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Balancing model-based and memory-free
action selection under competitive
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Abstract In competitive situations, winning depends on selecting actions that surprise the

opponent. Such unpredictable action can be generated based on representations of the

opponent’s strategy and choice history (model-based counter-prediction) or by choosing actions in

a memory-free, stochastic manner. Across five different experiments using a variant of a matching-

pennies game with simulated and human opponents we found that people toggle between these

two strategies, using model-based selection when recent wins signal the appropriateness of the

current model, but reverting to stochastic selection following losses. Also, after wins, feedback-

related, mid-frontal EEG activity reflected information about the opponent’s global and local

strategy, and predicted upcoming choices. After losses, this activity was nearly absent—indicating

that the internal model is suppressed after negative feedback. We suggest that the mixed-strategy

approach allows negotiating two conflicting goals: 1) exploiting the opponent’s deviations from

randomness while 2) remaining unpredictable for the opponent.

DOI: https://doi.org/10.7554/eLife.48810.001

Introduction
Even the most powerful backhand stroke in a tennis match loses its punch when the opponent knows

it is coming. Competitions that require real-time, fast-paced decision making are typically won by

the player with the greatest skill in executing action plans and who are able to choose their moves in

the least predictable manner (Camerer et al., 2015; Nash, 1950; Morgenstern and Von Neumann,

1953; Lee, 2008). Yet, how people can consistently achieve the competitive edge of surprise is not

well understood. The fundamental challenge towards such an understanding lies in the fact that our

cognitive system is geared towards using memory records of the recent selection history to exploit

regularities in the environment. However, as suggested by decades of research (Wagenaar, 1972;

Baddeley, 1966; Rapoport and Budescu, 1997; Arrington and Logan, 2004; Mayr and Bell,

2006), these same memory records will also produce constraints on current action selection that can

work against unpredictable behavior.

One such memory-based constraint on unpredictable action selection is that people often tend

to repeat the last-executed action plan. A considerable body of research with the ‘voluntary task-

switching’ paradigm (Arrington and Logan, 2004; Mayr and Bell, 2006) has revealed a robust per-

severation bias, even when subjects are instructed to choose randomly between two different action

plans on a trial-by-trial basis––a regularity that in competitions could be easily exploited by a percep-

tive opponent.

Another important constraint is the win-stay/lose-shift bias, that is a tendency to repeat the most

recently reinforced action and abandon the most recently punished action. Reinforcement-based

action selection does not require an internal representation of the task environment and is therefore

often referred to as ‘model-free’. Previous work has revealed that reinforcement learning can explain

some of the choice behavior in competitive situations (Cohen and Ranganath, 2007; Erev and
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Roth, 1998; Lee et al., 2012). Yet, players who rely on reinforcement-based selection can also be

counter-predicted by their opponent, or run the risk of missing regularities in their opponents’

behavior. Therefore, recent research indicates that when performing against sophisticated oppo-

nents, model-free choice can be replaced through model-based selection, where choices are based

on a representation of task-space contingencies (Gläscher et al., 2010), including beliefs about the

opponent’s strategies (Donahue et al., 2013; Tervo et al., 2014).

Model-based selection is consistent with the view of humans as rational decision makers

(Nash, 1950; Morgenstern and Von Neumann, 1953), yet also has known limitations. For example,

it depends on attentional and/or working memory resources that vary across and within individuals

(Otto et al., 2013a). In addition, people are prone to judgement and decision errors, such as the

confirmation bias, that get in the way of consistently adaptive, model-based selection

(Abrahamyan et al., 2016).

In light of the shortcomings of both , model-free choice and model-based strategies it is useful to

consider the possibility that in some situations, actors can choose in a memory-free and thus stochas-

tic manner (Donahue et al., 2013; Tervo et al., 2014). Memory-free choice would establish a ‘clean-

slate’ that prevents the system from getting stuck with a sub-optimal strategy and instead allows

exploration of the full space of possible moves. Moreover, it reduces the danger of being counter-

predicted by the opponent (Walker and Wooders, 2001; Chiappori et al., 2002). At the same

time, an obvious drawback of stochastic choice is that without a representation of the opponent, sys-

tematic deviations from randomness in the opponent’s behavior remain undetected and therefore

cannot be exploited. In addition, just as is the case for model-based selection, stochastic selection

puts high demands on cognitive control resources (Baddeley et al., 1998) and therefore it is not

eLife digest The best predictor of future behavior is past behavior, so the saying goes. And

studies show that in many situations, we do have a tendency to repeat whatever we did last time,

particularly if it led to success. But while this is an efficient way to decide what to do, it is not always

the best strategy. In many competitive situations – from tennis matches to penalty shoot-outs –

there are advantages to being unpredictable. You are more likely to win if your opponent cannot

guess your next move.

Based on this logic, Kikumoto and Mayr predicted that in competitive situations, people will

toggle between two different decision-making strategies. When they are winning, they will choose

their next move based on their beliefs about their opponent’s strategy. After all, if your opponent in

a tennis match has failed to return your last three backhands, it is probably worth trying a fourth. But

if an action no longer leads to success, people will switch tactics. Rather than deciding what to do

based on their opponent’s strategy and recent behavior, they will instead select their next move

more at random. If your tennis opponent suddenly starts returning your backhands, trying any other

shot will probably produce better results.

To test this prediction, Kikumoto and Mayr asked healthy volunteers to play a game against real

or computer opponents. The game was based on the ’matching pennies’ game, in which each player

has to choose between two responses. If both players choose the same response, player 1 wins. If

each player chooses a different response, player 2 wins. Some of the opponents used response

strategies that were easy to figure out; others were less predictable. The results showed that after

wins, the volunteers’ next moves reflected their beliefs about their opponent’s strategy. But after

losses, the volunteers’ next moves were based less on previous behaviors, and were instead more

random. These differences could even be seen in the volunteers’ brainwaves after win and loss trials.

As well as providing insights into how we learn from failures, these findings may also be relevant

to depression. People with depression tend to switch away from a rationale decision-making

strategy too quickly after receiving negative feedback. This can lead to suboptimal behavior

patterns that make it more difficult for the person to recover. Future studies should explore whether

the short-term decision-making strategies identified in the current study can also provide clues to

these behaviors.

DOI: https://doi.org/10.7554/eLife.48810.002
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clear under which circumstances people can consistently ignore or suppress context representations

in order to choose in a memory-free manner (Rapoport and Budescu, 1992).

As the model-based and the memory-free strategy both come with strengths and limitations, one

potential solution is that people use a simple heuristic to move back and forth between these two

modes of selection. Specifically, positive feedback (i.e., wins on preceding moves) could serve as a

cue that the current model is adequate and should be maintained. In contrast, negative feedback

might serve as a signal that the current model needs to be suspended in favor of a memory-free

mode of selection that maximizes exploration and unpredictability.

In the current work, we used an experimental paradigm that provides a clear behavioral signature

of model-based versus memory-free choices as a function of preceding win versus loss feedback. We

found that following win feedback, people tended to choose their next move both on the basis of

recent history and a more global model of the opponent. However following losses, we did not sim-

ply see choice behavior revert back towards simple memory-driven biases. Rather choices were less

determined by recent history and task context––in other words more stochastic. In addition, we

present neural evidence that loss feedback literally ‘cleans the slate’ by temporarily diminishing the

representation of the internal model (Donahue et al., 2013; Tervo et al., 2014; Kolling et al.,

2016a).

Results

Overview
Our experimental situation marries the voluntary task-switching paradigm, where people switch

between action rules, with a two-person, matching-pennies game. Different from the standard

matching-pennies game, winning a trial was defined by whether or not players chose matching

action rules, rather than simple response choices. Specifically, on each trial players saw a circle,

either on the bottom or the top of a vertically arranged frame (see Figure 1a). Participants chose on

each trial between the ‘freeze’ rule, which keeps the circle at the same location, and for which

responses had to be entered at two vertically arranged keys on the right side of the keyboard, or

the ‘run’ rule, which moves the circle to the opposite end of frame, and for which responses had to

be entered at two vertically arranged keys on the left side. On a given trial, for the freeze rule, par-

ticipants had to press the one right-hand key that was spatially compatible to the current circle loca-

tion; for the run rule they had to press the one left-hand key that was incompatible with the current
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Figure 1. Trial events and theoretically possible switch-rate patterns. (a) Sequence of trial events and response rules in the fox/rabbit paradigm. (b)

Idealized predictions of how difference choice strategies and biases are expressed in the player’s switch rate. Choices based on an internal model of

the opponent, lead to a positive relationship.
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circle position. Wins versus losses were signaled through a smiley or frowny face at the place of the

post-response circle position. Players were assigned either the role of the ‘fox’ or the ‘rabbit’. Foxes

win a given trial when they ‘catch the rabbit’, that is when they pick the same rule as the rabbit on

that trial. Rabbits win when they ‘escape the fox’, that is when they pick the rule not chosen by the

fox.

