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A B S T R A C T

In prokaryotic cells, genomic DNA forms an aggregated structure with various nucleoid-associated proteins
(NAPs). The functions of genomic DNA are cooperatively modulated by NAPs, of which HU is considered to be
one of the most important. HU binds double-stranded DNA (dsDNA) and serves as a structural modulator in the
genome architecture. It plays important roles in diverse DNA functions, including replication, segregation,
transcription and repair. Interestingly, it has been reported that HU also binds single-stranded DNA (ssDNA)
regardless of sequence. However, structural analysis of HU with ssDNA has been lacking, and the functional
relevance of this binding remains elusive.

In this study, we found that ssDNA induced a significant change in the secondary structure of Thermus
thermophilus HU (TtHU), as observed by analysis of circular dichroism spectra. Notably, this change in
secondary structure was sequence specific, because the complementary ssDNA or dsDNA did not induce the
change. Structural analysis using nuclear magnetic resonance confirmed that TtHU and this ssDNA formed a
unique structure, which was different from the previously reported structure of HU in complex with dsDNA. Our
data suggest that TtHU undergoes a distinct structural change when it associates with ssDNA of a specific
sequence and subsequently exerts a yet-to-be-defined function.

1. Introduction

In prokaryotic cells, genomic DNA forms an aggregated structure
with various nucleoid-associated proteins (NAPs) [1]. NAPs have
varied structures and hence diverse functions [2,3]. The functions of
genomic DNA, such as replication, segregation, translation and repair,
are related to its distinct structure, which is cooperatively modulated by
NAPs [4–7].

HU (H protein from Escherichia coli U93) is the most conserved

and the most abundantly expressed NAP [8–10]. In some bacteria,
mutation in the HU gene and gene disruption of HU affect cell growth
or is lethal [11,12]. These results have suggested that HU has a central
role among NAPs. HU is a small protein consisting of approximately 90
amino acid residues and mainly exists as a dimer in solution [13]. It
has been reported that the interaction between double-stranded DNA
(dsDNA) and HU is non-specific [14,15]. The binding of HU leads to a
bent and a negative supercoiling in the dsDNA structure [16,17]. Some
structures of HU alone and in complex with dsDNA have been

http://dx.doi.org/10.1016/j.bbrep.2016.09.014
Received 6 April 2016; Received in revised form 23 August 2016; Accepted 29 September 2016

⁎ Corresponding author at: Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
⁎⁎ Corresponding author.
E-mail addresses: nishida@medbio.med.osaka-u.ac.jp (Y. Nishida), tikeya@tmu.ac.jp (T. Ikeya), mikawa@riken.jp (T. Mikawa), jinoue@tmu.ac.jp (J. Inoue),

ito-yutaka@tmu.ac.jp (Y. Ito), yshintani@medbio.med.osaka-u.ac.jp (Y. Shintani), rmasui@sci.osaka-cu.ac.jp (R. Masui), kuramitu@bio.sci.osaka-u.ac.jp (S. Kuramitsu),
takasima@cardiology.med.osaka-u.ac.jp (S. Takashima).

Abbreviations: NAP, nucleoid-associated protein; TtHU, Thermus thermophilus HU; CD, circular dichroism; NMR, nuclear magnetic resonance; ssDNA, single-stranded DNA;
dsDNA, double-stranded DNA; HSQC, heteronuclear single quantum coherence; SLBP, stem-loop binding protein.

Biochemistry and Biophysics Reports 8 (2016) 318–324

2405-5808/ © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the  CC BY license (http://creativecommons.org/licenses/by/4.0/).
Available online 11 October 2016

crossmark

http://www.sciencedirect.com/science/journal/24055808
http://www.elsevier.com/locate/bbrep
http://dx.doi.org/10.1016/j.bbrep.2016.09.014
http://dx.doi.org/10.1016/j.bbrep.2016.09.014
http://dx.doi.org/10.1016/j.bbrep.2016.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.09.014&domain=pdf


determined [18–20] and have shown that HU has two beta-arms and
grips the dsDNA by engagement of the arms in the minor groove. HU
also serves as an structural modulator of dsDNA architecture and plays
important roles in DNA replication, segregation, repair and transcrip-
tion [11,12,21–25].

