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Background: Epilepsy affects 50 million people worldwide and a third are refractory

to medication. If a discrete cerebral focus or network can be identified, neurosurgical

resection can be curative. Most excisions are in the temporal-lobe, and are more

likely to result in seizure-freedom than extra-temporal resections. However, less

than half of patients undergoing surgery become entirely seizure-free. Localizing the

epileptogenic-zone and individualized outcome predictions are difficult, requiring detailed

evaluations at specialist centers.

Methods: We used bespoke natural language processing to text-mine 3,800 electronic

health records, from 309 epilepsy surgery patients, evaluated over a decade, of whom

126 remained entirely seizure-free. We investigated the diagnostic performances of

machine learning models using set-of-semiology (SoS) with and without hippocampal

sclerosis (HS) on MRI as features, using STARD criteria.

Findings: Support Vector Classifiers (SVC) and Gradient Boosted (GB) decision trees

were the best performing algorithms for temporal-lobe epileptogenic zone localization

(cross-validated Matthews correlation coefficient (MCC) SVC 0.73 ± 0.25, balanced

accuracy 0.81 ± 0.14, AUC 0.95 ± 0.05). Models that only used seizure semiology

were not always better than internal benchmarks. The combination of multimodal

features, however, enhanced performancemetrics includingMCC and normalizedmutual

information (NMI) compared to either alone (p < 0.0001). This combination of semiology

and HS on MRI increased both cross-validated MCC and NMI by over 25% (NMI, SVC

SoS: 0.35 ± 0.28 vs. SVC SoS+HS: 0.61 ± 0.27).

Interpretation: Machine learning models using only the set of seizure semiology (SoS)

cannot unequivocally perform better than benchmarks in temporal epileptogenic-zone

localization. However, the combination of SoS with an imaging feature (HS)
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enhance epileptogenic lobe localization. We quantified this added NMI value to be

25% in absolute terms. Despite good performance in localization, no model was able

to predict seizure-freedom better than benchmarks. The methods used are widely

applicable, and the performance enhancements by combining other clinical, imaging and

neurophysiological features could be similarly quantified. Multicenter studies are required

to confirm generalizability.

Funding: Wellcome/EPSRC Center for Interventional and Surgical Sciences

(WEISS) (203145Z/16/Z).

Keywords: epilepsy surgery, machine learning, semiology, hippocampal sclerosis, epileptogenic zone, temporal

lobe epilepsy, gradient boost classifier, linear support vector classifier

INTRODUCTION

Fifty million people have epilepsy world-wide, and one third
are refractory to two or more appropriate antiepileptic drugs,
with recurrent seizures and impairment of quality of life.
Neurosurgical resections in focal epilepsy may be curative
and have been shown to improve health status (1–3). The
Epileptogenic Zone (EZ) is defined as the region that when
resected, renders the patient seizure-free. Understanding the
symptoms, signs and semiology (chronological clinical seizure
manifestations) at the onset of seizures is key to determining
the site of seizure onset in the brain; but this may be imprecise
(4). Despite an extensive literature on semiology, imaging and
electroencephalographic (EEG) features for EZ-localization, no
definitive method exists to determine the EZ (5). Concordance
is sought with brain imaging: MRI, functional imaging (SPECT,
FDG-PET); scalp EEG video-telemetry and neuropsychology.
The results are discussed in a multidisciplinary team (MDT)
conference, to localize the EZ and minimize risks, prior to
consideration of resection. Despite this, many patients do not
become seizure-free after surgery (6).

The value of any particular clinical feature or investigation
result in contributing to a patient’s differential diagnosis depends
on its overall univariate association with the EZ (prior) and
any other factors which may interact with it. Clinical judgement
and acumen arise through experience, when there may not be
objective data. Although one can assess the value of clinical
features through Bayesian-belief elicitation, in the absence of
grounded-objectives, responses would be capturing subjective
clinical values (7). Well-designed machine learning methods
using ground-truth target labels and all relevant features perform
well in capturing data patterns to predict targets, akin to clinical
intuition. The so-called “AI chasm” notes that algorithms are
only clinically useful if they improve clinical outcomes, not just
diagnostic accuracy (8).

A study in 2015 evaluated 830 patients and the value
of semiology in predicting the EZ (9). Conditional inference
trees’ localization accuracy among five ictal onset areas was
56.1%. Accuracy for binary mesial temporal lobe epilepsy
(mTLE) or lateral temporal-EZ was 71% (unquoted naïve
accuracy of 63%) (9). Despite the large numbers, the supervised
learning method suffered from inadequate ground-truth labels:

the EZ was often labeled by clinicians on the presence or
absence of a particular semiology, making the evaluation logic
circular and results were reported without cross-validation
or test sets, compromising generalizability. A review in 2017
showed algorithmic identification of EZ brain networks and the
propagation of seizures remains an open issue. Combinations
of multimodal features have not been used on large-scale high-
quality patient data (10). Currently there are no clinically utilized
algorithms to augment EZ-localization or quantify the value of
multimodal features presented in MDTs.

