ==disease | Gi)=
∑

T∈Td
PT (ci==disease | Gi)

|Td | .

7.3 Identifying similarities
Once a classifier has been trained to distinguish the set of individuals with
reference disease d from the control set, we can use it to identify diseases
that are similar to disease d. Using the classifier, we can compute the disease-
class probability of an individual with a query disease d′. In order to be able
to compare diseases, we are interested in computing the average disease-

class probability of all individuals in d′: p(d′)=
∑

i∈d′ PTd (ci==disease | Gi)
|d′ | . We

expect this average probability to be in, or close to the interval between p(C)
and p(d), which were the averages computed on, respectively, the control set
and the disease set d during cross-validation. If p(d′) is close to p(C), then d′
is not very different from the control set, whereas a value p(d′) that is close
to p(d) indicates similarity between the two diseases. Using this method, we
can compare all query diseases to the reference disease d, and identify if
there are diseases that are more similar to d than others.

If we find that a query disease d′ is closer to reference disease d than the
other query diseases, then we need to assess the significance of this finding.
In order to do so, we randomly sample a set r of individuals from all the
disease sets except d, such that r is of the same size as d′, and compute p(r).
We repeat this procedure 10 000 times. The fraction of random samples r
for which p(r)≥p(d′) indicates how often a random set of individuals would
obtain a probability of being part of the disease-class at least as high as the
set d′, and is therefore a P-value indicating how significant the similarity
between d′ and d is.

ACKNOWLEDGEMENTS
This study makes use of data generated by the Wellcome Trust Case-
Control Consortium. A full list of the investigators who contributed
to the generation of the data is available from www.wtccc.org.uk.

Funding for the project was provided by the Wellcome Trust under
award 076113; Richard and Naomi Horowitz Stanford Graduate
Fellowship (to M.A.S.).

Conflict of Interest: none declared.

REFERENCES
Breiman,L. et al. (1984) Classification and Regression Trees. Wadsworth. Belmont, CA.
Chen,R. et al. (2008) FitSNPs: highly differentially expressed genes are more likely to

have variants associated with disease. Genome Biol., 9, R170.
Frazer,K. et al. (2007) A second generation human haplotype map of over 3.1 million

SNPs. Nature, 449, 851.
Fung,E.Y. et al. (2009) Analysis of 17 autoimmune disease-associated variants in Type

1 diabetes identifies 6q23/tnfaip3 as a susceptibility locus. Genes Immuno., 10,
188–191.

Goh,K.I. et al. (2007) The human disease network. Proc. Natl Acad. Sci. USA, 104,
8685–8690.

Johannessen,L. et al. (2006) Increased risk of hypertension in patients with bipolar
disorder and patients with anxiety compared to background population and patients
with schizophrenia. J. Affect. Disord., 95, 13–17.

Lin,J. et al. (1998) Familial clustering of rheumatoid arthritis with other autoimmune
diseases. Hum. Genet., 103, 475–482.

Liu,Y.I. et al. (2009) The “etiome”: identification and clustering of human disease
etiological factors. BMC Bioinformatics, 10(Suppl. 2), S14.

Manolio,T. and Collins,F. (2009) The HapMap and genome-wide association studies in
diagnosis and therapy. Annu. Rev. Med, 60, 16–1.

Marchini,J. et al. (2007) A Bayesian hierarchical mixture model for genotype calling
in a multi-cohort study.

Meigs,J. et al. (2008) Genotype score in addition to common risk factors for prediction
of Type 2 Diabetes. New Engl. J. Med., 359, 2208.

Nejentsev,S. et al. (2007) Localization of Type 1 diabetes susceptibility to the MHC
class I genes HLA-B and HLA-A. Nature, 450, 887.

Quinlan,J. (1986). Simplifying Decision Trees. AI Memo 930.
Rhodes,D.R. et al. (2004) Large-scale meta-analysis of cancer microarray data identifies

common transcriptional profiles of neoplastic transformation and progression. Proc.
Natl Acad. Sci. USA, 101, 9309–9314.

Torfs,C. et al. (1986) Genetic interrelationship between insulin-dependent diabetes
mellitus, the autoimmune thyroid diseases, and rheumatoid arthritis. Am. J. Hum.
Genet., 38, 170.

Torkamani,A. et al. (2008) Pathway analysis of seven common diseases assessed by
genome-wide association. Genomics, 92, 265–272.

The Wellcome Trust Case Control Consortium (2007) Genome-wide association study
of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447,
661–678.

Zeggini,E. et al. (2008) Meta-analysis of genome-wide association data and large-scale
replication identifies additional susceptibility loci for Type 2 diabetes. Nat. Genet.,
40, 638–645.

i29