We exposed each player to a set of simulated opponents that differed in their average of switch-

ing rules from one trail to the next (e.g., 20%, 35%, 50%, 65%, and 80%). Otherwise, these simulated

opponents made choices randomly, and did not respond in any manner to the player’s behavior.

Variations in opponents’ switch rate provide a diagnostic indicator of both model-based and sto-

chastic behavior (Figure 1b). Specifically, a model-based agent should appreciate the fact that when

playing against an opponent who switches frequently between run and freeze rules (i.e., p>0.5), it is

best to switch rules after a win (i.e., ‘following along with the opponent’), but to stick with the same

rule after a loss (i.e., ‘waiting for the opponent to come to you’); the opposite holds for opponents

with a low switch rate (i.e., p<0.5). Thus, model-based behavior would produce a combination of the

filled green and red switch-rate functions in Figure 1b. In contrast, a memory-free agent should pro-

duce random behavior (i.e., a switch rate close to p=0.5) irrespective of the opponent’s strategies (i.

e., the blue function in Figure 1b). Thus, our hypothesis of a feedback-contingent mix between

model-based and stochastic behavior predicts an increase of players’ switch rate as a function of

their opponents’ switch rate for post-win trials (the filled green function in Figure 1b), but a switch

rate close to p=0.5 irrespective of the opponent’s switch rate on post-loss trials (the blue function in

Figure 1b). Figure 1b also shows how the lower-level perseveration bias and the win-stay/lose-shift

bias would affect the data pattern.

In our rule-selection version of the matching-pennies game, each rule is associated with two spe-

cific separate response options, only one of which is ‘allowed’ for the currently chosen action rule (i.

e., ‘freeze’ vs. ‘run’ rule). This enabled us to determine if an increase in stochasticity is specific to the

generation of action choices, or alternatively due to an unspecific increase of information-processing

noise. In the latter case, greater choice stochasticity should go along with more action errors. In this

paradigm, participants can make two types of such errors: They can either fail to pick the set of

response keys that is consistent with a chosen rule (e.g., right side keys when the intended rule is

‘run’), but then execute the response that is consistent with the intended rule (e.g., incompatible

response on the right side), or they could correctly pick the side that is consistent with the intended

rule, but then execute the wrong response option (e.g., a compatible response on the left side).

Without knowing subjects’ intended choice on a given trial, we cannot distinguish between errors

types. However, either one of these can be interpreted as an action error that occurs independently

of the choice between rules. If stochasticity affects information processing in an unspecific manner

then we should find that such errors covary with choice stochasticity, both across conditions and

across subjects. We also wanted to ensure that our main conclusions are not limited to the rule-

selection paradigm. Therefore, we attempted to replicate our basic pattern of results in Experiment

three in a standard matching-pennies paradigm with simple response choices (but no way of distin-

guishing choice stochasticity from unspecific information-processing stochasticity).

Analytic strategy for testing main prediction
To test the prediction of loss-induced stochastic behavior, we cannot simply contrast the slopes of

post-win and post-loss switch-rate functions. Such a comparison would not differentiate between a

pattern of post-loss and post-win functions with the same slope but opposite signs (as would be con-

sistent with the model-based choice strategy, see Figure 1b) and the predicted pattern of more

shallow slopes following losses. Therefore, as a general strategy, we tested our main prediction by

comparing slopes after selectively inverting the labels for the opponent switch-rate in the post-loss

condition (e.g., 80% becomes 20%). This allows direct comparisons of the steepness of post-win and

post-loss switch-rate functions. In the SI, we also present results from standard analyses.

Modeling choice behavior
Our behavioral indicator of a mix between model-based and stochastic behavior is expressed in

players’ switch rate, which can also be affected by the perseveration and win-stay/lose-shift bias (see

Figure 1b). In standard sequential-decision paradigms it is difficult to distinguish between stochastic
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behavior and low-level choice biases. Therefore, we attempted to obtain a realistic characterization

of the various influences on choice behavior by using a simple choice model to predict the probabil-

ity of switch choices pswitch:

Pswitch ¼
exp os � ms � wl þ 1ð Þ � :5 � smð Þ� peþwl ��ssð Þ

1þ exp os � ms � wl þ 1ð Þ � :5 � smð Þ� peþwl ��ssð Þ
(1)

with: os = ln(pos/ (1- pos)); post-win: wl = 1, post-loss: wl = �1;

where pos is the opponent’s switch rate, which is translated into its log-odds form (os); wl codes

for wins versus losses on trial n-1. The parameter ms (model strength) represents the strength of the

model of the opponent (ms = 1 would indicate direct probability matching between the opponent’s

and the player’s switch probability). The parameter sm (strategy mix) represents the degree to which

the model-based choice is changed on post-loss relative to post-win trials; a negative sm parameter

would indicate suppression of the model in favor of stochastic choice following losses. In addition, a

positive pe (persevertion effect) parameter represents the tendency to unconditionally favor the pre-

viously selected choice, and a positive ss (win-stay/lose-shift) parameter expresses the strength of

the win-stay/lose-shift bias. We present predictions from this model in Figure 2, and report addi-

tional details of the modeling results in section Modeling Results.

Choice behavior with simulated opponents
Experiment 1. In this experiment, we establish the basic paradigm. As shown in the upper-left panel

of Figure 2, participants increased their switch rate as a function of their opponents’ switch rates fol-

lowing win trials. In contrast, on post-loss trials, the change in players’ switch rate (as a function of

their opponents’ switch rate) was much smaller than on post-win trials and it was centered at

p=0.5––a pattern that is consistent with largely stochastic choice. The condition with an opponent

switch rate of p=0.5 most closely resembles previous studies that have reported a win-stay/lose-shift

bias in competitive situations (Cohen and Ranganath, 2007). In fact, for this condition, we did find a

significantly higher switch rate after losses than after wins, indicating that reward-based choices are

one factor that affects choice.

Following win trials, participants’ switch rate follows opponents’ switch rate when the opponents’

switch rate was low, but only in a muted manner when the opponents’ switch rate was high (i.e., the

switch-rate function was less than 1.0). We attribute this reluctance to fully endorse the model-based

strategy to the influences of counteracting, lower-level, win-stay/lose-shift and perseveratory tenden-

cies. Indeed, as will be described in greater detail in the section Modeling Results, results from

applying our choice model to the data indicate that (a) a strong tendency towards model-based

choices on post-win trials, (b) an increase of stochastic choice on post-loss trials, (c) a general persev-

eratory tendency, and (d) a win-stay/lose-shift bias all contribute to the overall choice behavior. The

Figure 2—figure supplement 1–3 provide additional information about determinants of choice

behavior and also of participants’ success rate.

Experiment 2. Following feedback from the previous trial, participants had only 300 ms to choose

their move for the next trial in Experiment 1. Therefore, one might argue that the observed stochas-

tic choice is simply a result of negative feedback temporarily interfering with model-based selection

(Otto et al., 2013a). To examine this possibility, we manipulated the inter-trial-interval (ITI) in Experi-

ment 2 between 300 ms and 1000 ms. As shown in Figure 2, this manipulation had no effect, indi-

cating that stochastic choice is not due to loss-induced processing constraints.

Experiment 3. The fox/rabbit task was modeled after the voluntary task-switching to allow us to

distinguish between choice stochasticity and more general increase of noise in the cognitive system.

However, it is important to explore how the observed pattern might change with less complex

response rules than used in this paradigm. We therefore implemented in Experiment 3 simple

choices without any contingencies on external inputs (i.e., the fox wins when selecting the same up

or down location as the rabbit, and vice versa). Here, we generally found a stronger expression of

model-based choice following both losses and wins, and also much less perseveration bias (Figure 2).

Yet the win-loss difference in switch-rate slopes remained just as robust as in the other experiments.

Thus, the more complex actions that players had to choose from in Experiments 1 and 2 may have

suppressed the overall degree of model-based action selection (Otto et al., 2013b). However,
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Figure 2. Player’s average switch rates as a function of opponents’ switch rates. Average empirical switch rates for post-win and post-loss trials as a

function of the simulated opponents’ switch rates for Experiment 1, 2, 3, and five and the average switch rate of each human opponent in Experiment

4a (tick marks on the x-axis indicate individual average switch rates). The dashed lines for Experiment 1, 2, 3, and 5 show the predictions of the

theoretical choice model applied to the group average data (see sections Modeling Choice Behavior and Modeling Results). Error bars represent 95%

within-subject confidence intervals. For the analyses, we regressed the player’s switch rate on the opponent’s switch rates, the win-loss contrast, and

the interaction between these two predictors after reversing the labels of the opponents’ switch rate predictor for post-loss trials (see section Analytic

Figure 2 continued on next page
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response rule complexity did not appear to affect the win/loss-contingent difference in the relative

emphasis on model-based versus stochastic choices.