In this study, we set out to objectively assess the value of
combining clinical features for temporal-lobe (TL) epileptogenic
zone localization – the most common form of drug refractory
epilepsy with the best surgical outcomes. We investigated set of
seizure semiology (SoS, devoid of sequence information) and
hippocampal sclerosis (HS), as this imaging finding is specific
to the TL, is the most frequent imaging finding, and provides
a good univariate benchmark. HS is a scar in the medial
temporal lobe and the most common pathology underlying
drug-resistant TL epilepsy. These features are important in
clinical evaluations and can be extracted from electronic
health record texts. We used machine learning models with
strong ground-truths and also assessed values in predicting
surgical outcomes.

METHODS

Study Design and Participants
Our objective was to determine the value of clinical-semiology,
hippocampal sclerosis and their combination for the binary
localization of the EZ to the temporal or extratemporal brain.
The value of combining these features was quantified for both
relative diagnostic performance (Step 1) and subsequently using
the model from Step 1 for post-surgical prognosis (Step 2) as
well as training independent models for the direct prediction of
surgical outcomes (Step 3).

Retrospective text analysis of 3,800 mixed data-type electronic
health records (EHRs) pertaining to adults with refractory focal
epilepsy admitted for presurgical assessment for epilepsy surgery
from 2001 to 2011 was undertaken at the National Hospital for
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TABLE 1 | Frequency of Features and Targets.

Variable Frequency in seizure-free

patients

(n = 126) (%)

Frequency in all operated

patients

(n = 309) (%)

Temporal-EZ (target) 112 (89%) 256 (mix of seizure-free and

not seizure-free) (83%)

Dialeptic/loss of

awareness (LOA)

92 (73%) 223 (72%)

Tonic-clonic 84 (67%) 224 (72%)

Hippocampal sclerosis

(imaging feature)

70 (56%) 147 (48%)

Oral automatisms 58 (46%) 140 (45%)

Other automatism

(unspecified)

57 (45%) 138 (45%)

Olfactory-gustatory 56 (44%) 141 (46%)

Upper limb automatism 49 (39%) 108 (35%)

Tonic 47 (37%) 126 (41%)

Aphasia 46 (37%) 100 (32%)

Fear-Anxiety 37 (29%) 91 (29%)

Head Turn 30 (24%) 73 (24%)

Clonic 30 (24%) 77 (25%)

Epigastric 28 (22%) 61 (20%)

Autonomous-

vegetative

26 (21%) 66 (21%)

Psychic 23 (18%) 57 (18%)

Non-specific aura 22 (17%) 52 (17%)

Dysphasia 21 (17%) 71 (23%)

LOC 17 (13%) 46 (15%)

Astatic 15 (12%) 38 (12%)

Other simple motor 14 (11%) 32 (10%)

Vocalization 13 (10%) 33 (11%)

Somatosensory 12 (10%) 39 (13%)

Nose-wiping 10 (8%) 18 (6%)

Dystonic 10 (8%) 26 (8%)

Head version 10 (8%) 27 (9%)

Grimace 10 (8%) 19 (6%)

Blink 9 (7%) 27 (9%)

Hypermotor 8 (6%) 19 (6%)

Dacrystic 8 (6%) 14 (5%)

Vestibular 7 (6%) 26 (8%)

Other complex motor 6 (5%) 13 (4%)

Auditory 4 (3%) 10 (3%)

Gelastic 4 (3%) 7 (2%)

Eye Version 3 (2%) 8 (3%)

Hypomotor (behavioral

arrest)

3 (2%) 11 (4%)

Visual 3 (2%) 12 (4%)

Coprolalia 3 (2%) 3 (1%)

Figure of 4 2 (2%) 5 (2%)

Atonic 2 (2%) 6 (2%)

Ictal pout 1 (1%) 1 (0.3%)

Myoclonic 1 (1%) 2 (1%)

Spitting 1 (1%) 7 (2%)

Asymmetric tonic 1 (1%) 4 (1%)

(Continued)

TABLE 1 | Continued

Variable Frequency in seizure-free

patients

(n = 126) (%)

Frequency in all operated

patients

(n = 309) (%)

Fencing 0 1 (0.3%)

Lower limb automatism 0 1 (0.3%)

Palilalia 0 0

Aphemia 0 0

Drinking 0 0

Cough 0 0

Whistling 0 0

Frequency of patients with Semiology, imaging feature and temporal resections. By

“hypomotor” we mean behavioral arrest during a seizure and not the semiology specific

to the pediatric population.

