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Abstract: Ophiopogon japonicus polysaccharides (OJPs) have great anti-inflammation and immunomod-
ulatory abilities. However, the low bioavailability of OJPs reduces its applicability in the biomedical
and pharmaceutical fields. Chitosan (CS) has excellent mucoadhesive properties and absorption-
enhancing ability in oral administration. Casein hydrolysate (CL) has good interfacial diffusivity
and emulsifying ability, and can interact with polysaccharides to form complexes combining the
individual properties of both. Therefore, chitosan and casein hydrolysate are good candidates for
developing nanoformulations for oral delivery. In this study, bioactive polysaccharides (OJPs), CS
and CL, were combined to prepare CS/OJPs/CL co-assembled biodegradable nanoparticles. The
interactions between polysaccharides (CS and OJPs) and peptide (CL) resulted in the formation
of nanoparticles with an average particle size of 198 nm and high OJPs loading efficiency. The
colloidal properties of the nanoparticles were pH-dependent, which were changed significantly in
simulated digestive fluid at different pH values. OJPs released from the CS/OJPs/CL nanoparticles
were greatly affected by pH and enzymatic degradation (trypsin and lysozyme). The nanoparticles
were easily internalized by macrophages, thereby enhancing the OJPs’ inhibitory ability against
Ni2+-induced cytotoxicity and LPS-induced nitric oxide production. This study demonstrates that
prepared polysaccharide/protein co-assembled nanoparticles can be potential nanocarriers for the
oral delivery of bioactive polysaccharides with anti-inflammatory functions.

Keywords: chitosan; polysaccharides; bioactive and biodegradable; nanoparticles; pH-responsive;
oral delivery; controlled release

1. Introduction

Ophiopogon japonicus is a traditional Chinese medicine that has been used for a long
time in the treatment of cardiovascular and chronic inflammatory diseases, and has been
proven to have anti-ischemic, anti-arrhythmic, anti-inflammatory, and microcirculation-
improving effects [1–10]. The polysaccharides isolated from Ophiopogon japonicus (OJPs)
have various biological activities, such as immunostimulation, anti-ischaemia, inhibiting
platelets aggregation, and hypoglycemic [1–12]. However, the short half-life of OJPs and
poor absorption after oral administration limit the efficacy and clinical application of OJPs.
Therefore, a variety of drug delivery systems including erodible tablets, injectable in situ
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forming gels, nanoparticles, and liposome have been developed for controlled release and
delivery of OJPs [13–19].

Chitosan (CS) is a biodegradable natural polymer consisting of D-glucosamine and
N-acetyl-D-glucosamine residuals linked by β-(1,4) glycosidic linkage, which was obtained
by the deacetylation of chitin. The chemical structure of CS is very similar to that of cellulose.
CS is the only natural polysaccharide with cationic properties and has been widely used
in the biomedical, pharmaceutical, cosmetic, and food industries. CS-based vehicles have
been recognized as effective drug delivery systems for enhancing the oral bioavailability
of drugs, phytochemicals and bioactive macromolecules including proteins, peptides and
polysaccharides [20–26]. So far, many CS-based drug delivery systems such as hydrogels,
microparticles, and nanoparticles (NPs) have been developed [20,27,28]. Among them, CS
NPs are the most promising orally administered dosage forms, as they show great potential
to enhance oral bioavailability [29–32]. The mucoadhesive properties allow CS NPs to easily
attach to the mucus layer [26,33], thereby enhancing the gastrointestinal tract (GIT) residence
time. Furthermore, the positive charges on CS NPs can transiently open tight junctions
between epithelial cells to enhance drug permeation across the intestinal epithelium [34–37].

Compared with solvent evaporation induced phase separation and aldehyde cross-
linking methods, polyelectrolyte complexing (PEC) method is widely used to produce CS
NPs with tens to hundreds of nanometers in size under mild conditions. The electrostatic
interactions between protonated CS and negatively charged polyanions such as alginate,
fucoidan were responsible for the particle assembling under mild conditions [38–40]. Ow-
ing to the protonated and deprotonated states of the oppositely charged polyelectrolytes,
these nanoparticles have pH-responsive properties with different characteristics of par-
ticle size, surface charge, and morphology at different pH conditions. These CS-based
nanoparticles generally have excellent biodegradability and safety, and have functions such
as controlled release of bioactive compounds, mucoadhesion, and intestinal permeability
enhancement [40–43].

Casein (CA), the most abundant protein type in bovine milk, has a molecular weight of
19~25 kDa and an isoelectric point of 4.6~4.8. It mainly consists of four phosphoproteins (αS1-,
αS2-, β-, and κ-CA), which shows amphiphilic properties that can form protein-polysaccharide
complexes to exert an emulsifying effect [44–46]. Furthermore, the electronegative domains of
CA are preferentially located in small peptide fragments, making these molecules susceptible
to complex formation with cationic macromolecules [47,48]. CS is a cationic polymer that
can form polyelectrolyte complexes with CA. CS/CA complex NPs have been developed for
delivery of astaxanthin, anthocyanins, curcumin, fucoxanthin, platinum anticancer drug, and
nattokinase [47–55], with the advantage of improved bioactivity and bioavailability, enhanced
stability and water dispersibility, and sustained-release property.