Competition against human players
Experiment 4a. It is possible that the observed pattern of results is specific to experimental situa-

tions with a strong variation in simulated, opponent switch rates. To examine the degree to which

this pattern generalizes to a more natural, competitive situation, we used in Experiment 4a pairs of

participants who competed with each other in real time, with one player of each dyad acting as fox,

the other as rabbit (see Figure 2—figure supplement 4 for a comparison between the competitive

Experiment 4a and the non-competitive Experiment 4b). Obviously, the naturally occurring variation

in switch rates was much lower than in the experiments using simulated opponents (see distributions

of individuals average switch rates in Figure 2). Nevertheless, the estimated slopes linking players’

switch rates to opponents’ switch rates showed a very similar pattern as in the other experiments

with simulated opponents.

Modeling results
We applied our choice model both to the group-average switch rates for each experiment, and to

the individuals-specific switch rates. Table 1 shows the estimated parameters for each of the four

experiment with simulated opponents, as well as model fits (R2) for the group-level data. We found

that each of the four different factors (i.e., model strength, suppression of model/strategy mix, per-

severation effect, and win-stay/lose-shift bias) were relevant for characterizing participants’ choices.

Figure 2 continued

Strategy for Testing Main Prediction). As a test of these interactions, we show the corresponding t-values (SE): the unstandardized slope coefficients

(SE; green = post win, red = post loss) were derived from separate analyses for post-win and post-loss trials.

DOI: https://doi.org/10.7554/eLife.48810.004

The following figure supplements are available for figure 2:

Figure supplement 1. Are feedback effects temporary?

DOI: https://doi.org/10.7554/eLife.48810.005

Figure supplement 2. Rate of winning as a function of opponent switch rate and n-1 wins/losses.

DOI: https://doi.org/10.7554/eLife.48810.006

Figure supplement 3. Analysis of action choices.

DOI: https://doi.org/10.7554/eLife.48810.007

Figure supplement 4. Switch rates when competing versus not competing.

DOI: https://doi.org/10.7554/eLife.48810.008

Table 1. Parameter estimates and 95% confidence intervals from fitting the choice model to group average and individual data from

Experiments 1, 2, 3, and 5.

Fitting group averages Fitting individuals’ Data

Parameters ms sm pe ss R2 ms sm pe ss

Simulated Opp.

Exp. 1 0.48 ± 0.10 �0.38 ± 0.09 0.21 ± 0.06 0.20 ± 0.06 0.975 0.61 ± 0.19 �0.50 ± 0.16 0.24 ± 0.14 0.22 ± 0.11

Exp. 2, 300 ms 0.74 ± 0.12 �0.47 ± 0.15 0.28 ± 0.07 0.30 ± 0.07 0.988 0.96 ± 0.26 �0.66 ± 0.24 0.34 ± 0.10 0.36 ± 0.14

Exp. 2, 1000 ms 0.74 ± 0.13 �0.49 ± 0.17 0.19 ± 0.08 0.26 ± 0.08 0.984 0.93 ± 0.24 �0.67 ± 0.21 0.25 ± 0.11 0.33 ± 0.13

Exp. 3 0.86 ± 0.11 �0.44 ± 0.14 0.07 ± 0.04 0.24 ± 0.06 0.993 1.13 ± 0.28 �0.68 ± 0.23 0.11 ± 0.10 0.29 ± 0.11

Exp. 5 0.87 ± 0.17 �0.50 ± 0.21 0.11 ± 0.09 0.30 ± 0.09 0.998 1.10 ± 0.39 �0.71 ± 0.30 0.16 ± 0.10 0.36 ± 0.24

Human Dyads

Exp. 4a 0.16 ± 0.10 �0.14 ± 0.13 0.11 ± 0.9 0.31 ± 0.9

Note. ms = model strength, sm = suppression of model (strategy mix), pe = perseveration effect, ss = win stay/lose-shift tendency. For Experiment 2, fits

are reported separately for the 300 ms and the 1000 ms ITI condition. Fits for individual subjects in Experiments 1, 2, 3, and five are on the basis of each

subject’s condition averages. For Experiment 4a, we report parameters resulting from modeling individuals’ trial-by-trial choices.

DOI: https://doi.org/10.7554/eLife.48810.009
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For condition-average data, the model strength parameter (ms) ranged between. 48 and. 87, indi-

cating that overall, the opponent’s switch rate affected the participant’s switch rate in an incentive-

compatible manner. Average ms values below 1.0 indicate that participants overall engaged in

‘imperfect’ probability matching (ms = l0.0 would indicate perfect probability matching; ms >1.0

would indicate a maximizing tendency). This pattern is consistent with the previous literature, which

suggests that probability matching is the dominant, albeit suboptimal strategy in serial decision

tasks (James and Koehler, 2011; Gaissmaier and Schooler, 2008).

The individual-specific parameter estimates also allowed us to examine the degree to which the

different influences on choice were tied to competitive success. To this end, we entered each indi-

vidual’s, four parameter estimates as fixed-effect predictors into a two-level regression analysis with

experiment as a random factor and overall success (i.e., probability of win trials) as criterion variable.

While on average, pe and ws indicated the expected perseveration and win-stay/lose-shift biases (i.

e., pe <0 and wl <0), there were substantial individual differences in these parameters, including

individuals with alternation or win-shift/lose-stay biases (i.e., pe >0 and ss >0; Table 1). Given that

any bias implies a deviation from optimal performance, we coded these two parameters in absolute

terms (we obtained similar results with signed values). As shown in Table 2, model strength had a

highly robust positive effect on success, whereas either a perseveration or an alternation bias

reduced the amount of money earned; no corresponding effect was found for the win-stay/lose-shift

parameter. As would be expected, the main effect of the strategy-choice parameter was positive,

implying that less stochastic behavior after losses produced greater overall success.

In Experiment 4a, participants were paired up to play against each other. Thus, here we had to

use the natural, within-session variability of the opponent of each player for the opponent switch

rate variable in a trial-by-trial version of our choice model. Therefore, the pos parameter was calcu-

lated as a running average of the opponent’s switch rate within each block. The latest running aver-

age from block n-1 was used as a starting value for block n (p=0.5 for the first block), allowing some

carry-over of prior knowledge of the opponent’s previous-block behavior.

Results from this model are shown in the bottom row of Table 1. Not surprisingly, the model

strength (ms) was substantially smaller than in the preceding experiments, but still significantly larger

than 0. The perseveration effect (pe) and the win-stay/lose-shift bias (ss) were roughly in a similar

range as in the remaining experiments. Importantly, the suppression of the model parameter (sm)

was also statistically significant and of about the same size as the model strength parameter (ms),

indicating that on post-loss trials the effect of the model is essentially eliminated.

We again used a multi-level regression model with participants grouped within dyads to predict

each participant’s success (in terms of probability of win trials) as a function of the four model param-

eters. As in the preceding model (Table 2), we again used absolute values from the perseveration

and the win-stay/lose-shift scores in order to capture biases in in either direction (very similar results

would have been obtained with signed values). Results showed greater reliance on the model, a

smaller tendency to disregard the model after losses (i.e., a less negative sm score), a smaller,

Table 2. Using parameter estimates from the choice-model fitted to individual’s condition means to

predict individual’s competitive success.

B SE t-value

intercept 0.504

ms 0.086 0.007 12.31

sm 0. 064 0.008 8.03

abs(pe) �0.016 0.006 �2.56

abs(ss) �0.001 0.001 �0.10

Note. Shown are fixed-effect coefficients (b), the standard error around the coefficients (SE), and the associated t-

value. Experiment was coded as a random grouping factor. Absolute values for the pe and the wl effect were used

to account for biases in either direction. Note, that the more negative the sm parameter, the greater the suppression

of model-based choice on post-loss trials. Thus, a positive coefficient in this analysis indicates that less suppression

leads to higher earnings.

DOI: https://doi.org/10.7554/eLife.48810.010
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absolute perseveration score, and a larger absolute win-stay/lose-shift bias all contributed to greater

success (Table 3). Aside from the somewhat surprising result for the win-stay/lose-shift parameter,

the overall pattern was qualitatively very similar to the results from the simulated-opponent

experiments.

Combined, the modeling results reveal that choices are influenced by low-level influences (persev-

eration and win-stay/lose-shift bias) as well by a model of the opponent’s strategy. Most importantly,

we found that over and above these previously established influences, the parameter reflecting a

loss-contingent reduction of the model had a robust influence on choice behavior. Moreover, the dif-

ferent parameters had distinct effects on individual differences in competitive success, with the loss-

contingent reduction of the model (i.e., increase in stochasticity) clearly representing a sub-optimal

influence.