Interestingly, it has been reported that HU can also bind single-
stranded DNA (ssDNA), and this interaction is also non-specific
[15,26,27]. ssDNA intermediates are created by DNA unwinding and
serve as template for DNA replication or repair processes. However,
little is known of the interaction between HU and ssDNA. Structural
information has not been obtained, and the functional relevance of this
binding remains elusive.

In this study, we used HU from Thermus thermophilus HB8
(TtHU). To characterize the structure of TtHU bound to ssDNA, we
performed circular dichroism (CD) spectral analysis and nuclear
magnetic resonance (NMR) spectral analysis. Our data suggest that
ssDNA of a specific sequence induces a significant structural change in
the secondary structure of TtHU, which is different from the change
shown previously in HU bound to dsDNA.

2. Materials and methods

2.1. Materials

The sequences of the chemically synthesized ssDNA (BEX Co., Ltd. or
FASMAC Co., Ltd.) are described in Fig. 2I. dsDNA oligo AB and oligo CD
were prepared by incubation of ssDNA oligos at 95 °C for 10 min, and the
temperature was then decreased at a rate of 1 °C per min to anneal.

2.2. Purification of TtHU

E. coli BL21(DE3) was transformed with TtHU/pET-11a and grown
at 37 °C in LB medium containing 50 μg/mL ampicillin. When the
culture reached log phase, IPTG was added to 50 μg/mL. Cells were
grown for 12 h after induction and harvested by centrifugation. Cells
were suspended in 20 mM Tris–HCl (pH 7.8), 500 mM NaCl and 5 mM
EDTA. The cells were disrupted by sonication and then heated at 70 °C
for 20 min. After centrifugation at 22,500g for 1 h, the clear super-
natant was loaded onto a Toyopearl SP-650 M column (Tosoh)
equilibrated with 20 mM Tris–HCl (pH 7.8), 500 mM NaCl and
5 mM EDTA. The column was washed with the buffer and eluted with
a gradient of 500–1500 mM NaCl in the buffer. The fractions contain-
ing TtHU were detected by SDS-PAGE and concentrated using a
Vivaspin 20–10 K (MWCO 10,000 Da, GE healthcare) concentrator.
The solution was then applied to a HiLoad 16/60 Superdex 75 column
(Tosoh) equilibrated with 20 mM Tris–HCl (pH 7.8) and 2 M NaCl and
eluted with the same buffer. Purified proteins were stored in 20 mM
Tris–HCl (pH 7.8) and 150 mM NaCl at 4 °C.

2.3. Electrophoretic-mobility shift assay

Chemically synthesized oligo DNAs were incubated with various
concentrations of TtHU in 20 mM Tris–HCl (pH 7.5) and 100 mM KCl
at 37 °C for 1 h. The mixtures were loaded onto a polyacrylamide gel and
electrophoresed in TBE buffer (pH 8.2, 89 mM Tris-borate and 2 mM
EDTA). The bands were visualized with GelRed (Wako) and UV irradiation.

2.4. Circular dichroism structural analysis

CD spectra were recorded with a JASCO-720W spectropolarimeter,
with a 0.1 cm cuvette at 20 °C for 200–300 nm. In the titration analysis,
40 µM of DNA solution was added to 300 μL of 10 µM TtHU solution (pH
7.2, 20 mM phosphate and 100 mM KCl). The effect of increasing volume
due to titration was calculated after the experiment.