Previously, we have isolated an OJP from the roots of O. japonicus. The OJPs are a
group of anionic polysaccharides with molecular weight up to 27 kDa [56]. Due to the
advantages mentioned above, this study aimed to develop nanocarriers for oral delivery of
OJPs using CS and CA hydrolysate (CL). In this work, the anionic polysaccharides (OJPs)
and cationic polysaccharide CS in aqueous solutions were self-assembled into nanoparticles
via PEC method. Casein hydrolysate (CL)-based formulations are promising materials for
stabilizing nanoemulsions [57]. Therefore, CL was incorporated into the CS/OJPs PEC NPs
to form co-assembled CS/OJPs/CL NPs with increased stability. Furthermore, CL can be
used to coat NPs to avoid premature drug release in the gastric environment and then can
be specifically degraded by trypsin in the small intestine to trigger drug release [58,59].
The release properties of CS/OJPs/CL NPs were examined under different pH conditions
and enzymatic degradation (lysozyme and trypsin). Furthermore, the protective effect
of CS/OJPs/CL NPs against cytotoxicity of RAW264.7 cells induced by nickel, and the
anti-inflammatory and free radical scavenging activities of the NPs were also evaluated.
This is the first study using bioactive polysaccharides, chitosan, and peptides to prepare
nanoparticles with pH- and enzyme-responsive properties and controlled release capability
by a self-assembly method.
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2. Materials and Methods
2.1. Materials

CS (MW = 80 kDa, DDAc = 85%) was purchased from Marine Bio Resources Co.
(SSA190/301CF, Samut Sakhon, Thailand). CL (Hy-Case SF from bovine milk, C9386) and
lysozyme (35,000 U/mg) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Trypsin
(2000 U/mg) was purchased from Gibco BRL (Paisley, UK).

2.2. Preparation of CS/OJPs/CL Co-Assembled Nanoparticles

OJPs was extracted and purified according to the method reported in our previous
study [56]. The inversely charged CS, OJPs, and CL were employed to synthesize nanopar-
ticles. This study prepared CS/OJPs/CL nanoparticles by co-assembling CS with OJPs and
CL. CS was dissolved in 0.1M acetic acid aqueous solution (0.1% w/v) and CL was dissolved
in water at pH 6.5 (0.2% w/v). OJPs (0.06% w/v), which represent an equivalent mass
ratio of anionic polysaccharide, was dissolved in water. CS, OJPs, and CL solutions were
mixed at CS:OJPs:CL volume ratio of 1.25:2.5:1.5 to obtain a CS:OJPs:CL weight ratio of
0.14:0.17:0.33 by magnetic stirring at room temperature to form CS/OJPs/CL co-assembled
nanoparticles. CS/OJPs co-assembled nanoparticles were prepared as mentioned above by
replacing CL with water.

2.3. Characterization of CS/OJPs/CL Nanoparticles

Particle size, zeta potential, and polydispersity index (PDI) of the test nanoparticles
were analyzed using a Malvern Zetasizer (Nano-ZS, Malvern Instruments, Malvern, UK).
Images were obtained after the test nanoparticle suspension was dropped onto carbon-
coated copper grids and then allowing the solvent to evaporate. Shape and surface mor-
phology of the nanoparticles were characterized by Hitachi H-600 TEM (Tokyo, Japan). The
images were obtained after dropping the test nanoparticle suspension onto a carbon-coated
copper grid and then allowing the solvent to evaporate. Chemical structures of the test
nanoparticles were identified by Fourier transform infrared spectroscopy (Perkin Elmer
FTIR Spectrometer Frontier, Waltham, MA, USA).

2.4. pH-Responsive and Biodegradable Properties

CS/OJPs/CL were placed in pH 3.0, 5.0, 6.5, and 7.4 buffer solutions to mimic the pH
conditions of gastrointestinal tract, and particle size distribution (PSD) and polydispersity
index (PDI) of the test sample solutions were analyzed over a predetermined period of
time using a Malvern Zetasizer (Nano-ZS, Malvern Instruments, Malvern, UK) to evaluate
the pH-responsive property of the NPs. Enzymatic degradation of the NPs was performed
in PBS buffers containing 0.5 mg/mL of trypsin (2000 USP U/mg) and 1.0 mg/mL of
lysozyme (35,000 U/mg), respectively. At a predetermined time interval, the biodegradable
property of the NPs was investigated by determining PSD and PDI according to the method
described above. Furthermore, during digestion, NPs samples were collected at different
time points and their morphology was characterized by Hitachi H-600 TEM (Tokyo, Japan).

2.5. Drug Loading and Release

The unloaded OJPs were collected by using dialysis tubes Vivaspin® 100 kDa MWCO
(Hannover, Germany), and the remaining OJPs in the filtration was determined using a
high-performance liquid chromatography (HPLC) (Varian ProStar Solvent Delivery System
PS-210 and Varian ProStar 330 Photo Diode Array/PDA detector, Palo Alto, CA, USA). Drug
encapsulation efficiency (EE%) were calculated according to the following Equation (1):

EE (%) = ((Wt − Wf)/Wt) × 100, (1)

where Wt was the weight of total OJPs added; Wf was the weight of free OJPs measured in
the supernatant.
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OJPs releases were investigated by placing nanoparticles in the 100 kDa MWCO dialy-
sis tubing then immerse in release medium, including pH 6.5 buffers containing lysozyme
(35,000 U/mL) or trypsin (1000 USP U/mL) with volume ratio NPs: medium = 1:9 at 37 ◦C.
At predetermined time intervals, 400 µL of release medium was collected. The released
OJPs were analyzed by using the previously mentioned HPLC method.