RT and error effects on model-based and memory-free choices
As described in the overview section, different from standard choice paradigms (Daw et al., 2006;

Muller et al., 2019), the current paradigm allows us to distinguish between stochasticity during the

choice between action rules and general information-processing noise (Kane et al., 2017). If the

loss-induced choice stochasticity is due to a general increase in information processing noise then

we should see that greater stochasticity goes along with more errors and possibly also with slower

responses.

Figure 3 shows each individual’s degree of model-based choice (expressed in terms of absolute

switch-rate slopes) after loss and win trials and as a function of both RTs or error rates. In most

experiments, there was a slight increase in error rates following loss trials (see marks beneath the

x-axis). However, across individuals, the substantial reduction in model-based choice after loss trials

was not associated with a consistent increase in error rates or RTs. Likewise, in multilevel regression

models with the absolute switch-rate slopes as dependent variable, the post-win/loss contrast

remained highly robust after controlling for RTs and errors as within-subject fixed effects (range of t-

values associated with the post-win/loss predictor: 3.96-10.78).

Loss-induced increase of stochastic choice
So far, we have established that participants were more sensitive to their opponents’ global strate-

gies (i.e., the average switch rates) following win than following loss trials. Next, we examined the

degree to which these win-loss differences generalized to players’ consideration of the recent history

of their opponents’ and their own choices. To this end, we used multi-level logistic regression mod-

els with the switch/repeat choice as criterion. The models included the trial n-1 to n-3 switch/repeat

decisions for opponents and for players, along with the opponents’ overall switch rate and were sep-

arately run for post-loss and post-win trials to generate the coefficients presented in Figure 4.

To directly compare the size of the coefficients, irrespective of their sign, we again reversed the

labels, both for the opponents’ global switch rate, but also for both the opponent’s and the player’s

n-1 to n-3 switch/repeat decisions (e.g., switch becomes repeat; see sections Analytic Strategy for

Table 3. Using parameter estimates from the choice-model fitted to individual’s trial-by-trial data to

predict the proportion of win trials (n = 94) in Experiment 4a.

B SE t-value

intercept �0.530 0.005

ms 0.043 0.015 2.91

sm 0. 034 0.012 2.97

abs(pe) �0.080 0.019 �4.11

abs(ss) 0.062 0.014 4.48

Note. Shown are the unstandardized regression coefficients (b), the standard error around the coefficients (se), and

the associated t and p values. Note, that the more negative the sm parameter, the greater the suppression of

model-based choice on post-loss trials. Thus, a positive coefficient in this analysis indicates that less suppression

leads to higher earnings.

DOI: https://doi.org/10.7554/eLife.48810.011
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Testing Main Prediction and History Analyses). Consistent with the prediction that switch/repeat

choices following losses are less dependent on recent history, the coefficients for the opponents’ his-

tory and also the players’ own history were in most cases substantially lower after loss than after win

trials. In figure supplements to Figure 4, we also show the signed coefficients as well as the results of

an alternative analysis that does not require the reversal of labels.

Neural evidence for memory-free choice following losses
Research with animal models and human neuroimaging work indicates that midfrontal brain regions,

such as the anterior cingulate cortex are involved in action-relevant representations and in the gating

between different modes of action selection (Daw et al., 2005; Behrens et al., 2007; Holroyd and

Coles, 2002). Further, a large body of research suggests that midfrontal EEG activity in response to

action feedback contains prediction error signals (Cohen and Ranganath, 2007; Cavanagh et al.,

2012; Gehring et al., 1993; Cavanagh and Frank, 2014; Cohen et al., 2011; Luft, 2014), which in

turn are reflective of action-relevant expectancies (i.e., the current task model). Therefore, it is theo-

retically important to link our behavioral results to this broader literature. Specifically, it would be

useful to show that (a) only on post-win, but not on post-loss trials, the midfrontal EEG signal con-

tains information about the choice context/model, and (b) that the context information contained in

the EEG signal is in fact predictive of upcoming choices.

In Experiment 5, we assessed EEG while participants played the fox/rabbit game against three

different types of opponents (25%, 50%, 75% switch rate). The ITI was 700 ms to capture feedback-

related EEG signals developing prior to the onset of upcoming trials. The behavioral results were

consistent with the other experiments (see Figures 2, 3 and 4).

We conducted a two-step analysis of the EEG signal. In the first step, we tested the prediction

that the mid-frontal EEG signal contains less information about the choice-relevant context after

loss-feedback than after win-feedback. To this end, we regressed trial-to-trial EEG signals on A) the

opponent’s overall switch rate, B) the opponent’s lag-1 switch/no-switch, C) the player’s lag-1

switch/no-switch, and D) the interaction between A) and B), that is between the local and global

switch expectancies. The latter term was included to capture the fact that if feedback-related EEG

reflects expectancies about opponents’ switch rates, local switch expectancies may depend on the

global switch-rate context (Cavanagh and Frank, 2014).

The standardized coefficients shown in Figure 5a indicate the amount of information about each

of the four context variables that is contained in the mid-frontal EEG signal. As apparent, the EEG

signal showed a robust expression of the history/context variables following win feedback. Following

loss feedback, context information is initially activated, but then appears to be suppressed com-

pared to post-win trials, and trends towards zero at the end of the feedback period. Accordingly,

coefficients were significantly larger in post-win trials than in post-loss trials, opponents’ overall

switch rate: b = 0.07, se = 0.01, t(25)=5.22, p<0.001, opponents’ lag-1 switch/no-switch: b = 0.04,

se = 0.01, t(25)=4.14, p=0.001, player’s lag-1 switch/no-switch: b = 0.01, se = 0.009, t(25)=1.19,

p=0.24, interaction between opponents’ overall switch rate and lag-1 switch: b = �0.08, se = 0.01, t

(25)=-7.22, p<0.001. Given that feedback is related to subject’s propensity of switching on the

upcoming trial, it is in principle possible that these coefficients simply reflect preparation or

increased effort for the upcoming switch. However, as we show in Figure 5—figure supplement 1,

controlling for the upcoming switch has negligible effects on results. These analyses also show that

while there is detectable information about the upcoming switch/no-switch choice, the decodability

of the upcoming choice is not modulated by win/loss feedback (see also, 14).

Our analytic strategy deviates from the standard approach of analyzing the EEG signal in terms of

feedback-locked, event-related potentials (ERPs; see Figure 5b). We used our approach because we

did not have a-priori predictions about how exactly the combination of different history/context vari-

ables would affect ERPs. More importantly, our regression-based approach naturally yields trial-by-

Figure 3 continued

due to greater, general information-processing noise, then the win/loss-related decrease in lopes of the switch rate functions would be accompanied

by consistent increases in RTs and/or error rates.
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trial indicators of the expression of context-specific information, which can be used in the second

step of our analysis (see below), and which would be difficult to obtain through standard ERP analy-

ses. In Figure 5—figure supplement 3, we also show that the ERP results are indeed generally con-

sistent with a prediction-error signal that is more strongly modulated by the choice context after

wins than losses.

The conclusion that post-loss stochastic behavior occurs because context representations are sup-

pressed, would be further strengthened by evidence that the information contained in the EEG sig-

nal is actually relevant for upcoming choices. Therefore, as the second step, we conducted a
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focus on the difference in the strength of relationships rather than their sign, the labels for all opponent predictors were reversed for post-loss trials

(see section Analytic Strategy for Testing Main Prediction). In addition, we also reversed the labels for all player-related predictors with a win/loss switch

in sign. For a statistical test of the size difference between post-win and post-loss coefficients, all history/context variables were included into one

model together with the post-win/post-loss contrast and the interaction between this contrast and each of the history/context predictors. Significance

levels of the interaction terms are indicated in the figure,<0.05, *<0.01, ***<0.001.
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The following figure supplements are available for figure 4:

Figure supplement 1. History analysis with signed action choices.

DOI: https://doi.org/10.7554/eLife.48810.014

Figure supplement 2. Alternative analysis of history effects.

DOI: https://doi.org/10.7554/eLife.48810.015
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psychophysical interaction (PPI) analysis (Friston et al., 1997). In a multi-level, logistic regression

analysis, we predicted players’ trial n switch choices, based on 1) the set of four context variables

from the preceding analysis for trial n-1, 2) the trial n-1 residuals from the preceding analysis (reflect-

ing trial-by-trial variations in the EEG signal after controlling for the four context variables),

(Morgenstern and Von Neumann, 1953) and the corresponding four interactions between the

residuals and the context variables. As shown in Table 4, we found for post-win trials significant

main effects for the residual EEG signal and all context variables. Most importantly, the residual EEG

signal modulated how the upcoming choice was affected by the opponent’s n-1 switch/repeat.