Neurology and Neurosurgery, London. SoS, HS, and temporal-
EZ features were extracted (Table 1). Univariate statistics were
computed and machine learning models were trained to predict
temporal-EZ and subsequently prognosis.

We used set-of-semiology (SoS), because these are
more readily available from a clinical history than precise
symptom chronology. We restricted MRI-identifiable TL
pathology to HS as this represented 92% of temporal
lesions (n= 70).

Procedures
EHRs were pseudo-anonymised, pre-processed and text-mined
for the presence of 49 semiology features and a single
imaging feature (HS) using regular expressions as a taxonomy
replacement. This taxonomy replacement was a bespoke
expansion of major semiological categories presented elsewhere
(4). The anonymised keys and identifiers were stored in
secure NHS systems and checks for data-mining integrity on
a subsample showed <5% binary-feature error compared to
manual feature-extraction by a consultant neurologist. The
Pandas DataFrame was sparse and multi-one-hot encoded. EHRs
were cross-referenced to a database containing EZ-localization
labels (resected lobes) alongside their post-operative year-by-year
ordinal score on the ILAE epilepsy surgery outcome scale, and
whether they had intracranial electrode recordings, curated since
1990, as previously reported (6). Intracranial electrodes were
collected only as a univariate benchmark for negative prognostic
value in epilepsy surgery, as their presence is a clinical indicator
of uncertain EZ.

EHRs from 870 cases were available, 335 of which underwent
epilepsy-surgery after assessment. 324 cases were from unique
patients, of which 309 had one resection only, excluding
hemispherectomies and corpus callosotomies, consistent with
previous methodology (11).

Statistical Analysis
Fisher’s exact and Mann-Whitney U-tests were performed at
three levels of uncorrected type I error (alpha = 0.05, 0.005, and
0.0005) with Bonferroni corrections for multiple comparisons for
181 tests (Fisher’s: 51 for Step 1, 53× 2 for Step 3; MWU: 24 tests)
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(p < 2.76 × 10−4 = ∗, p < 2.76 × 10−5 = ∗∗, p < 2.76 × 10−6

= ∗∗∗, respectively). Theil’s U (asymmetric normalized mutual
information, NMI) was used to check for categorical correlations
and model performance.

Machine Learning
We used multivariate binary Logistic Regression (LR), Gradient
Boosted Trees (GB), and Linear Support Vector Classifiers (SVC)
(implemented in Scikit-learn v 0.19.2) (12) as suggested by
previous studies (9, 13). We chose these specific algorithms
as LR is widely used in predictive models, SVC performs
well if the target can be linearly separated by a high-
dimensional hyperplane in feature space, and GB ensemble
models leverage multiple weak classifiers into a strong classifier
with each individual component utilizing a different feature
subset, akin to clinical MDTs. GB are more likely to succeed
with more data and complexity, but are less interpretable
than SVC or LR. For binary features and binary outcomes as
in our study, LR without regularization can have a decision
boundary that asymptotically approaches that of SVC (14),
which can further help assess if the targets are linearly
separable. Feature selection was performed using both univariate
and recursive feature elimination with 5-fold cross-validation
(RFECV) methods (15). No other hyperparameter tuning
was performed.

The models were compared to benchmarks in localizing
temporal-EZ (Step 1). We also made indirect assessments if
improved diagnostic accuracy translated to enhanced outcome

predictions (Step 2), and separately trained models to directly
predict outcomes (Step 3). For Step 1, we chose a binary
localization target containing the most common focal epilepsy,
temporal-lobe vs. extra-temporal (ET) EZ, and models were
trained on patients who were entirely seizure-free at all follow-
up years (ESF). For Steps 2 and 3, outcome was assessed at two
binary levels: seizure-freedom at 1-year (ILAE1), and ESF. In
Step 2, the Step 1 model was used to predict outcomes on all
data. In Step 3, new models were trained to predict outcomes.
ILAE 2 and above were considered not seizure-free (NSF) due to
residual epileptogenic tissue resulting in auras or seizures with
impaired awareness.

Although we report many metrics (using 1,000 × 5 repeated
stratified CV with means and standard deviations in Table 3,
or medians and IQR), due to an unbalanced dataset, we focus
on Matthews-correlation-coefficient (MCC) as one of the most
suitable metrics for binary classification evaluations which can be
interpreted as a discretization of Pearson’s-correlation-coefficient
(16, 17). NMI was used to quantify information gains between
features, models, and the ground truth EZ.