2.6. Cellular Uptake of Nanoparticles

FITC-labeled CS (FITC-CS) was synthesized according to the method reported in our
previous study [56]. Afterwards, fluorescent CS/OJPs/CL NPs were prepared from FITC-
CS, and then RAW 264.7 cells (4 × 104 cells/well) were incubated with the FITC-labeled
NPs (100 µg/mL) for 24 h. Cellular uptake of the FITC-labeled NPs by RAW 264.7 cells
was visualized using a Leica TCS SP5 Spectral Confocal (Rotorua, New Zealand).

2.7. Cytotoxicity Assay

RAW 264.7 cells at a density of 1 × 104 cells/mL were incubated with CS/OJPs/CL
NPs (10, 50, and 100 µg/mL) for 24 h. Then, the medium was removed and the cells were
treated with 100, 250, and 500 mM Ni2+ for further 24 h. After the incubation period,
sulforhodamine B assay was performed to determine the viability of the Ni2+-treated
cells by measuring the absorbance at 510 nm using a BioTek uQuant Microplate Reader
(Winooski, VT, USA).

2.8. DPPH and ABTS Scavenging

The DPPH and ABTS radical scavenging activities of CS/OJPs/CL NPs were deter-
mined according to the method described in our previous study [56]. First, the CS/OJPs/CL
NPs were sequentially diluted with water to prepare a series of sample solutions with dif-
ferent concentrations. Then, 270 µL of ABTS (7 mM ABTS/4.95 mM potassium persulfate)
or DPPH (0.4 mM) reagent and 30 µL aliquots of each concentration of the sample solution
were mixed in a 96-well microplate. After 30 min of reaction, the mixtures were diluted
and the absorbances of the test samples were read at 517 nm (for DPPH assay) and 734 nm
(for ABTS assay) using a BioTek uQuant Microplate Reader (Winooski, VT, USA).

2.9. Determination of Nitric Oxide

RAW 264.7 cells (1 × 104 cells/mL) were co-cultured with CS/OJPs/CL NPs (5, 10,
and 50 µg/mL) and then LPS was added to the macrophage cells at a final concentration
of 10 ng/mL to stimulate inflammation. Nitric oxide (NO) produced by LPS-stimulated
RAW 264.7 cells was measured by Griess assay. Briefly, the cell culture medium was mixed
with an equal volume (100 µL) of a solution of Griess reagent, and incubated for 10 min at
room temperature. The amount of nitrite (a stable metabolite of NO) in the supernatant
was determined by measuring the absorbance at 540 nm using a BioTek uQuant Microplate
Reader (Winooski, VT, USA).

2.10. Statistical Analysis

The experimental data were presented as the mean ± standard deviation (SD). Statisti-
cal evaluation among different study groups was analyzed by one-way ANOVA (p < 0.05
was considered statistically significant).

3. Results and Discussion
3.1. Optimization of CS/OJPs/CL Assembly

CS is a biopolymer with potential for oral or mucosal delivery of macromolecules,
such as polypeptides, proteins, and polysaccharides. It has many advantages in drug
delivery including mucoadhesion [26,39], enhanced penetration [34–37], and improved
oral absorption [30,31]. It has also been used in the preparation of nanoparticles to control
drug release and protect active compounds from enzymatic degradation and destruction by
gastric acid [21,60]. In this study, CS, OJPs, and CL were combined to prepare nanoparticles
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for oral drug delivery. Figure 1a shows that at pH 6.5, the zeta potential of CS was positive
but those of OJPs and CL were negative. Accordingly, CS/OJPs and CS/OJPs/CL NPs can
be prepared by a polyelectrolyte complex method via electrostatic interactions between
the oppositely charged polysaccharides and protein, which is a simple and mild method
for preparation of nanoparticles. The average particle size and PDI of CS/OJPs NPs were
mainly affected by the CS:OJPs weight ratio. The mean particle size greatly increased when
the weight ratio was higher than 10, which might be attributed to the formation of NPs
aggregates. In addition, the results of PDI and mean particle size analysis showed that
the optimal preparation conditions for CS/OJPs NPs were at a CS:OJPs weight ratio of
0.85 (Figure 1b). A further increase or decrease in the weight ratio resulted in a significant
increase in the PDI value, indicating that the particle size distribution of CS/OJPs NPs
became non-uniform. Therefore, the CS:OJPs weight ratio of 0.85 was used for preparation
of CS/OJPs/CL NPs.
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Figure 1. Formulation optimization: (a) zeta potential of CS, OJPs, and CL measured at different
pH values, (b) mean particle size of CS/OJPs NPs prepare at different CS:OJPs mass ratio, (c) mean
particle size of CS/OJPs/CL NPs prepare at different CL:OJPs mass ratio (CS:OJPs mass ratio = 0.85).

Therefore, the driving force for the assembly of CS/OJPs/CL NPs is mainly attributed
to the electrostatic attraction between negatively charged OJPs and CL and positively
charged CS. Furthermore, there may be hydrophobic interactions between the hydrophobic
residues of CS and CL. Previously, we have confirmed that the optimal preparation condi-
tion for CS/OJPs NPs is a CS:OJPs weight ratio of 0.85. When the CS:OJPs weight ratio was
kept at 0.85, the preparation conditions for CS/OJPs/CL NPs were optimized by changing
the OJPs/CL weight ratio. The results of PDI and mean particle size analysis showed that
an OJPs:CL weight ratio of 2.05 was the optimal preparation condition (Figure 1c). Based
on the preliminary analysis, the CS:OJPs:CL weight ratio of 0.14:0.17:0.33 was selected for
production of CS/OJPs/CL NPs, since it exhibited the optimal particle size (198.1 nm) with
a narrow size distribution (PDI = 0.21).
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3.2. Characterizatio of OJPs/CS/CL NPs