These results indicate that the information about context variables contained in the EEG signal is

indeed relevant for choices.

Given the reduced context representation following losses (see Figure 5), one might expect that

there is not sufficient trial-by-trial variability in such information to influence choices. However, it is

also possible that even the remaining variability still has predictive power. Therefore, the post-win/

post-loss difference in predicting choices is theoretically less informative than the finding of reduced

context representations in the EEG-signal per se and the fact that these representations generally

predict upcoming choices. Nevertheless, Table 4 shows the results also for post-loss trials. The rela-

tionship between the EEG representation of the global, opponent switch rate and the upcoming

choice was as strong as for post-win. For the local history variables, we found robust effects only

Figure 5 continued

showed a marked, win/loss flip in sign, we again reversed the label of the post-loss predictors (see section Strategy for Testing Main Prediction and

Figures 2 and 3; for signed coefficients, see Figure 5—figure supplement 2). For illustrative purposes, colored bars at the bottom of each panel

indicate the time points for which the coefficients were significantly different from zero (p<0.05, uncorrected). See text for statistical tests of the

predicted differences between coefficients for post-win and post-loss trials. The insert shows the topographic maps of coefficients that result from

fitting the same model for each electrode separately. Prior to rendering, coefficients were z-scored across all coefficients and conditions to achieve a

common scale. (b) Average ERPs for post-win and post-loss trials, showing the standard, feedback-related wave form, including the feedback-related

negativity (i.e., the early, negative deflection on post-loss trials). Detailed ERP results are presented in Figure 5—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.48810.016

The following figure supplements are available for figure 5:

Figure supplement 1. Controlling for Upcoming Switch and n-1 Stimulus/Response Positions.

DOI: https://doi.org/10.7554/eLife.48810.017

Figure supplement 2. Signed predictors.

DOI: https://doi.org/10.7554/eLife.48810.018

Figure supplement 3. Event-related potentials.

DOI: https://doi.org/10.7554/eLife.48810.019

Table 4. Coefficients from the PPI analysis predicting upcoming choices using residuals of MLM

regression model for post-win and post-loss trials.

Post-win Post-loss

B SE z-value B SE z-value

Opponent Switch Rate (A) 1.44 .047 31.15 �0.62 0.046 �13.47

n-1 Opponent Switch (B) 0.76 0.038 19.96 �0.07 0.034 �1.99

n-1 Player Switch (C) 0.15 0.033 4.57 �0.23 0.033 �6.80

A x B �0.17 0.068 �2.57 0.08 0.061 1.37

Residual EEG (D) 0.20 0.03 6.39 0.07 0.04 2.05

D x A 0.11 0.05 2.26 �0.11 0.05 �2.37

D x B �0.13 0.04 �3.31 �0.03 0.03 �0.95

D x C �0.11 0.03 �3.36 �0.01 0.03 �0.36

D x A x B �0.06 0.07 �0.89 0.08 0.06 1.37

Note. Shown are the unstandardized regression coefficients (B), the standard error around the coefficients (SE), and

the associated z values. Bolded values indicate significant effects (i.e., z-values > 2).

DOI: https://doi.org/10.7554/eLife.48810.020
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following win trials, but not following loss trials. Note, that the pattern of identical signs for the EEG-

behavior relationship across post-win and post-loss trials and the flipped signs for the opponent

switch rate/EEG relationship (Figure 5—figure supplement 2) is consistent with the reversal of the

relationship between opponent, overall switch rate and player switch rate depending on win or loss

feedback (e.g., Figure 2).

As a final step, we also examined if variations in the strength of history/context representations

can account for individual differences in choice behavior. We derived for each individual and predic-

tor, the average, standardized coefficient from the analysis presented in Figure 5 across the 300 ms

to 700 ms interval. Separately for post-win and post-loss trials, we correlated these scores with two

behavioral measurements: 1) individuals’ switch-rate functions as an indicator for model-based

choice (see Figure 2) and 2) the overall rate of winning. For post-loss trials, we again used oppo-

nent-related predictors with reversed labels (see EEG Recording and Analysis section for details).

Thus, for all analyses, more positive scores are indicative of individuals with more model-conform

behavior.

As shown in Figure 6, coefficients from post-win EEG signals generally predicted the variability

among individuals in the degree of model-based adaptation and the rate of winning (except for

coefficients of n-1 player’s switch). In contrast, such relationships were absent for post-loss trials.

Here, we also found significant post-win/post-loss differences. For the switch-rate function slopes,

post-win/post-loss differences were present for the opponents’ lag-1 switch/no-switch contrast, z(25)

=2.87, p=0.003, and the interaction between opponent’s overall switch rate and lag-1 switch/no-

switch choice, z(25)=4.26, p<0.001, but not for opponent’s overall switch rate, z(25)=1.38, p=0.16 or

the player’s lag-1 switch/no-switch, z(25)=-0.76, p=0.45. Similarly, for the overall rate of winning, we

found significant differences for opponents’ lag-1 switch/no- switch choice, z(25)=2.33, p=0.02, and

the interaction between opponents’ overall switch rate and the lag-1 switch/no-switch, z(25)=2.21,

p=0.02, but again not for opponents’ overall switch rate, z(25)=1.54, p=0.12, and the player’s lag-1

switch/no-switch, z(25)=-1.18, p=0.23.

Combined, these individual differences results suggest that the degree to which history/context

variables are represented in the EEG signal following win feedback, predicts both individuals’ reli-

ance on the model of the opponent and their overall competitive success. These relationships are

largely absent on post-loss trials. While the absence of a post-win/post-loss difference would have

been difficult to interpret for the reasons discussed in the context of the within-subject analysis (i.e.,

Table 4), the fact that we find robust differences here is consistent with the conclusion that following

loss-feedback, model-based representations are suppressed and therefore are less relevant for

behavior. With its small sample size, this experiment was not designed as an individual differences

study and therefore these exploratory results need to be considered with caution. However, confi-

dence in the results is strengthened by the fact that they are largely consistent with the findings

from the within-subject PPI analyses.

Discussion
Our results show that people can use two different choice regimes for selecting their next move in a

competitive game. Immediately following a win, participants tended to rely on an internal model of

the opponent’s behavior and his/her general tendency to switch moves relative to the preceding

trial. Following a loss trial, they selected their next move more stochastically and less influenced by

the local or global choice context (Tervo et al., 2014; Kolling et al., 2016a). The demonstration

that after loss feedback, model-based selection is largely replaced by a more memory-free, stochas-

tic mode of selection is a theoretically important result.

Past work has characterized behavior in zero-sum game situations as a problem of a trade-off

between model-free, win-stay/lose-shift tendencies and choices based on a model of the opponent

(e.g., Lee et al., 2014). In addition, work with the voluntary task-switching paradigm has suggested

that people often tend to repeat action plans that were executed in the immediate past

(Arrington and Logan, 2004; Mayr and Bell, 2006). Indeed, our modeling results show that each of

these influences is consistently present in our data. Importantly, the tendency towards model-based

choice and the tendency towards stochasticity on post-loss trials, independently predicted individu-

als’ competitive success, and over and above the effect of the known, lower-level biases (see

Tables 2 and 3).
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Figure 6. Individual difference correlations between neural-level representation of history/context variables and both use of the model and rate of

winning. Correlations between individuals’ standardized coefficients from the multi-level regression analysis relating the EEG signal to the different

history/context variables and 1) their slopes for the switch rate functions (left two columns) or 2) their overall win rate (right two columns) separately for

post-win and post-loss conditions. Coefficients were obtained by fitting models with the EEG signals averaged over a 300–700 ms interval of the post-

feedback period (the shaded interval in Figure 5).
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Our findings are generally consistent with recent research indicating an increase of decision

noise––defined as deviations from optimal choice––when exploration is beneficial in a sequential

decision situation (Wilson et al., 2014). However, it is a novel finding that this stochastic selection

regime is turned off and on according to positive versus negative feedback. Also, different than in

standard sequential-decision paradigms, in our paradigm subjects chose action rules rather than spe-

cific actions (except for Experiment 3), allowing us to separately examine choices and the efficiency

of action execution. The fact that the post-loss increase in stochastic choice was not accompanied

by a consistent increase in action errors or RTs, speaks against the possibility that choice stochastic-

ity results from a general increase in information-processing noise.

The results we report here are consistent of an emerging literature on the asymmetric consequen-

ces of positive versus negative feedback (Sharot and Garrett, 2016; Lefebvre et al., 2017). For

example, people appear to update their beliefs to a lesser degree following negative feedback than

positive feedback and the neural representation of recent actions is more robust following rewarded

than unrewarded trials (Donahue et al., 2013; Wirth et al., 2009). Particularly important in the cur-

rent context is the study by Donahue et al. (2013), which had monkeys play a matching pennies

game against a computerized opponent, while recording neurons from various regions in the frontal

and parietal cortex. Largely consistent with our results, representations of monkeys’ recent choices

were generally more robust on rewarded trials (the opponents’ choices were not examined here),

while there was no post-win/post-loss difference in the decoding of the upcoming choices (see Fig-

ure 5—figure supplement 1).