2.5. Purification of TtHU for NMR

E. coli Rosetta2(DE3) was transformed with TtHU/pET-11a and grown
inM9medium (0.6% Na2HPO4, 0.3%NaH2PO4, 0.05%NaCl, 0.1%NH4Cl,
0.2% glucose, 2 mM MgSO4·7H2O, 0.1 mM CaCl2·2H2O, 33 µM FeCl3·
6H2O, and 50 μg/mL ampicillin, pH 7.2) containing [15N]NH4Cl and/or
[13C]glucose as the sole nitrogen and/or carbon source for labelled 15N-
TtHU and/or 13C/15N-TtHU, respectively. The purification procedure for
labelled TtHU was the same as that for the unlabelled TtHU.

2.6. NMR data collection

The NMR sample contained 1 mM TtHU, 20 mM phosphate (pH
7.2) and 100 mM KCl. The NMR spectra were measured at 303 K by
using a Bruker Avance III 600 MHz spectrometer equipped with a
cryogenic TCI probe head. The sequence-specific backbone 1HN, 13Cα,
13C′, and 15N and side chain 13Cβ resonance assignments of 13C/15N-
labelled TtHU were obtained from CBCA(CO)NNH, CBCANNH,
HNCO, and HN(CA)CO experiments [28,29]. Data were processed
using CcpNmr Analysis [30].

2.7. NMR structural analysis of TtHU's DNA binding

The two-dimensional heteronuclear single quantum coherence
(HSQC) spectra were acquired with15N-labelled TtHU in the presence
of various concentrations of oligo A. In this study, a concentrated oligo
A solution was added to a 0.1 mM 15N-labelled TtHU solution to
prevent changes in concentration.

2.8. Construction of a model structure of TtHU

The model structure of TtHU was constructed on the basis of a
previous structure of HU from Staphylococcus aureus (PDB: 4QJU),
using ROBETTA (http://robetta.bakerlab.org/).

3. Results

3.1. The effect of ssDNA on the secondary structure of TtHU

Although it has previously been reported that HU can bind to
ssDNA as well as dsDNA in a sequence-independent manner [14,15],
little is known about the interaction between HU and ssDNA. In
particular, structural analysis has been lacking.

In this study, we chose 2 sets of complementary ssDNAs that we
usually use as controls for gel shift assays in our laboratories: partial
oligonucleotides from beta-lactamase (oligos A and B, which are
complementary to each other) and from beta-galactosidase (oligos C
and D, also complementary). TtHU bound to all those 4 ssDNAs as well
as to their complementary dsDNAs (Fig. 1), in agreement with earlier
reports [14,15,26].

Next, to evaluate the effect of ssDNA binding on the structure of
TtHU, we performed secondary structural analysis of TtHU by using
CD spectra. As shown in Fig. 2A (top, black line), the CD spectrum of
TtHU had a maximal negative signal at approximately 210–220 nm.
This result was consistent with the structures of HU determined by X-
ray crystallography, which showed that HU consists of an alpha-helix
core [19,20]. We sequentially added various DNA solutions to the
TtHU solution and measured their CD spectra. The CD spectra of DNA
without HU showed typical positive peaks at 220 nm and 280 nm and
negative peaks at 210 nm and 250 nm (bottom spectra in all parts of
Fig. 2). Interestingly, when oligo A was added to the TtHU solution,
the intensity of the negative peaks at approximately 210–220 nm
decreased to one-third of the intensity before DNA addition, as shown
in Fig. 2A. In contrast, when the complementary oligo B or double-
stranded oligo AB was added, no significant spectral change
was observed (Figs. 2B and 2C). Further, oligos C and D and the
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double-stranded oligo CD did not cause a similar spectral change
(Figs. 2D, 2E and 2F). We also performed the same experiments using
30 nt polydeoxyadenosine (poly dA) and 30 nt polydeoxythymidine
(poly dT), which were non-self-structured oligonucleotides, but no
significant change was observed (Fig. 2I).