Figure 2a shows the size distribution curves of CS/OJPs and CS/OJPs/CL NPs. The
average size of both NPs was close to 200 nm (Table 1), but the size distribution curve of
CS/OJPs showed a small peak in the range of 3000–6000 nm. This peak disappeared when
CS/OJPs NPs was incorporated with CL, revealing that CL helped to increase the dispersion
of nanoparticles to avoid aggregation. The zeta potential of CS/OJPs and CS/OJPs/CL
NPs were positive (Figure 2b and Table 1), evidencing that the predominant cover on the
particles’ surface is CS. However, as the value of pH increased from 5.0 to 6.5 (Figure 2b),
the zeta potential of CS/OJPs and CS/OJPs/CL NPs decreased, which was due to the fact
that the lower protonation degree of amino groups in CS but the higher ionization degree
of carboxyl groups in OJPs. The results were consistent with pH-dependent changes in the
zeta potential of CS, OJPs, and CL, respectively (Figure 1a). Instead of strong electrostatic
interaction with negatively charged OJPs at pH 5.0, the NPs have slightly positive charges at
pH 6.0 and 6.5, revealing that CS may have weaker electrostatic interaction with OJPs. TEM
images show that both CS/OJPs and CS/OJPs/CL NPs have spherical shapes (Figure 2c).
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Figure 2. Characterization of CS/OJPs and CS/OJPs/CL NPs: (a) size distribution curve, (b) zeta
potential curve, (c) TEM micrographs. Fluorescence spectra: (d) the mixtures prepared by adding
OJPs to CL aqueous solution and (e) the mixtures prepared by adding CS to CL aqueous solution.
FTIR spectra: (f) CS, OJPs and CL and (g) CS/OJPs and CS/OJPs/CL NPs.
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Table 1. Mean particle size (hydrodynamic diameter), zeta potentials, and OJPs encapsulation
efficiency of CS/OJPs NPs and CS/OJPs/CL NPs.

Mean Particle Size Zeta Potential Encapsulation Efficiency

(nm) (mV) (%)

CS/OJPs NPs 195.5 ± 4.6
1.1 ± 0.3 (pH 6.5)

78.6 ± 1.45.8 ± 1.1 (pH 6.0)
12.9 ± 2.3 (pH 5.0)

CS/OJPs/CL NPs 198.1 ± 6.8
0.6 ± 0.1 (pH 6.5)

88.1 ± 0.25.5 ± 1.3 (pH 6.0)
13.6 ± 2.5 (pH 5.0)

The intrinsic fluorescence of tryptophan (Trp) and tyrosine (Tyr) is sensitive to confor-
mational changes of protein molecules. The shift in their fluorescence wavelengths and
fluorescence intensity can be used as an index to investigate the molecular interactions
between CL and polysaccharides for assembly of nanoparticles [57]. The fluorescence
emission spectra of CL, CL/CS, and CL/OJPs mixtures are shown in Figure 2d,e. The fluo-
rescence emission maximum wavelength for CL was 350 nm. The CL emission peaks in the
spectra of CS/CL and OJPs/CL mixtures were not obviously shifted but the fluorescence
intensity of CL was quenched by addition of CS and OJPs solutions, respectively. The
decrease in CL fluorescence intensity suggested the conformational change of CL due to
specific interactions between CA and CS or OJPs, which led to quenching the fluorescence
of CL by changing the π–π* transition of Trp and/or Tyr [52].

Figure 2f shows the IR spectra of CS, CL, and CS/OJPs and CS/OJPs/CL NPs. In
the spectrum of CS, the strong absorption bands at 1567, 1644 and 3402 cm−1 were as-
signed to C=O stretching (amide I), N-H bending (amide II), and N-H and O-H stretching
vibration. OJPs show strong absorption bands at 1633 cm−1, which was due to C=O stretch-
ing of carboxyl groups. Both CS and OJPs show the characteristic absorption bands of
polysaccharides in the region of 1200–950 cm−1, which were assigned to pyranose ring
vibrations (C-O-C and C-OH stretching). CL exhibited two major characteristic peaks for
peptide bonds and, which were assigned to amide II absorption at 1519 cm−1 and amide I
absorption at 1638 cm−1 [48]. The characteristic bands of OJPs in the spectra of CS/OJPs
and CS/OJPs/CL NPs shifted from 1633 cm−1 to 1639 cm−1, which clearly indicated the
presence of interactions between the oppositely charged polysaccharides (CS and OJPs)
(Figure 2g).

3.3. pH-Responsive and Biodegradable Properties

Since the electrostatic interactions between the polyelectrolytes (CS, OJPs, and CL)
are highly pH-dependent (Figure 1), the effect of pH on the stability of CS/OJPs/CL NPs
needs to be investigated. Based on the oral and GIT routes of administration, nanocarriers
must be able to resist multiple challenges including pH and gastric degradation. To mimic
the environmental pH conditions upon oral intake of nanoformulations, in-vitro test media
were prepared from different pH buffers representing fed stomach (pH 3.0), small intestine
(pH 5.0–7.4). The size distribution and PDI of CS/OJPs/CL NPs in different pH media
were measured to assess the pH-responsive property of the NPs [61].