The existing evidence documents reward-related effects on the representation of the decision

maker’s specific action choices that preceded the positive or negative feedback (choices leading to

the outcome). In contrast, we report here that following negative feedback, the representation of

broader context information that includes information about the opponent and that is relevant for

the next action is substantially reduced. Combined, these sets of findings suggest that negative

feedback suppresses both learning, and the representation of choice-relevant information that is in

principle available to the decision maker. Whether or not these different manifestations of a feed-

back-related asymmetry share common underlying mechanisms is an important question for further

research.

In many competitive situations, a model of the opponent is needed to exploit regularities in the

opponent’s behavior (Camerer et al., 2015; Lee, 2008). At the same time, one’s own choices need

to appear unpredictable to the opponent. The feedback-contingent mix of choice regimes we report

here, may be an attempt to meet the opposing demands within the limitations of our cognitive sys-

tem. By this account, wins signal to the system that the current model is valid and is safe to use. In

contrast, losses signal that the current model may be invalid and that alternatives should be

explored and/or that there is a danger of being exploited by the opponent. As a result, the current

model is temporarily abandoned in favor of stochastic, memory-free choice.

Viewed by itself, the turn toward stochastic choice following losses is an irrational bias. Indeed,

our modeling results indicate that the degree to which players switch to stochastic choice after

losses, negatively predicts their success in competing against both simulated and actual opponents

(see Tables 2 and 3). Interestingly, this choice strategy also resembles maladaptive, learned-help-

lessness patterns that are typically observed across longer time scales and that are often associated

with the development of depressive symptoms (Abramson et al., 1978; Maier and Seligman,

2016). To what degree the trial-by-trial phenomenon examined here and the longer-term, more

standard learned-helplessness processes are related is an interesting question for further research. It

is however also important to consider the possibility that the loss-contingent switch to stochastic

choice is adaptive in certain circumstances. For example, in situations with a greater number of

choices or strategies than were available within the fox/rabbit game, a switch to stochastic choice

may allow the exploration of neglected regions of the task space (Cavanagh et al., 2012). Also,

given known constraints on consistent use of model-based selection, the ability to revert to stochas-

tic behavior provides a ‘safe default’ that at the very least reduces the danger of counter-prediction

through a strong opponent.

In this regard, a recent study by Tervo et al. (2014) is highly relevant. These authors analyzed the

choice behavior of rats playing a matching-pennies games against simulated competitors of varying

strength. The animals showed model-based choice behavior against moderately strong competitors,

but switched to a stochastic choice regime when facing a strong competitor. The switch in choice
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regimes occurred on different time scales in the Tervo et al. study (i.e., several sessions for each

competitor) than in the current work (i.e., trial-to-trial). Nevertheless, it is remarkable that a qualita-

tively similar, failure-contingent switch between choice regimes could be found in both rats and

human players.

Tervo et al. also used circuit interruptions in transgenic rats to show that a switch to stochastic

choice is controlled via noradrenergic input to the anterior cingulate cortex (ACC), which supposedly

suppresses or perturbs ACC-based representations of the current task model. Interestingly, in our

Experiment 5, we found that EEG signals registered at mid-frontal electrodes, contained robust

information about the opponents’ and the players’ own strategies following win-feedback. On post-

loss trials the EEG signal initially contained information about the opponent’s global and local

behavior, but this information was all but eliminated by about 400 ms following the feedback signal.

This time-course suggests that context information is available in principle, but is quickly suppressed

on post-loss trials. Additional analyses indicated that the task-relevant information contained in the

EEG signal was indeed relevant for upcoming choice behavior. Feedback-contingent, mid-frontal

EEG signals are often thought to originate in the ACC and associated areas (Kolling et al., 2016a;

Cavanagh and Frank, 2014; Kolling et al., 2016b). We note though that the earlier-mentioned

study by Donahue et al. (2013) found reward-related effects on representations of the animals’ own

recent choices in various frontal and parietal areas, but not in the ACC. Aside from obvious differen-

ces (i.e., monkeys, rats, and humans, single-cell recordings vs. EEG), one possible reason for these

discrepancies is that while Donahue et al. had looked at the representation of the player’s own

recent history, in our study we found particularly strong feedback effects on the representation of

the opponent’s behavior. Irrespective of the specific neural-anatomical implementation, the norad-

renergic perturbation process identified by Tervo et al., suggests an interesting hypothesis for future

research about how in humans, task-relevant representations might be actively suppressed to pro-

mote memory-free, stochastic choice (Nassar et al., 2012). More generally, this emerging body of

evidence provides one possible answer to the fundamental question how a memory-based choice

system can produce non-deterministic behavior––namely through temporarily suppressing memory

records of the choice context.

Note added in proof
After acceptance of this manuscript, we became aware of a manuscript by Hermoso-

Mendizabal et al. (2019). These authors report a study with rats that both in terms of experimental

design and results is remarkably consistent with what we report here. In a serial choice task, rats

exploited experimentally induced sequential regularities (i.e., high frequency of repetitions versus

alternations) following positive feedback, but temporarily reverted to almost completely stochastic

choice behavior following a single, negative feedback trial.

Materials and methods

Participants
Subjects were University of Oregon students who participated after giving informed consent in

exchange for monetary payment or course credits; Experiment 1: N = 56 (38 female), Experiment 2:

N = 40 (28 female), Experiment 3: N = 44 (25 female), Experiment 4a: N = 100 (62 female), Experi-

ment 4b: N = 38 (20 female), Experiment 5: N = 25 (13 female). Four subjects from Experiment 1

and three pairs from Experiment 4a were excluded, because the experimental session could not be

completed. The entire study protocol was approved by the University of Oregon’s Human Subjects

Review Board (Protocol 10272010.016).

Experiment 1
On each trial of the fox/rabbit game, players observed a circle either on the bottom or the top of a

vertically aligned rectangle. They had to choose between one of two rules for responding to the cir-

cle location. The ‘freeze rule’ implied that the circle stayed at the same location and it required par-

ticipants to press among two keys the one that was compatible with the circle location (‘2’ and ‘5’

on the number pad), using the right-hand index finger. The ‘run rule’ implied that the circle moved

to the opposite location within the vertical box and participants had to press among a separate set
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of vertically aligned keys (‘1’ and ‘4’ on the number pad) the key that was incompatible with the cir-

cle location (Mayr and Bell, 2006), using the left-hand index finger. Participants were asked to rest

the index finger of each hand between the two relevant keys (e.g., between ’1’ and ’4’ for the left

index finger) at the beginning of each trial. On a given trial, the fox player won two cent per trial,

when both players chose the same rule, whereas the rabbit player won when choices were different.

Participants had to respond within a 2000 ms interval and after that interval, they received feedback

presented for 200 ms with a smiley face indicating a win trial and a frowny face a loss trial. Both

incorrect responses (e.g., a compatible response using the keys for the incompatible rule) or late

responses (which were extremely rare) counted as errors. In terms of feedback, all errors were

treated in the same way as loss trials, that is a frowny face was presented at the end of the 2000 ms

response interval. The inter-trial-interval (ITI) was 300 ms.

Participants initially were exposed to a block of 80 practice trials in order to familiarize them with

the response procedures. This block was performed without a competitor, but with the typical ‘vol-

untary switching’ instruction that asks subjects to change rules randomly on a trial-by-trial basis. Fol-

lowing practice, participants played the fox/rabbit game for ten different blocks of 80 trials each.

Both the switch rate of the opponent varied on a block-by-block basis between 20%, 35%, 50%,

65%, and 80%, and also whether the player had the role of the fox or the rabbit. Except for the

switch-rate constraint, the simulated opponent’s choices were completely random. The ten different

combinations of opponent switch rate and player role were randomly distributed across blocks. Par-

ticipants were instructed that the different simulated players represented common strategies that

one might find in human players. At the beginning of each block, participants were notified that

they would be facing a new, simulated opponent, and whether they played the role of the fox or the

rabbit, but received no instruction about the specific strategies.

This and the following experiments were programmed in Matlab (Mathworks) using the Psycho-

physics Toolbox (Brainard, 1997) and presented on a 17-inch CRT monitor (refresh rate: 60 Hz) at a

viewing distance of 100 cm.

Experiment 2
This experiment was identical to Experiment 1 in all aspects, only that here the ITI varied between

300 ms and 1000 ms randomly, on a trial-by-trial basis.

Experiment 3
This experiment was again identical to Experiment 1, only that here the choice between two differ-

ent response rules was replaced by a simple choice between two different key-press responses.