Role of the Funding Source
The Wellcome/EPSRC Center for Interventional and Surgical
Sciences had no role in the study design; collection, analysis or
interpretation of data; writing of report; nor in the decision to
submit for publication.

This study was approved by the Research Ethics Committee
for UCL and UCLH (20/LO/0149).

TABLE 2 | Benchmarks for Step 1 Temporal-EZ Localization.

Feature Number with

TL-EZ/number with

feature (n = 126)

Number with

TL-EZ/number with

feature (n = 309)

Odds ratios (n = 126,

n = 309)

p-values (n = 126, n = 309)

Temporal-EZ features

Hippocampal sclerosis 70/70 144/147 DBZ**, 21*** 4.2 × 10−6**, 6.3 × 10−13***

All Automatisms (combined) 82/84 186/206 16.4*, 4.4*** 3.0 × 10−5*, 2.2 × 10−6***

Oral automatisms 58/58 131/140 DBZ*, 5.1** 9.7 × 10−5*, 3.5 × 10−6**

Other automatism (unspecified) 55/57 127/138 5.8, 3.8* 0.020, 0.00012*

Upper limb automatism 49/49 100/108 DBZ, 3.6 0.00082, 0.00077

Fear-anxiety 37/37 84/91 DBZ, 3.2 0.010, 0.0045

Dialeptic/LOA 85/92 195/223 3.1, 2.9 0.054, 0.0012

Epigastric NS 58/61 NS, 4.9 NS, 0.0039

Aphasia NS 90/100 NS, 2.3 NS, 0.024

Extratemporal-EZ features

Intracranial electrodes NS 50/89 NS, 0.09 NS, 7.1 × 10−4

Hypomotor (behavioral arrest) 0/3 6/11 0, 0.16 0.0011, 0.0045

Somatosensory 8/12 25/39 0.19, 0.30 0.029, 0.0024

Clonic 23/30 57/77 0.26, 0.47 0.040, 0.023

Head version NS 16/27 NS, 0.25 NS, 0.0021

Eye version NS 3/8 NS, 0.11 NS, 0.0046

Asymmetric tonic NS 1/4 NS, 0.07 NS, 0.017

Fisher’s exact test for Step 1 Temporal-EZ localization in postoperative seizure-free patients (n = 126, strong ground truths) and all operated patients (n = 309, 256 weakly labeled as

temporal, 53 as extratemporal). All features with p < 0.05 are shown; *Represents significance at alpha 5% after Bonferroni correction. **at 0.5% after Bonferroni correction. ***at 0.05%

after Bonferroni correction. DBZ, Division By Zero. NS: p > 0.05.

Frontiers in Digital Health | www.frontiersin.org 4 February 2021 | Volume 3 | Article 559103

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Alim-Marvasti et al. Machine Learning and Seizure Semiology

TABLE 3 | Machine Learning Models for Temporal EZ-Localization (Step 1).

Model-RFECV Naïve

benchmark

Automotor

semiology

univariate

benchmark

HS imaging

univariate

benchmark

LR SoS LR SoS+HS Linear

support

vector

classifier

SoS

Linear

support

vector

classifier

SoS+HS

GB SoS GB SoS+HS

5-CV

metric

+/-std (refit)

# of features (min equivalent) N/A 1 1 16 25 (18) 40 (30) 9 27 17

F1 average macro N/A 0.61 ± 0.06 0.59 ± 0.06 0.68 ± 0.17

(0.88)

0.75 ± 0.16

(0.88)

0.72 ± 0.16

(0.88)

0.85 ± 0.14

(0.91)

0.66 ± 0.15 0.81 ± 0.14

(0.98)

Balanced accuracy 0.5 0.67 ± 0.07 0.75 ± 0.04 0.65 ± 0.13

(0.82)

0.72 ± 0.15

(0.82)

0.70 ± 0.15

(0.82)

0.81 ± 0.14

(0.86)

0.65 ± 0.14 0.80 ± 0.15

(0.96)

Accuracy 0.83 ± 0.04 0.71 ± 0.05 0.63 ± 0.05 0.92 ± 0.03

(0.96)

0.93 ± 0.03

(0.96)

0.92 ± 0.04

(0.96)

0.96 ± 0.03

(0.97)

0.89 ± 0.05 0.93 ± 0.04

(0.99)

Sensitivity/recall 1 0.73 ± 0.06 0.56 ± 0.06 1.0 ± 0.004 0.995 ±

0.015

0.98 ± 0.03 1.0 ± 0.006

(1.0)