Next, we tested several oligo DNAs with some variations in the
sequence of oligo A by CD analysis. Whereas deletion of the 5´- or 3´-
terminal stretches resulted in a partial loss of the effect of oligo A
(Figs. 2G and 2I), complementary sequence-exchange almost comple-
tely cancelled the effect of oligo A (Figs. 2H and 2I), thus suggesting
that oligo A has a unique sequence-specific effect on the CD spectrum
with TtHU. These results led us to hypothesize that ssDNA of a specific
sequence unfolds the secondary structure of TtHU, especially in the
alpha-helical core, or induces changes in the conformation of TtHU. It
is possible that the CD spectral change observed in this study was
caused by the ssDNA. However, previously reported CD spectral
changes of DNA due to both conformational changes of DNA and
binding of proteins are smaller than the changes observed in this study
[31,32]. The decrease in the CD spectrum was observed specifically for
oligo A but not for oligo B or oligo AB, though TtHU bound similarly to
all of them. Thus, it is unlikely that the decrease in the CD spectrum
was caused by the aggregation of TtHU.

3.2. NMR structural analysis

To further investigate the effect of oligo A on the structure of TtHU,
we performed NMR spectral analysis. By analysing the three-dimen-
sional NMR spectra using TtHU alone, we successfully achieved
sequential assignment for 91% of non-proline residues in TtHU
(Fig. 3A). As shown in Fig. 3C, the unassigned residues were clustered
on the beta-arms of TtHU, suggesting that those residues were less

stable. This result was consistent with those of previous structural
analyses showing flexibility of the beta-arms in HU [19,33].

To analyse the effect of oligo A on the structure of TtHU, we
acquired the HSQC spectra of TtHU with and without oligo A. The
intensity of the HSQC peaks with oligo A was decreased compared with
the intensity without oligo A, thus suggesting that oligo A induced a
significant change in the structure of TtHU. To identify the amino acid
residues important for interaction with ssDNA, we sequentially added
oligo A at low concentrations, from 0 µM to 20 µM, and acquired the
HSQC spectra. Comparison of the HSQC spectra for different concen-
trations of oligo A revealed that almost all HSQC peaks for each amino
acid residue decreased, but the extent varied. This result indicated that
some residues were affected strongly by oligo A binding, whereas
others were less affected.

To further elucidate the effect of oligo A on TtHU, the intensity of
HSQC peaks after the titration of 10 µM DNA was normalized to the
intensity before titration (Fig. 3B). Then, the amino acid residues with
the relative intensity of less than 35% were plotted on the structure of
TtHU constructed by homology modelling (Fig. 3C). These results show
that the residues around the saddle region were strongly affected by
oligo A binding. Interestingly, though the beta-arms of TtHU are
reportedly important for dsDNA binding, the residues in red were not
often observed around the arms in this study. Instead, ssDNA induced
a strong effect on residues of the body, far from the beta-arms. These
results suggest that TtHU bound to ssDNA of a specific sequence forms
a distinct conformation from that of the complex with dsDNA.

4. Discussion

Few studies have focused on the interaction between HU and
ssDNA, and no structural information on ssDNA-bound HU has

Fig. 1. Analysis of the binding between TtHU and ssDNA or dsDNA. TtHU was incubated with 1 µM of each oligo DNA. Each mixture was electrophoresed and visualized with GelRed.
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Fig. 2. A specific ssDNA induced a change in the CD spectra of TtHU. CD spectra were observed in titration analyses with various DNAs. The titrant solutions were 40 µM of (A) oligo A,
(B) oligo B, (C) oligo AB, (D) oligo C, (E) oligo D, (F) oligo CD, (G) oligo A (01-06) Del, or (H) oligo A (01-06) Com, as indicated above the parts. The sequences of the oligonucleotides are
described in (I). The titrand solution was 10 µM HU (top) or buffer (bottom). The spectrum before titration is shown as a dark red line, and the colour is reduced with increasing
concentration of DNA from 0 µM to 10 µM. The black line in (A) shows the results before titration. (I) The ratio of the CD value after titration (θafter) to the CD value before (θbefore). The
ratios were calculated by subtracting the value at 222 nm of HU solution as titrand from the CD value of the buffer solution.
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previously been reported [15,26,27]. Here, we report that, in addition
to the well-known structure with dsDNA, TtHU undergoes a distinct
structural change when it associates with ssDNA of a specific sequence.