The CS/OJPs/CL NPs prepared in pH 5.0 and 6.5 buffers had a strong electrostatic
interaction between the polysaccharides and protein hydrolysate, which led to more com-
pact complexation that possessed smaller particle size. The hydrodynamic diameter of the
NPs was 200–300 nm (Figure 3a), and the PDI and size distribution curves did not change
significantly within 12 h (Figure 3b,d,e). As previously mentioned, the zeta potential of
NPs in pH 5.0 buffer was 13.6 mV, indicating that positively charged CS dominates the
particle surface (Figure 2b). At pH 6.5, the protonation degree of CS was reduced but it was
still sufficient to provide electrostatic interactions with OJPs and CL, so the particle size did
not increase significantly within 12 h. When the pH was increased to 7.4, the size increased
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to >4000 nm and the PDI increased to 1.4. At the pH value, OJPs and CL were negatively
charged because their carboxyl groups were ionized but the amino groups of CS were
deprotonated, resulting in reduced electrostatic interactions between CS and OJPs/CL. The
NPs are readily disintegrated at pH 7.4, revealing that the NPs might release OJPs more
rapidly at the distal ileum.
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In pH 3.0 buffer, the hydrodynamic diameter of CS/OJPs/CL NPs was 480 nm (Figure 3a).
CS was protonated while the carboxyl groups of OJPs and CLS tended to be in acid form
rather than carboxylate ion, i.e., with hydrogen in the carboxylic acid groups, leading to a
reduction in the electrostatic interactions between CS, OJPs, and CL. Notably, particle size
and PDI increased significantly at 12 h. It is known that solid meals are usually emptied
from the stomach within 3 to 4 h. Homogenized solid meals typically reduced digestion
time in the stomach by 1–2 h. Generally, the recommended time for simulating gastric
digestion of nanoformulations is 2 h. Based on the above findings, CS/OJPs/CL NPs may
have the ability to prevent rapid drug release in the stomach before reaching the intestine.

Studies have shown CS/CA complex was stale in the pH range 4.0–6.0 [47]. To improve
the stability of CS/CA-based nanoparticles (CS/CA NPs), several modifications have been
performed, including using stearic acid-CS conjugate and CA [48], sinapic acid-grafted-CS
and CA [53], and gallic acid-modified CS, CA and oxidized dextran [55], to fabricate the
nanoparticles. These nanoparticles were stable over a wide pH range (2.0–7.4). Other
studies enhanced the stability of CS/CA NPs by crosslinking of CS and CA with genipin
and transglutaminase [50,54]. The NPs can enhance stability of curcumin and protect
nattokinase from degradation by the acidic gastric juice. Our study shows that the OJPs,
CS, and CA hydrolysate co-assembled NPs developed in this work are stable in the range
of 3.0–6.5 without chemical modification and cross-linking. This may be because CL is a
small peptide from CA hydrolysis, so it may have a stronger interaction with CS.

The capability to maintain the integrity of CS/OJPs/CL NPs against enzymatic degra-
dation was assessed by changes in size and PDI. As shown in Figure 4b, after incubation
in simulated intestinal fluids (SIF) containing 0.5 mg/mL trypsin (pH 6.5), the particle
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size and PDI of CS/OJPs/CL NPs started to increase significantly at 12 h. The results
suggested that the NPs can have the ability to protect drugs or proteins from enzymatic
degradation by trypsin in intestinal juice within 6 h. In contrast, the particle size and
PDI of CS/OJPs NPs did not change significantly compared to the initial values until
12 h; however, CS/OJPs/CL NPs changed, indicating that CL gives the NPs a trypsin
response/degradation ability. Additionally, we examined the enzymatic degradability of
CS/OJPs/CL and CS/OJPs NPs by lysozyme, which is generally abundant in mucosal
surfaces. After 1 h incubation in SIF (pH 6.5) containing 1 mg/mL lysozyme, particle
size and PDI of both NPs increased by more than two-fold. The high susceptibility of
CS/OJPs/CL and CS/OJPs NPs to lysozyme hydrolysis can be attributed to the fact that
these two NPs are mainly composed of CS.
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Figure 4. (a,b) Mean particle size and PDI of CS/OJPs and CS/OJPs/CL NPs degraded by lysozyme
(1.0 mg/mL) and trypsin (0.5 mg/mL). (c,d) Size distribution curves of CS/OJPs and CS/OJPs/CL
NPs degraded by lysozyme (1.0 mg/mL). (e,f) Size distribution curves of CS/OJPs and CS/OJPs/CL
NPs degraded by trypsin (0.5 mg/mL). (g,h) TEM micrographs of CS/OJPs and CS/OJPs/CL NPs
degraded by lysozyme (1.0 mg/mL) and trypsin (0.5 mg/mL).

3.4. Drug Loading and Release

Nanoparticles need to have the ability to protect the loaded active compounds from
degradation and premature release after ingestion, which is critical to ensure successful oral
administration of drugs, proteins, and naturally occurring compounds. The encapsulation
efficiency of OJPs in CS/OJPs and CS/OJPs/CL NPs were 78.6 ± 1.6% and 88.1 ± 0.2%. To
examine whether the NPs are able to protect OJPs from premature release in the gastric
environment and then successfully release OJPs in the small intestine, the simulated GI
fluids were used to study the pH-dependent release properties of OJPs from the NPs.
In vitro methods simulating the pH of the digestive tract are as follows: stomach (fasting—
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pH 2.0; fed—pH 3.0); duodenum (pH 4–6); proximal small intestine (pH 6.6); terminal
ileum (pH 7.5). In Figure 5, the effects of CS/OJPs/CL and CS/OJPs NPs on the release
of OJPs were investigated at pH 3.0, 5.0, 6.5, and 7.4. At pH 7.4, OJPs release from the
NPs was fast. More than 75% of OJPs was released after 4 h in this medium, whereas
there was almost no OJPs release at pH 5.0 and only 7.5% of OJPs were released at pH
6.5, respectively. This release pattern may be due to the fact that CS is deprotonated at
pH 7.4 but OJPs and CL are negatively charged. The weakened electrostatic attraction
and increased electrostatic repulsion between deprotonated CS and ionized OJPs and CL
led to rapid decomposition of NPs and enhance the leakage of OJPs from the NPs into
the releasing media. The amino groups in CS are protonated at pH 5.0 and 6.5, providing
strong electrostatic attractions to the oppositely charged OJPs and CL. The release of OJPs
from the NPs in both pH conditions showed a slow and sustained release manner. The
results are consistent with results of previous particle size and PDI analysis that clearly
showed that CS/OJPs/CL and CS/OJPs NPs were stable in the medium for 12 h.