0.96 ± 0.04 0.97 ± 0.04

(1.0)

Specificity 0 0.62 ± 0.14 0.94 ± 0.06 0.30 ± 0.26

(0.64)

0.44 ± 0.29

(0.64)

0.42 ± 0.29

(0.64)

0.61 ± 0.28

(0.71)

0.35 ± 0.27 0.62 ± 0.29

(0.93)

PPV 0.83 ± 0.04 0.90 ± 0.04 0.98 ± 0.02 0.92 ± 0.03

(0.96)

0.94 ± 0.03

(0.96)

0.93 ± 0.03

(0.96)

0.95 ± 0.03

(0.97)

0.92 ± 0.03 0.95 ± 0.03

(1.0)

NPV 0 0.32 ± 0.09 0.31 ± 0.07 0.64 ± 0.48

(1.0)

0.77 ± 0.39

(1.0)

0.67 ± 0.40

(1.0)

0.93 ± 0.25

(1.0)

0.51 ± 0.39 0.76 ± 0.31

(1.0)

AUROC N/A N/A N/A 0.89 ± 0.11 0.95 ± 0.06 0.83 ± 0.14 0.95 ± 0.05 0.81 ± 0.14 0.95 ± 0.07

Average Precision N/A N/A N/A 0.98 ± 0.02 0.99 ± 0.01 0.97 ± 0.03 0.99 ± 0.01 0.97 ± 0.03 0.99 ± 0.01

MCC [bootstrap refit] 0 [0.28± 0.12] [0.38± 0.08] 0.41 ± 0.33

[0.76 ± 0.22]

(0.78)

0.55 ± 0.31

[0.76 ± 0.22]

(0.78)

0.48 ± 0.32

[0.76 ± 0.22]

(0.78)

0.73 ± 0.25

[0.81 ± 0.19]

(0.83)

0.36 ± 0.30 0.64 ± 0.27

[0.96 ± 0.09]

(0.96)

NMI symmetric [asymmetric

bootstrap refit]

0 [0.10± 0.07] [0.21± 0.08]

(0.28)

0.31 ± 0.26

[0.57 ± 0.29]

(0.53)

0.42 ± 0.28

[0.57 ± 0.29]

(0.53)

0.35 ± 0.28

[0.57 ± 0.29]

(0.53)

0.61 ± 0.27

[0.65 ± 0.29]

(0.604)

0.23 ± 0.23 0.48 ± 0.29

[0.91 ± 0.19]

(0.87)

Step 1 CV performance metrics. Mean and standard deviation of 1,000 × 5 CV scores. Benchmark std given by bootstrapping 2,000 × 5 CV. Brackets represent model-refit (training)

scores. Square brackets show bootstrapped refit results. CV, cross-validation; RFECV, Recursive Feature Elimination with CV; std, standard deviation; PPV/NPV, Positive/Negative

Predictive Value; AUROC, Area under receiver operating curve; MCC, Matthews Correlation Coefficient; NMI, Normalized Mutual Information. See Supplementary Materials for

expanded table and distribution of MCC and NMI scores.

RESULTS

Patients and Outcomes
Of the 309 patients, 126 (41%) were ESF at all follow-
up years (median follow-up 7 years, IQR = 5–10,
Supplementary Figure 9), indicating correct EZ-resections.
Labels were unbalanced; 112/126 (88.9%) were temporal-EZ, and
14 extratemporal.

Features
Forty-two semiology features were present in the ESF-set.
Automatisms (oral, manual and other) were merged to a single
category, leaving 40 SoS features. There were 76 temporal-lobe
lesions in the ESF group and HS as the single imaging feature
constituted 92% (70/76) of these. In addition, there were three
cavernomas, one dysembryoplastic neuroepithelial tumor, one
cyst and one focal cortical dysplasia in the temporal lobes.

Table 1 shows frequency of occurrences in the 126-ESF-set
and all 309 operated patients.

Table 2 shows univariate benchmarks for features associated
with temporal-EZ. The statistically significant features after
multiple-comparisons correction on two-by-two Fisher’s exact
tests were seizures with automatisms and HS. The highest odds-
ratios were for presence of HS, automatisms, and fear-anxiety.

The performance metrics of the best univariate features, as
benchmarks, are summarized in Table 3.

Step 1: EZ Cross-Validated Results
The learning curves for the GB and SVCmodels show overfitting
for SoS features alone that improved with combined SoS+HS
features (Figure 1). Table 3 shows semiology and imaging
enhanced performance above that of benchmarks using the best
features obtained from RFECV (Figures 2, 3), most of which
were found in the univariate analysis (Table 2). Figure 4 shows
that combined features also enhance training-set performance.