We supposed that the effect of the ssDNA (oligo A) depends on its
structure, as nucleotide deletion did not cause the same effect as
nucleotide exchange (for example, oligo A (25–30) Del vs oligo A (25–
30) Com). Thus, we predicted the secondary structure of the oligo
DNAs by using a program MaxExpect web server [34,35]. As shown in
Fig. 4, Oligo A is predicted to have two small stem-loops which are
bridged by short and nicked double-stranded DNA (dumbbell shape).
Similar structures are also found in the predicted structures of oligo A
(28–30) Del and oligo A (30) Del, both of which showed compatible
effect on HU as oligo A did. The deletion or exchange in oligo A that
lost the effect on HU are predicted to be destructive on the stem-loops
in oligo A. For example, oligo A (25–30) Del is predicted to have two
stem-loops and retains the effect on HU (59%), although oligo A (25–
30) Com, which is predicted to have only a stem-loop and long double-
stranded region, has little effect on HU. In the case of the DNAs which
partially maintain the effect, the secondary structures might be mixed
probably due to instability of the structure. Meanwhile, the DNAs,
which did not have any effect on HU (Oligo C, D and poly dA), are
predicted to have long single-stranded region which is distinct from the
structure predicted for oligo A. Oligo B is predicted to have a similar
structure with oligo A, although the loop size is slightly different.
Despite of its similarity to oligo A in the predicted structure, the
nucleotide base composition of oligo B is different from that of oligo A

as it is complementary to oligo A. From these results, we suppose that
the combination of structure and sequence differences might contri-
bute to the specificity of the structural change of HU.

HU plays various important roles in DNA replication, segregation,
repair and transcription [11,12,21–25], but the molecular details are still
unclear. HU binds dsDNA in a sequence-independent manner and induces
a bent and a negative supercoiling in the dsDNA structure, leading to the
condensed structure of the nucleoid [8,15–17]. It has been suggested that
the negative supercoiling induced by HU also resolves the distortion
induced by replication and transcription, and thus HU indirectly promotes
replication and transcription [4,16,17]. From our study, we presume that
HU forms a distinct structure with untwisted ssDNA which forms some
unique stem-loop structure with similarity to oligo A, as suggested by our
results. In contrast to the indirect supercoiling-mediated effect of HU
bound to dsDNA, such structure might directly help replication or
transcription properly undergo. Stem-loop binding protein (SLBP) is one
of the well-known proteins that recognize the stem-loop with a sequence
and structure specificity [36,37]. As SLBP recognizes 26-nt stem-loop
structure, our assumption that HU recognizes the unique stem-loop
structure seems reasonable.

In conclusion, our data suggest that TtHU undergoes a distinct
structural change when it associates with ssDNA of a specific sequence
and a specific structure, thereby producing functional diversity. Thus far,
structural research on HU has been based on the co-crystal structure of HU
bound to dsDNA, and further structural analysis should provide novel
insight into the diverse functions of HU with nucleic acids.

Fig. 3. NMR analysis of TtHU binding to oligo A. (A) The 1H–15N HSQC spectrum of TtHU at a protein concentration of 1 mM TtHU with sequence assignment. (B) Relative intensities
of NMR spectra of TtHU with 10 µM oligo A, normalized to the intensity of free TtHU. (C) The residues affected by oligo A binding. The residues with relative intensities of less than 35%
are mapped on the model structure of TtHU in red. Unassigned residues are shown in black. The structures are shown as a cartoon representation (left) or surface representation (right).
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