Polymers 2022, 14, 2966 11 of 18 
 

 

enhanced in the release medium containing lysozyme. As previously studied (Figure 4), 
CS/OJPs/CL and CS/OJPs NPs were highly sensitive to lysozyme degradation, resulting 
in enhancement of the OJPs release rate. In release medium containing trypsin (0.5 
mg/mL), CS/OJPs/CL NPs exhibited faster OJPs release within 12 h compared to OJPs re-
lease in trypsin-free medium (47% vs. 20%). However, the release rate of OJPs from 
OJPs/CL NPs was not significantly enhanced by trypsin, suggesting that CL predomi-
nated the trypsin-triggered OJPs release from CS/OJPs/CL NPs. 

Koo et al. reported that CS-coated and fucoxanthin-loaded CA NPs demonstrated 
better bio-accessibility of fucoxanthin under in vitro simulated digestion [51]. Our study 
shows that after incubation in SIF (pH 6.5) containing trypsin, the particle size of 
CS/OJPs/CL NPs increased significantly, and OJPs began to release at 12 h. Indicating the 
NPs can have the ability to protect drugs or proteins from fast enzymatic degradation by 
trypsin in intestinal juice and could release the cargo by CL-degradation-induced disinte-
gration of NPs after long-term digestion. 

 
Figure 5. In vitro OJPs release from CS/OJPs and CS/OJPs/CL NPs: (a) OJPs release from the NPs at 
different pH conditions, (b) OJPs release from the NPs in pH 6.5 buffers containing lysozyme (1.0 
mg/mL) and trypsin (0.5 mg/mL), respectively. 

3.5. In Vitro Antioxidant Activity 
DPPH and ABTS free radicals scavenging assays are commonly used to measure the 

antioxidant activity of naturally occurring compounds. To understand the antioxidant ac-
tivity of CS/OJPs and CS/OJPs/CL NPs and their compositions (polysaccharides and pro-
tein hydrolysis), the DPPH radical scavenging activities of CS, CL, OJPs and the NPs were 
measured (Figure 6). For the scavenging capacity against DPPH radical of free OJPs, CL 
and CS were 4.6, 0.1 and 1.2 μg/mg trolox equivalent antioxidant capacity (TEAC). OJPs 
shows high scavenging capacity against DPPH, which is consistent with previous studies 
reporting the antioxidant activity of Ophiopogon japonicus extract [62]. CS has good 
DPPH scavenging ability (1.2 μg/mg TEAC) because of its hydrogen-donating ability but 
the DPPH scavenging capacity of CL was poor. The DPPH scavenging capacity of CS/OJPs 
and CS/OJPs/CL NPs were 3.94 and 4.36 μg/mg TEAC, indicating that OJPs and CS had 
major roles in the DPPH scavenging activity of CS/OJPs/CL NPs (Figure 6a). The scaveng-
ing capacity against ABTS radical of CS was weak (0.93 μg/mg TEAC) while CL and OJPs 
have stronger ABTS radical scavenging ability (6.2 and 4.4 μg/mg TEAC) than CS (Figure 
6b). Chang et al. has reported the antioxidant activity of CL with well-established antiox-
idants [63]. There was no difference in ABTS scavenging capacity between CS/OJPs and 
CS/OJPs/CL NPs (5.25 and 4.84 μg/mg TEAC) (Figure 6b). The study showed that the en-
capsulation of astaxanthin (ASTX) in stearic acid-CS conjugates/CA NPs significantly en-
hanced the antioxidant activity of ASTX against ABTS radicals [47]. Similarly, sinapic 

Figure 5. In vitro OJPs release from CS/OJPs and CS/OJPs/CL NPs: (a) OJPs release from the NPs
at different pH conditions, (b) OJPs release from the NPs in pH 6.5 buffers containing lysozyme
(1.0 mg/mL) and trypsin (0.5 mg/mL), respectively.

To investigate whether CS/OJPs/CL NPs could prevent the premature release of
OJPs in the stomach, the release behavior of the nanoformulation was tested in pH 3.0
buffer. In this release medium, OJPs release from CS/OJPs/CL NPs was slow during
the first 6 h, followed by a quicker release of OJPs up to 24 h (≥80%). The electrostatic
interaction between CS and OJPs were weakened because the carboxyl groups of OJPs were
protonated. However, although CL carried net positive charge under low pH, negatively
charged patches existing on CL micelle surface could still interact with chitosan [47]. Thus,
these results indicated that CS/OJPs/CL NPs could be used to control OJPs release in
acidic environment of the stomach and have potential for oral administration.