GB betters SVC when refit to the ESF-set (Figure 4); whereas
cross-validated results (Figure 1, Table 3) show the models
perform more similarly: mean and median MCC with and
without the imaging feature are:

• Best benchmark (imaging-HS): mean = 0.38 ± 0.08, median
= 0.38, IQR= 0.33–0.43

• GB-SoS: mean= 0.36± 0.30, median= 0.35, IQR= 0.0–0.55
• GB-SoS+HS: mean = 0.64 ± 0.27, median = 0.66, IQR

= 0.55–0.80
• SVC-SoS: mean = 0.48 ± 0.32, median = 0.55, IQR =

0.34–0.69
• SVC-SoS+HS: mean = 0.73 ± 0.25, median = 0.80, IQR

= 0.55–0.80.

Frontiers in Digital Health | www.frontiersin.org 5 February 2021 | Volume 3 | Article 559103

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Alim-Marvasti et al. Machine Learning and Seizure Semiology

FIGURE 1 | Learning Curves using accuracy score, with standard deviations. The test-fold accuracies (in green) are more representative of model performances on

prospective data, showing enhanced learning by combining semiology and HS. (A,C) SoS has limited test-fold learning (green) with increasing training samples. (B,D)

SoS+HS improves test-fold accuracies after about 70 samples. See Supplementary Materials for comparison with logistic regression.

Comparing GB and SVC-models:

• with semiology alone, although SVC performed better,

the two models performed similarly with overlap of
interquartile ranges.

• with SoS+HS, there was also significant overlap between the

models; the SVC-model again had a better median MCC.

Compared to SoS alone, when combining features:

• SVC mean, median, lower and upper quartiles were

enhanced by between 10 to 25%. This suggests the support
vectors are better defined with HS and that temporal

lobe EZ are linearly separable in binary semiology-HS

feature space.
• in the GB-model, there was also significant improvements in

lower-quartile (55%), median (30%) and upper-quartile (25%)
MCC and no overlap in interquartile ranges.

• LR (Table 3) shows similar improvements in metrics, except

the median MCC remains at 0.55.

These affirm the value of combining multimodal features,

irrespective of the model.

Step 2: Indirect Surgical Outcome Results
Of the 183 NSF patients, 144 had temporal resections (54 ILAE
1 at 1-year, median of patient ILAE outcome medians = 2,
IQR = 1–4) and 39 extratemporal resections (seven ILAE 1
at 1-year, median = 4, IQR = 2–4). Temporal resections were
associated with better outcomes at 1-year post-resection (ILAE
1, OR = 2.7, p = 0.035) and better median ILAE outcomes
(Mann-Whitney U = 2,057, p = 0.004). None of the machine
learning models’ congruent predictions with actual resections
were significant in improving upon this naïve benchmark
(Supplementary Figures 10–13).

Step 3: Direct Surgical Outcome Results
Although direct (n = 309) benchmarks for ESF included having
had a temporal-resection (OR = 2.2, p = 0.02), having been
seizure-free-at-1-year, presence of HS (OR = 1.7, p = 0.02),
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FIGURE 2 | Gradient Boosting Classifier GB SoS+HS Feature Importance.

From the 41 combined features, RFECV was used to determine the most

relevant features for the model.

FIGURE 3 | Support Vector Classifier SVC SoS+HS feature ranking using

RFECV. In blue are features which predict temporal, and in red extratemporal

EZ. All SVC features are also used by the GB model, except “Hypermotor”

semiology.

and dysphasia (OR = 0.53, p = 0.039), and benchmarks for
predicting seizure-freedom at 1-year included presence of HS
(OR = 1.9, RR = 1.29, p = 0.005), temporal-lobe-resection (OR
= 2.8, p = 0.001) and presence of intracranial EEG (OR = 0.46,
p = 0.003), only seizure-freedom-at-1-year as a predictor of ESF
was statistically significant after multiple comparisons correction

(Theil’s U = 0.43). No model was able to exceed naïve or feature
benchmarks on any metric.

DISCUSSION

Our main findings were that models localized the epileptogenic-
zone to the temporal lobe when using multimodal semiology
and MRI report of HS, and were better than semiology, HS
or other benchmarks in isolation. Support vector machines
had a slight edge over Gradient Boosted trees, but there was
considerable overlap in performances (Step 1). No method
was able to predict seizure-freedom at 1-year or ESF better
than benchmarks (Steps 2 and 3). Multicenter case records are
required to confirm generalizability, and expanded features are
necessary to determine if epilepsy surgical outcomes can be
predicted at all.

