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Correspondence 

Response letter to Wahid et al. regarding our publication “A network score-based metric to 
optimize the quality assurance of automatic radiotherapy target segmentations” 

We would like to thank Wahid et al. for their insightful comments on 
our recently published paper [1]. In this paper our aim was to identify a 
network uncertainty-based metric that correlated strongly with deep 
learning-based auto-segmentation performance and could thus be used 
to detect auto-segmentations that require manual review. Wahid et al. 
rightly highlight that the calibration and interpretation of network un-
certainty estimations are still points of contention in the field. We 
acknowledge that it is important to study network uncertainty at a 
fundamental level. In addition, we believe that the synergy between 
fundamental and pragmatic approaches is desirable in order to find a 
workable solution for the problem of auto-segmentation quality assur-
ance in clinical practice. 

In our work, we took a pragmatic, application-oriented approach to 
this problem. Our approach was pragmatic in two ways: first, we pro-
posed a metric that is readily available for most auto-segmentation ap-
plications without requiring additional training, changes to the network 
architecture or multiple runs at inference time; second, we focused on 
error detection based on clinically relevant performance metrics like the 
mean surface distance and the surface Dice. We acknowledge the caveats 
of our approach highlighted by Wahid et al. and appreciate the relevant 
suggestions of possible future research directions. 

The first point raised by the authors concerns the use of softmax 
scores as uncertainty estimates. In particular, they point out that mis-
calibrated uncertainty estimations may compromise out-of-distribution 
detection and propose the use of Bayesian approaches like Monte 
Carlo [2] and deep ensembles [3] instead. In literature, softmax scores 
are indeed often reported to be miscalibrated [4]. In recent years, 
however, the perspective that large networks are highly miscalibrated 
has become less consensual, with recent work claiming that modern 
networks can be reasonably calibrated too [5,6]. Moreover, other evi-
dence suggests that Bayesian approaches are also miscalibrated, and that 
applying techniques like temperature scaling can help reduce this 
problem [7,8]. We fully agree that the issue of calibration is a non-trivial 
one, worthy of an in-depth examination. 

Notably, most published literature on deep learning network cali-
bration focuses on classification networks, which have arguably 
different properties than auto-segmentation networks. State-of-the-art 
auto-segmentation networks are typically trained with Dice and/or bi-
nary cross entropy as loss functions. However, in clinical practice we 
would like to detect auto-segmentations that fail under clinically rele-
vant criteria such as mean surface distance and surface Dice. These 
metrics are only indirectly related to the metrics used for training. The 
impact of network miscalibration on the ability to detect these clinically 
relevant errors is not straightforward and merits further investigation. In 
our work, the proposed metric was not explicitly calibrated and yet was 
effective in the detection of segmentations that required review, as 

demonstrated by the high AUC values obtained on independent test sets. 
The second point raised by Wahid et al. concerns the entanglement of 

the different uncertainty types. We recognize that the softmax outputs 
intertwine epistemic and aleatoric uncertainties. To distinguish between 
the two categories of uncertainty, alternative methods of uncertainty 
estimation would be more appropriate. We would like to add, however, 
that the precise meanings of aleatoric and epistemic uncertainty are also 
subject of undergoing discussion in the medical image segmentation 
field. In particular, a remaining question is whether they can even be 
perfectly disentangled [9–12]. Finally, the degree to which various 
sources of uncertainty are correlated with the necessity of clinically 
relevant edits remains unclear and subject for further studies. 

For future applied research work, we believe that model calibration 
should be assessed, better understood and if needed optimized in a 
heuristic manner, likely for each particular combination of dataset and 
model architecture. Similarly, the interpretation of the different uncer-
tainty types should be carried out on a case-by-case basis, linking the 
mathematical model interpretation with the clinical interpretation of 
the auto-segmentation. Insights from both research directions are likely 
to benefit the entire field. 
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