Studies have reported that genipin-crosslinked CS/CA NPs has the advantage of sus-
tained release of curcumin at pH 7.4 [50], while genipin/transglutaminase co-crosslinked
CS/CA NPs has the capability of controlled-release of anti-thrombotic drugs in the intes-
tine [54]. Other studies show that L-arginine-functionalized CS/CA NPs released curcumin
at a slower rate in simulated gastric fluid (SGF) but a faster rate in simulated intestinal fluid
(SIF) [54]. These studies suggest that these nanocarriers with the ability to reduce gastric
acid drug release can be used for the oral administration of small and macromolecular
bioactive compounds and can improve their bioavailability. Our study shows that OJPs
release from the CS/OJPs/CL NPs was slow during the first 6 h in acidic medium (pH 3.0,
simulating the pH of fed gastric fluids), but the release became faster in pH 7.4 buffer
(simulating the pH of terminal ileum). Accordingly, they should have great potential for
the oral administration of biologically active compounds.



Polymers 2022, 14, 2966 11 of 17

We additionally examined the effect of enzymatic degradation of the NPs on OJPs
release. The release profile of OJPs from CS/OJPs/CL NPs was investigated by exposing
them to the release medium containing lysozyme and trypsin, respectively. In enzyme-free,
pH 6.5 buffer, only 20% of incorporated OJPs was released from CS/OJPs/CL NPs after
12 h. However, in the same release medium containing lysozyme (1 mg/mL), about 70%
of OJPs were released from the NPs. Similarly, OJPs released from CS/OJPs NPs were
enhanced in the release medium containing lysozyme. As previously studied (Figure 4),
CS/OJPs/CL and CS/OJPs NPs were highly sensitive to lysozyme degradation, resulting
in enhancement of the OJPs release rate. In release medium containing trypsin (0.5 mg/mL),
CS/OJPs/CL NPs exhibited faster OJPs release within 12 h compared to OJPs release in
trypsin-free medium (47% vs. 20%). However, the release rate of OJPs from OJPs/CL
NPs was not significantly enhanced by trypsin, suggesting that CL predominated the
trypsin-triggered OJPs release from CS/OJPs/CL NPs.

Koo et al. reported that CS-coated and fucoxanthin-loaded CA NPs demonstrated bet-
ter bio-accessibility of fucoxanthin under in vitro simulated digestion [51]. Our study shows
that after incubation in SIF (pH 6.5) containing trypsin, the particle size of CS/OJPs/CL
NPs increased significantly, and OJPs began to release at 12 h. Indicating the NPs can
have the ability to protect drugs or proteins from fast enzymatic degradation by trypsin in
intestinal juice and could release the cargo by CL-degradation-induced disintegration of
NPs after long-term digestion.

3.5. In Vitro Antioxidant Activity

DPPH and ABTS free radicals scavenging assays are commonly used to measure the
antioxidant activity of naturally occurring compounds. To understand the antioxidant
activity of CS/OJPs and CS/OJPs/CL NPs and their compositions (polysaccharides and
protein hydrolysis), the DPPH radical scavenging activities of CS, CL, OJPs and the NPs
were measured (Figure 6). For the scavenging capacity against DPPH radical of free OJPs,
CL and CS were 4.6, 0.1 and 1.2 µg/mg trolox equivalent antioxidant capacity (TEAC).
OJPs shows high scavenging capacity against DPPH, which is consistent with previous
studies reporting the antioxidant activity of Ophiopogon japonicus extract [62]. CS has
good DPPH scavenging ability (1.2 µg/mg TEAC) because of its hydrogen-donating ability
but the DPPH scavenging capacity of CL was poor. The DPPH scavenging capacity of
CS/OJPs and CS/OJPs/CL NPs were 3.94 and 4.36 µg/mg TEAC, indicating that OJPs and
CS had major roles in the DPPH scavenging activity of CS/OJPs/CL NPs (Figure 6a). The
scavenging capacity against ABTS radical of CS was weak (0.93 µg/mg TEAC) while CL
and OJPs have stronger ABTS radical scavenging ability (6.2 and 4.4 µg/mg TEAC) than CS
(Figure 6b). Chang et al. has reported the antioxidant activity of CL with well-established
antioxidants [63]. There was no difference in ABTS scavenging capacity between CS/OJPs
and CS/OJPs/CL NPs (5.25 and 4.84 µg/mg TEAC) (Figure 6b). The study showed that
the encapsulation of astaxanthin (ASTX) in stearic acid-CS conjugates/CA NPs signifi-
cantly enhanced the antioxidant activity of ASTX against ABTS radicals [47]. Similarly,
sinapic acid-CS/CA and gallic acid-CS/CA/oxidized dextran NPs greatly enhanced the
antioxidant activity and sustainability of black rice anthocyanins and curcumin against
DPPH and ABTS radicals [53,55]. However, our study shows that CS/OJPs/CL NPs did
not significantly enhance the DPPH and ABTS radical scavenging activity of OJPs. This
may be due to the poor dispersibility of free ASTX and curcumin in water, thus limiting its
reaction with DPPH and ABTS radicals. In contrast, OJP is readily soluble in water and
thus exhibits good free radical scavenging activity.