EZ-Localization Algorithms (Step 1)
Our study addresses a subset of the open issue of algorithmic
identification of EZ networks (10), namely temporal-EZ,
and provides univariate and algorithmic benchmarks with
single (SoS) or two-modalities (SoS and HS). Models with
multimodal features outperform semiology-only models
(Figure 1) and univariate benchmarks (Table 3) using features
that are significant on univariate analysis (Table 2) and those
that are not (Figures 2, 3). The strength of the GB model lies
in its ability to combine an ensemble of weak-learners, and
out-perform individual univariate benchmarks, including the
strongest, HS, as assessed on both training-set (Figure 4) and
CV-folds (Table 3). SVC strength lies in classifying temporal-
EZ by defining borderline cases as class-dividing support
vectors. Support vectors are the feature-states of the cases
which lie at the margins of the optimum hyperplane separating
the temporal vs. extratemporal EZs. The SVC-model has 26
support vectors which determine the classifiers hyperplane.
Alterations to any of these cases, but not others, can result in
a different SVC classifier altogether. This makes the algorithm
more robust to slight sample changes during cross-validation.
The coefficients in Figure 3 represent the projections of a
vector orthogonal to the classifying hyperplane onto each
feature (15).

Clinical Features of Temporal-EZ (Step 1)
The following cardinal semiologies of temporal lobe seizures have
been described: (18)

• Prodromes
• Auras
• Altered Consciousness (dialeptic)
• Amnesia
• Automatisms (oral, manual, dacrystic, gelastic,

and leaving-behaviors).

Hippocampal sclerosis is present in more than 80% of surgically
treated TLE. The published semiologies in mTLE, commonly
associated with HS include:

• Rising epigastric sensation
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FIGURE 4 | Theil’s U for features, models and temporal-EZ localization. The columns represent the known (Bayesian prior) variable, and the rows the target entropy

coefficient. For example, “Figure of 4” semiology in the column is a subset of “Asymmetric Tonic” in the row with high coefficient, whereas the reverse association is

smaller in magnitude. The naïve algorithm would show zero association with all the variables with a column of zeros (and is undefined in row due to division by zero).

All four models are more predictive of a temporal-EZ than any of the univariate features, with 1 (intense red) representing 100% of the information in the target being

predicted by the column. With the addition of Imaging HS to Semiology SoS (n = 126, refit to training set) SVC and GB show a graded improvement in the proportion

EZ-localization entropy accounted for.

• Affective (fear)
• Experiential (including déjà vu)
• Automatisms
• Head Turns
• Autonomic phenomenon.

These semiologies are confirmed by univariate analysis (Table 2),
and from the 17 retained features post-RFECV (Figure 2).
A notable exception is rising epigastric sensation. Epigastric
sensation is non-significant for the ESF patients used to train the
data (Table 2) and not present as a feature after RFECV for either
the SVC or GB models (Figures 2, 3).

There are conflicts and overconfidence in reporting the
localizing values of semiology in the literature, using small
samples of clinical cases and often no ground-truths to
objectively assess labels or effects on surgical outcomes. The

localizing values of semiologies may be stated without measuring
confidence or variation e.g., postictal cough localizing to the
temporal lobe (18), unilateral upper-limb automatisms reported

to both have an ipsilateral seizure onset (19, 20) and no

lateralizing value in isolation (21). Such discrepancies may arise

due to lack of ground-truths, small numbers, ignoring time to

onset of the semiology and excluding relevant features. When

value is assessed, this is usually performed in a univariate

manner, e.g., in one example series the trend that hypermotor

seizures occur earlier in frontal lobe epilepsy than extra-frontal

epilepsies was assessed by univariate Fisher’s exact test, showing
that chronology is valuable for EZ-localization; but did not
reach significance and only 17 surgical patients were seizure-free
(ground-truth labels), limiting the power of the analysis (22).
The GB algorithm (Figure 2) shares all the SVC-model features
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(Figure 3) except hypermotor, which only features in the SVC-
model, potentially making the SVC model more capable of
identifying frontal-lobe (extratemporal) seizures.

Quantifying Value of Multimodal Features
Although studies that look at single modality data can quantify
the value of semiology compared to naïve benchmarks, they
cannot assess the value of multimodal features, as are utilized
clinically in MDTs (9). Clinical, demographic, imaging and
neurophysiological features applied in machine learning have
been purported to be capable of predicting mTLE outcomes
(with or without HS), but this value has not been quantified nor
applied to EZ-localization (13). Multimodal features of EEG and
semiology enhance EZ-lateralisation accuracy (23), and although
it is known that integration of clinical data also enhance EZ-
localization (20), datamining studies have not quantified the
incremental value of multimodal data (13).