Each trial was initiated by a circle appearing at the center of the vertically arranged stimulus rectan-

gle. Using the vertically arranged ‘2’ or ‘5’ keys, participants had to shift the circle up or down within

the rectangle. Matching moves between opponents implied a win for the fox and a loss for the rab-

bit player.

Experiment 4
In Experiment 4a participants were paired into fox/rabbit dyads and played in real-time on two com-

puters within the same room, but without opportunity for direct communication. Here, participants

played 7 blocks of 80 trials each, and stayed within the same role throughout the experiment. All

other aspects were identical to Experiment 1. Experiment 4b served as a non-competition control

experiment. Here, participants were given the standard instruction for the voluntary task-switching

paradigm, namely to select tasks as randomly as possible ("simulating a series of coin tosses"). Also,

trial-by-trial wins and losses were completely random and participants were informed that this was

the case. Otherwise, this experiment was identical to Experiment 4a.

Experiment 5
This experiment was again identical to Experiment 1, but optimized towards EEG recording. For this

purpose, we used only three simulated opponents (switch rates of 25%, 50% and 75%) across 24

blocks of 80 trials each (i.e., 4 repetitions of 3 opponent strategies x fox/rabbit roles). The ITI was

700 ms to allow assessment of feedback-related EEG activity.
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History analyses
To evaluate the predictability of the current choice by the recent choice history, we fitted multilevel

logistic regression models predicting the switch vs. repeat choice by the player’s and opponent’s

switch history from n-3, n-2, and n-1 trials, the overall switch probability of the opponent, whether

trial n-1 was a win or a loss trial, and the interactions between win/loss and all history/context varia-

bles (i.e., 15 predictors in total). We estimated both fixed and random effects of all predictors. For

Experiment 4, the model had three levels in which trials were nested within players, which in turn

were nested in dyads. For the other experiments, models included only the first two levels. The sig-

nature of model-based selection is that predictors representing the opponent’s switch rate (e.g., the

overall switch probability and opponent’s switch history) is positively related to the player’s switch

probability on post-win trials and negatively on post-loss trials. The main prediction we wanted to

test was that following post-win trials the predictive relationship is stronger than following post-loss

trials. Therefore, we examined the interaction between the post-win/loss contrast and each oppo-

nent-related predictor after reversing the label of the predictor for post-loss trials (e.g., n–one oppo-

nent ‘switch’ is relabeled as ‘repeat’, 80% overall switch rate becomes 20%). This allowed us to test

the difference in the strength of the relationship, while ignoring the direction of the relationship. We

had no a-priori prediction about the direction of the relationship between previous switch/repeat

choices and the trial n switch/repeat choice. Nevertheless, for a conservative test of post-win/loss

differences we again reversed the post-loss label in each case where there was an empirical flip in

sign between post-loss and post-win coefficients. We also present in Figure 4—figure supplement

2 the results without reversing labels.

EEG recordings and analysis
In Experiment 5, Electroencephalographic (EEG) activity was recorded from 20 tin electrodes held in

place by an elastic cap (Electrocap International) using the International 10/20 system. The F3, Fz,

F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2 of the 10/20 system were used along with

five nonstandard sites: OL midway between T5 and O1; OR midway between T6 and O2; PO3 mid-

way between P3 and OL; PO4 midway between P4 and OR; and POz midway between PO3 and

PO4. The left-mastoid was used as reference for all recording sites. Data were re-referenced off-line

to the average of all scalp electrodes. Electrodes placed ~1 cm to the left and right of the external

canthi of each eye recorded horizontal electrooculogram (EOG) to measure horizontal saccades. To

detect blinks, vertical EOG was recorded from an electrode placed beneath the left eye and refer-

ence to the left mastoid. The EEG and EOG were amplified with an SA Instrumentation amplifier

with a bandpass of 0.01–80 Hz and were digitized at 250 Hz in LabView 6.1 running on a PC. We

used the Signal Processing and EEGLAB (Delorme and Makeig, 2004) toolboxes for EEG process-

ing in MATLAB. Trials including blinks (>60 mv, window size = 200 ms, window step = 50 ms), large

eye movements (>1˚, window size = 200 ms, window step = 10 ms), and blocking of signals

(range = �0.01 mv to 0.01 mv, window size = 200 ms) were rejected excluded from further analysis.

Single-trial EEG signals were segmented into 1250 ms epochs starting from 200 ms before the

onset of feedback. Thus, each epoch included 700 ms post-feedback periods and the initial 250 ms

intervals of the next trials. Each electrode’s EEG signal was also pre-whitened by linear and quadratic

trends across experimental trials and blocks. After baselining signals with data from the initial, 200

ms interval, EEG activity from electrodes Fz and Cz, was averaged. These electrodes were selected

based on previous studies reporting a robust interaction between the feedback and the probability

context during reinforcement learning (Cohen et al., 2007). The resulting signal was regressed via

multilevel modeling with two levels (i.e., trials nested within participants) on context variables, as

described in the Results section. For illustrative purposes, this was done on a time-point by time-

point basis (see Figure 5). To conduct statistical tests of the post-win versus post-loss regression

coefficients for the psychophysiological interaction analysis predicting choices, for the individual dif-

ferences (Figure 6), and for the topographic maps (Figure 5a), we averaged the EEG signal for an

a-priori defined 300–700 ms interval from the onset of feedback up to the beginning of the next

trial. This interval is based on the typical time-course of feedback effects reported in the literature

(Cohen et al., 2007). The difference between post-win/loss models was tested in the same manner

as in the multilevel model for history effects, namely by inverting predictors of opponents’ history/
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context for post-loss trials (see section Analytic Strategy for Testing Main Prediction and History

Effects Analysis).
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Gläscher J, Daw N, Dayan P, O’Doherty JP. 2010. States versus rewards: dissociable neural prediction error
signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595. DOI: https://doi.
org/10.1016/j.neuron.2010.04.016, PMID: 20510862

Hermoso-Mendizabal A, Hyafil A, Rueda-Orozco PE, Jaramillo S, Robbe D, Rocha Jdela. 2019. Response
outcomes gate the impact of expectations on perceptual decisions. bioRxiv . DOI: https://doi.org/10.1101/
433409

Holroyd CB, Coles MGH. 2002. The neural basis of human error processing: reinforcement learning, dopamine,
and the error-related negativity. Psychological Review 109:679–709. DOI: https://doi.org/10.1037/0033-295X.
109.4.679, PMID: 12374324

James G, Koehler DJ. 2011. Banking on a bad bet. Probability matching in risky choice is linked to expectation
generation. Psychological Science 22:707–711. DOI: https://doi.org/10.1177/0956797611407933,
PMID: 21551340

Kikumoto and Mayr. eLife 2019;8:e48810. DOI: https://doi.org/10.7554/eLife.48810 22 of 23

Research article Neuroscience

https://doi.org/10.1073/pnas.1518786113
http://www.ncbi.nlm.nih.gov/pubmed/27330086
http://www.ncbi.nlm.nih.gov/pubmed/27330086
https://doi.org/10.1037/0021-843X.87.1.49
http://www.ncbi.nlm.nih.gov/pubmed/649856
https://doi.org/10.1111/j.0956-7976.2004.00728.x
http://www.ncbi.nlm.nih.gov/pubmed/15327632
https://doi.org/10.1080/14640746608400019
http://www.ncbi.nlm.nih.gov/pubmed/5935121
https://doi.org/10.1080/713755788
https://doi.org/10.1080/713755788
https://doi.org/10.1038/nn1954
http://www.ncbi.nlm.nih.gov/pubmed/17676057
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.cobeha.2015.04.005
https://doi.org/10.1093/cercor/bhr332
https://doi.org/10.1093/cercor/bhr332
http://www.ncbi.nlm.nih.gov/pubmed/22120491
https://doi.org/10.1016/j.tics.2014.04.012
http://www.ncbi.nlm.nih.gov/pubmed/24835663
https://doi.org/10.1257/00028280260344678
https://doi.org/10.1257/00028280260344678
https://doi.org/10.1016/j.neuroimage.2006.11.056
http://www.ncbi.nlm.nih.gov/pubmed/17257860
https://doi.org/10.1016/j.tics.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22078930
https://doi.org/10.1523/JNEUROSCI.4421-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17215398
https://doi.org/10.1038/nn1560
http://www.ncbi.nlm.nih.gov/pubmed/16286932
https://doi.org/10.1038/nature04766
http://www.ncbi.nlm.nih.gov/pubmed/16778890
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/j.neuron.2013.07.040
http://www.ncbi.nlm.nih.gov/pubmed/24012280
https://doi.org/10.1006/nimg.1997.0291
http://www.ncbi.nlm.nih.gov/pubmed/9344826
https://doi.org/10.1016/j.cognition.2008.09.007
http://www.ncbi.nlm.nih.gov/pubmed/19019351
https://doi.org/10.1111/j.1467-9280.1993.tb00586.x
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.neuron.2010.04.016
http://www.ncbi.nlm.nih.gov/pubmed/20510862
https://doi.org/10.1101/433409
https://doi.org/10.1101/433409
https://doi.org/10.1037/0033-295X.109.4.679
https://doi.org/10.1037/0033-295X.109.4.679
http://www.ncbi.nlm.nih.gov/pubmed/12374324
https://doi.org/10.1177/0956797611407933
http://www.ncbi.nlm.nih.gov/pubmed/21551340
https://doi.org/10.7554/eLife.48810