3.6. Phagocytic Uptake and Cytotoxicity of Nanoparticles

Mucoadhesive chitosan particles and hydrogels have been used for delivery of drugs
and active compounds to treat chronic inflammation of intestines, including ulcerative coli-
tis and inflammatory bowel diseases (IBD) [64,65]. Pro-inflammatory cytokines produced
predominantly by activated macrophages are involved in the development of the diseases.
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Figure 7a shows the cellular uptake of CS, CS/OJPs and CS/OJPs/CL NPs by macrophages.
Phagocytosis uptake of nanoparticles generally favors positive zeta potential and larger par-
ticles [66,67]. CS/OJPs and CS/OJPs/CL NPs have similar average particle size (195.5 nm
vs. 198.1 nm) and zeta potential (1.09 mV vs. 0.56 mV). However, CS/OJPs/CL NPs were
more efficiently taken up by macrophages than CS/OJPs NPs. This might be attributed to
the plasma membrane penetration ability of CL [68].
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Cell viability of the macrophages incubated together with CS/OJPs and CS/OJPs/CL
NPs were determined by MTT assay to evaluate the safety of the NPs. As shown in
Figure 7b, the cell viability of all the formulations (OJPs, CS/OJPs and CS/OJPs/CL NPs)
were higher than 95% with OJPs equivalent up to 100 µg/mL (Figure 7b). Interestingly,
OJPs, CS/OJPs, and CS/OJPs/CL NPs resulted in 1.5–1.6-fold higher cell viability than
the control at a low dose of 10 µg/mL OJPs equivalent, which could be attributed to
the immunoregulatory activity of OJPs [8]. These findings suggested that CS/OJPs and
CS/OJPs/CL NPs were non-cytotoxic to the macrophage cells.

3.7. Protective Effect against Ni2+-Induced Cytotoxicity and LPS-Induced Inflammation

Nickel has cytotoxicity towards macrophages and can induce allergic contact hypersen-
sitivity [69]. In this work, Ni2+-induced cytotoxicity effect in macrophages was examined by
measuring cell viability of macrophages incubated together with Ni2+. For this, CS/OJPs
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and CS/OJPs/CL NPs were added to the above cells/Ni2+ cultures to investigate the
protective effect of the NPs on Ni2+-induced cytotoxicity in RAW264.7 cells. Significant
cell viability decrease was observed after exposure to 100 and 250 µM of Ni2+ (Figure 8c).
CS/OJPs and CS/OJPs/CL NPs attenuated Ni2+-induced cytotoxicity in RAW264.7 cells
and thus increased their viability (Figure 8c,d). Our previous study has observed that OJPs
can protect RAW264.7 cells from the Ni2+-induced cytotoxicity effect by enhancing cell
viability from 50% to 57% and from 75% to 80% under 50 µg/mL [56]. By comparison,
CS/OJPs/CL NPs can improve to 61% and 91% from 50% and 75% cell viability, respec-
tively, to protect macrophages from Ni2+-induced cytotoxicity (Figure 8). This is most likely
due to the more efficient cellular uptake of OJP delivered via the NPs (Figure 7a).
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We further tested the anti-inflammatory effects of NPs in LPS-stimulated macrophage
model. As shown in Figure 9, the levels of pro-inflammatory signal and nitric oxide
(NO) were increased 7.8-fold in LPS-activated RAW264.7 cells compared to non-activated
controls. The NO production of CS/OJPs and CS/OJPs/CL NPs-treated cells decreased as
the NPs concentration increased, significantly lower than the LPS-activated group with a
30% decrease (Figure 9d,e). However, no statistical differences of NO levels were observed
between CS/OJPs and CS/OJPs/CL NPs-treated groups. CS/OJPs and CS/OJPs/CL
NPs more effectively suppressed LPS-induced NO production in macrophage than free
OJPs (Figure 9c), indicating that the NPs indeed help to enhance the OJPs-involved anti-
inflammatory effect. This may be attributed to the fact that CS/OJPs and CS/OJPs/CL
NPs could enhance cellular uptake of OJPs, thereby more effectively reducing NO levels in
LPS-stimulated macrophages.
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Figure 9. Inhibitory effect of CS/OJPs and CS/OJPs/CL NPs against LPS-induced NO production in
RAW264.7 cells. Raw materials (a–c) and nanoparticles (d,e). The different lowercase letters represent
statistically significant differences (p < 0.05).

4. Conclusions

In summary, the polysaccharides/protein hydrolysate complex nanoparticles were
successfully fabricated using CS, OJPs, and CL for the purpose of oral delivery of a group
of antioxidant and anti-inflammatory active polysaccharides, OJPs, and the optimal compo-
sitions for preparation of CS/OJPs and CS/OJPs/CL NPs were investigated. The particle
size of the optimized NPs is close to 200 nm, and the encapsulation efficiency of OJPs is
88.1 ± 0.2%. The NPs exhibited pH-responsive properties with positive zeta potential at pH
lower than 6.5, revealing that the predominant cover on the particles’ surface is CS. In vitro
drug release studies demonstrated that the NPs were able to control the release of OJPs in
release media simulating the pH of the digestive tract, and that the OJPs release rates varied
at different pH values and were accelerated by enzymatic degradation. OJPs delivered by
the NPs showed excellent macrophage cellular internalization efficiency, thereby improving
the anti-inflammatory ability of OJPs, like giving a more than 30% decrease of LPS-induced
NO release. Moreover, the NPs-delivered OJPs increased, by 3.2-fold, their inhibition of
nickel-induced toxicity to macrophages compared to free OJPs.

The findings in the current study demonstrated that self-assembled CS/OJPs/CL NPs
can be easily prepared by the PEC method and possess multiple functionalities, such as
pH/enzyme-responsive controlled release properties. These properties will be beneficial for
reducing the degradation of OJPs and increase their bioavailability. However, much remains
to be explored in the future, such as in vivo animal studies to illustrate the permeation
efficiency in the mucus layer and small intestine, and the oral absorption efficiency of the
prepared nanoparticles.
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