Different methods may be used to assess incremental
multimodal value; for any given model, the convergence rate
of the learning curve, choice of performance metric, and
maximum or average performance. We highlighted the value
of semiology and imaging using all of these methods, and used
suitable summarymetrics in unbalanced datasets, MCC andNMI
(Table 3). In both the GB SoS+HS and SVC SoS+HS models,
multimodal features improve MCC and NMI average scores by
over 25% compared to the best univariate benchmark of HS,
and compared to the SoS-only models. Therefore, although SoS
is not more valuable than univariate markers, when combined
with the imaging feature (HS) it enhances epileptogenic
lobe localization.

Outcome Prediction (Steps 2 and 3)
In Step 2 we evaluated model performance in indirectly
predicting outcomes on the 183 non-seizure free patients. We
assessed the veracity of these EZ-labels using the model as
the predictor of true labels. The null hypothesis was that if
there was a mismatch between the actual resection (weakly
labelled EZ) and prediction, the ILAE outcomes should not
be significantly different to when there is congruence of
prediction. A naïve benchmark which predicts all resections
to be temporal outperforms models from Step 1, therefore
the EZ-localization performance does not translate to
better outcomes.

Step 3 directly used all 309 patients’ features to predict
seizure-freedom, and the training curves showed overfitting
as the models performed much better on the training set,
but were no better than benchmarks on cross-validation
folds (Supplementary Figure 12). Features which could localize
temporal-EZ within the context of the above algorithms are thus
insufficient for outcome prediction, which limits their clinical
utility (8). Many other factors besides the EZ may determine
outcomes, including whether there are indicators of multifocal
epilepsy, unaccounted clinical (24) and genetic features, lesion
histology (25), EEG patterns, and extent of surgical resection
(11, 26–29). Our model did not account for these, nor the precise
structures within the temporal lobe that were resected.

Table 2 suggests that invasive EEG is more likely to be used
in extra-temporal-EZ, but is not associated with better outcomes,
reflecting selection bias, in that invasive EEG would only be used
if localization was unclear on non-invasive investigations.

We were not able to predict outcomes with our chosen
features using GB, SVC, or other models, as reported previously
(30). However, other studies have purported to be capable of
predicting mTLE binary post-surgical outcomes using various
models and features in cross-validated studies: naïve-Bayes and
SVC (max accuracy 95%) (13), neural networks and wide manual
data abstraction (accuracy 92%); neural networks and diffusion-
tensor imaging (PPV of 88 ± 7%) (31, 32). The smaller studies
are likely to be overfitting the data and not generalizable, and
even accurate prognostication does not help improve clinical
outcomes (33).

Limitations
The mean CV score is considered an unbiased estimate of
performance. The standard deviation estimates for the CV scores
are however not unbiased (34); these are particularly large due
to different training samples within each fold (e.g., SVC is
sensitive to the support vector cases), and some folds predicting
no extratemporal EZs due to class imbalance, resulting in larger
variances for NPV and specificity (Table 3). As we tuned the
number of features using RFECV, the mean CV score is also
biased, therefore multicenter prospective data is required to
assess generalizability and ascertain which model is inherently
more suited to localizing temporal-EZ. The learning curves also
suggest further data may enhance results.

We used the complete set of available ictal symptoms
and not only the semiology presenting at seizure-onset or a
sequential Markov model, which together with omitted imaging,
electrophysiological and neurophysiological features may yield
better results.

We did not model propagation networks in which similarly
located lesions may differentially straddle inherent brain
networks. Dichotomous assumption of temporal vs. extra-
temporal lobe epilepsy may be only good insofar as the majority
of resections are anterior temporal resections. Our labels do
not differentiate between lateral or mesial temporal-lobe EZ or
indeed the extent of resection.

The PPV and specificity of both semiology and HS are
higher than the models in predicting temporal-EZ, although the
training-scores are comparable. The GB SoS+HS model has a
more balanced metric profile, as reflected in F1-macro, MCC and
NMI scores (Table 3).

A strength of our study is the inclusion of only patients
who remained ESF for epileptogenic zone localization, despite
the good results for localization, this doesn’t translate to better
outcomes, the so-called AI chasm is thus not surmounted.

Further work is required to validate this localization model
prospectively. Expanding the number of training samples and
features in a multicenter approach may allow the use of
these models to localize epileptogenic networks to a greater
level of detail, and allow investigation of the extent that
surgical outcomes can or cannot be predicted with all available
multimodal data.
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