Kane GA, Vazey EM, Wilson RC, Shenhav A, Daw ND, Aston-Jones G, Cohen JD. 2017. Increased locus
coeruleus tonic activity causes disengagement from a patch-foraging task. Cognitive, Affective, & Behavioral
Neuroscience 17:1073–1083. DOI: https://doi.org/10.3758/s13415-017-0531-y, PMID: 28900892

Kolling N, Behrens T, Wittmann MK, Rushworth M. 2016a. Multiple signals in anterior cingulate cortex. Current
Opinion in Neurobiology 37:36–43. DOI: https://doi.org/10.1016/j.conb.2015.12.007, PMID: 26774693

Kolling N, Wittmann MK, Behrens TEJ, Boorman ED, Mars RB, Rushworth MFS. 2016b. Value, search, persistence
and model updating in anterior cingulate cortex. Nature Neuroscience 19:1280–1285. DOI: https://doi.org/10.
1038/nn.4382

Lee D. 2008. Game theory and neural basis of social decision making. Nature Neuroscience 11:404–409.
DOI: https://doi.org/10.1038/nn2065, PMID: 18368047

Lee D, Seo H, Jung MW. 2012. Neural basis of reinforcement learning and decision making. Annual Review of
Neuroscience 35:287–308. DOI: https://doi.org/10.1146/annurev-neuro-062111-150512, PMID: 22462543

Lee SW, Shimojo S, O’Doherty JP. 2014. Neural computations underlying arbitration between model-based and
model-free learning. Neuron 81:687–699. DOI: https://doi.org/10.1016/j.neuron.2013.11.028, PMID: 24507199

Lefebvre G, Lebreton M, Meyniel F, Bourgeois-Gironde S, Palminteri S. 2017. Behavioural and neural
characterization of optimistic reinforcement learning. Nature Human Behaviour 1:0067. DOI: https://doi.org/10.
1038/s41562-017-0067

Luft CD. 2014. Learning from feedback: the neural mechanisms of feedback processing facilitating better
performance. Behavioural Brain Research 261:356–368. DOI: https://doi.org/10.1016/j.bbr.2013.12.043,
PMID: 24406725

Maier SF, Seligman ME. 2016. Learned helplessness at fifty: insights from neuroscience. Psychological Review
123:349–367. DOI: https://doi.org/10.1037/rev0000033, PMID: 27337390

Mayr U, Bell T. 2006. On how to be unpredictable: evidence from the voluntary task-switching paradigm.
Psychological Science 17:774–780. DOI: https://doi.org/10.1111/j.1467-9280.2006.01781.x, PMID: 16984294

Morgenstern O, Von Neumann J. 1953. Theory of Games and Economic Behavior. Princeton university press.
Muller TH, Mars RB, Behrens TE, O’Reilly JX. 2019. Control of entropy in neural models of environmental state.
eLife 8:e39404. DOI: https://doi.org/10.7554/eLife.39404, PMID: 30816090

Nash JF. 1950. Equilibrium points in N-Person games. PNAS 36:48–49. DOI: https://doi.org/10.1073/pnas.36.1.
48, PMID: 16588946

Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI. 2012. Rational regulation of learning dynamics
by pupil-linked arousal systems. Nature Neuroscience 15:1040–1046. DOI: https://doi.org/10.1038/nn.3130,
PMID: 22660479

Otto AR, Gershman SJ, Markman AB, Daw ND. 2013a. The curse of planning: dissecting multiple reinforcement-
learning systems by taxing the central executive. Psychological Science 24:751–761. DOI: https://doi.org/10.
1177/0956797612463080, PMID: 23558545

Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. 2013b. Working-memory capacity protects model-based
learning from stress. PNAS 110:20941–20946. DOI: https://doi.org/10.1073/pnas.1312011110,
PMID: 24324166

Rapoport A, Budescu DV. 1992. Generation of random series in two-person strictly competitive games. Journal
of Experimental Psychology: General 121:352–363. DOI: https://doi.org/10.1037/0096-3445.121.3.352

Rapoport A, Budescu DV. 1997. Randomization in individual choice behavior. Psychological Review 104:603–
617. DOI: https://doi.org/10.1037/0033-295X.104.3.603

Sharot T, Garrett N. 2016. Forming beliefs: why valence matters. Trends in Cognitive Sciences 20:25–33.
DOI: https://doi.org/10.1016/j.tics.2015.11.002, PMID: 26704856

Tervo DGR, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY. 2014. Behavioral variability
through stochastic choice and its gating by anterior cingulate cortex. Cell 159:21–32. DOI: https://doi.org/10.
1016/j.cell.2014.08.037, PMID: 25259917

Wagenaar WA. 1972. Generation of random sequences by human subjects: a critical survey of literature.
Psychological Bulletin 77:65–72. DOI: https://doi.org/10.1037/h0032060

Walker M, Wooders J. 2001. Minimax play at Wimbledon. American Economic Review 91:1521–1538.
DOI: https://doi.org/10.1257/aer.91.5.1521

Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. 2014. Humans use directed and random exploration to
solve the explore–exploit dilemma. Journal of Experimental Psychology: General 143:2074–2081. DOI: https://
doi.org/10.1037/a0038199

Wirth S, Avsar E, Chiu CC, Sharma V, Smith AC, Brown E, Suzuki WA. 2009. Trial outcome and associative
learning signals in the monkey Hippocampus. Neuron 61:930–940. DOI: https://doi.org/10.1016/j.neuron.2009.
01.012, PMID: 19324001

Kikumoto and Mayr. eLife 2019;8:e48810. DOI: https://doi.org/10.7554/eLife.48810 23 of 23

Research article Neuroscience

https://doi.org/10.3758/s13415-017-0531-y
http://www.ncbi.nlm.nih.gov/pubmed/28900892
https://doi.org/10.1016/j.conb.2015.12.007
http://www.ncbi.nlm.nih.gov/pubmed/26774693
https://doi.org/10.1038/nn.4382
https://doi.org/10.1038/nn.4382
https://doi.org/10.1038/nn2065
http://www.ncbi.nlm.nih.gov/pubmed/18368047
https://doi.org/10.1146/annurev-neuro-062111-150512
http://www.ncbi.nlm.nih.gov/pubmed/22462543
https://doi.org/10.1016/j.neuron.2013.11.028
http://www.ncbi.nlm.nih.gov/pubmed/24507199
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1016/j.bbr.2013.12.043
http://www.ncbi.nlm.nih.gov/pubmed/24406725
https://doi.org/10.1037/rev0000033
http://www.ncbi.nlm.nih.gov/pubmed/27337390
https://doi.org/10.1111/j.1467-9280.2006.01781.x
http://www.ncbi.nlm.nih.gov/pubmed/16984294
https://doi.org/10.7554/eLife.39404
http://www.ncbi.nlm.nih.gov/pubmed/30816090
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48
http://www.ncbi.nlm.nih.gov/pubmed/16588946
https://doi.org/10.1038/nn.3130
http://www.ncbi.nlm.nih.gov/pubmed/22660479
https://doi.org/10.1177/0956797612463080
https://doi.org/10.1177/0956797612463080
http://www.ncbi.nlm.nih.gov/pubmed/23558545
https://doi.org/10.1073/pnas.1312011110
http://www.ncbi.nlm.nih.gov/pubmed/24324166
https://doi.org/10.1037/0096-3445.121.3.352
https://doi.org/10.1037/0033-295X.104.3.603
https://doi.org/10.1016/j.tics.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26704856
https://doi.org/10.1016/j.cell.2014.08.037
https://doi.org/10.1016/j.cell.2014.08.037
http://www.ncbi.nlm.nih.gov/pubmed/25259917
https://doi.org/10.1037/h0032060
https://doi.org/10.1257/aer.91.5.1521
https://doi.org/10.1037/a0038199
https://doi.org/10.1037/a0038199
https://doi.org/10.1016/j.neuron.2009.01.012
https://doi.org/10.1016/j.neuron.2009.01.012
http://www.ncbi.nlm.nih.gov/pubmed/19324001
https://doi.org/10.7554/eLife.48810

