
materials

Review

The Use of Calcium Phosphates in Cosmetics, State of the Art
and Future Perspectives

Francesca Carella , Lorenzo Degli Esposti , Alessio Adamiano and Michele Iafisco *

����������
�������

Citation: Carella, F.; Degli Esposti, L.;

Adamiano, A.; Iafisco, M. The Use of

Calcium Phosphates in Cosmetics, State

of the Art and Future Perspectives.

Materials 2021, 14, 6398. https://

doi.org/10.3390/ma14216398

Academic Editor: Michael R. Mucalo

Received: 1 September 2021

Accepted: 21 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64,
48018 Faenza, Italy; francesca.carella@istec.cnr.it (F.C.); lorenzo.degliesposti@istec.cnr.it (L.D.E.);
alessio.adamiano@istec.cnr.it (A.A.)
* Correspondence: michele.iafisco@istec.cnr.it

Abstract: Calcium phosphates (CaPs) belong to a class of biomimetic materials widely employed for
medical applications thanks to their excellent properties, such as biodegradability, biocompatibility
and osteoinductivity. The recent trend in the cosmetics field of substituting potentially hazardous
materials with natural, safe, and sustainable ingredients for the health of consumers and for the
environment, as well as the progress in the materials science of academics and chemical industries,
has opened new perspectives in the use of CaPs in this field. While several reviews have been focused
on the applications of CaP-based materials in medicine, this is the first attempt to catalogue the
properties and use of CaPs in cosmetics. In this review a brief introduction on the chemical and
physical characteristics of the main CaP phases is given, followed by an up-to-date report of their
use in cosmetics through a large literature survey of research papers and patents. The application of
CaPs as agents in oral care, skin care, hair care, and odor control has been selected and extensively
discussed, highlighting the correlation between the chemical, physical and toxicological properties of
the materials with their final applications. Finally, perspectives on the main challenges that should
be addressed by the scientific community and cosmetics companies to widen the application of CaPs
in cosmetics are given.
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1. Introduction

Cosmetics, as defined by the U.S. Food and Drug Administration (FDA), are sub-
stances for application to the human body aimed at cleansing, beautifying, promoting
attractiveness or altering the appearance without affecting the body physiology or func-
tions [1]. In particular, it refers to every substance placed in contact with an external part
of the human body or with the teeth and the mucous membranes of the oral cavity with
the aim of cleaning, protecting, perfuming or changing their appearance [2–4].

The first use of the term “cosmetics” dates to the Greek term “kósmesis” that means
“to order” or “to adorn”. In ancient times, cosmetics were handled by males and females
of all ages in everyday life for aesthetic reasons, in religious rituals, or for medical pur-
poses. Cosmetic ingredients were obtained from several vegetal, animal, or mineral sources.
Some of the animal and vegetal ingredients were, for instance, egg whites, ground ani-
mal bones mixed with oils (either almond or poppy), lemon juice, roses, camphor, wax,
oyster shells, red dye from cochineal, or the slime of snails [5,6]. Mineral cosmetics were
instead hematite (Fe2O3), galena (PbS), cerussite (PbCO3), laurionite (PbOHCl), malachite
(Cu2(CO3)(OH)2), mercury oxide (HgO), zinc oxide (ZnO), and silver or gold foils [6,7]. It
is interesting to note that many of these ingredients of natural origin are still commonly
used in modern cosmetics.

Due to the rapid development of the petrochemical industry over the last two centuries,
nowadays synthetic cosmetic materials are mass-produced and diffused worldwide [8].
During the XX century, toxic heavy metals were found in cosmetics as contaminations or
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impurities. Various research works report a direct relationship between chronic exposure to
heavy metals in cosmetics and health problems such as skin sensitivities, allergic reactions,
contact dermatitis, hair loss, respiratory disorders, cardiovascular diseases, gastrointestinal
disorders, fertility problems, cancer, and even death [9,10]. The European Regulation
no.1223/2009/EC permits the presence of traces of heavy metals in the finished products
if it is technically inevitable. Such presence is tolerated only if the safety of the product
is demonstrated and if good manufacturing practices are employed. However, in the
regulation there are no precise limits of the quantity of metals tolerated in a cosmetic
product, even if as a rule of thumb their concentration must be kept as low as possible.
Indeed, every government is demanded to enforce limits on impurities content in cosmetic
products on sale. An example is reported by the German Federal Government, which
has determined appropriate limits for metal contained as impurities in cosmetics, such as
5 µg/g for As and Cd, 1 µg/g for Hg, 20 µg/g for Pb and 10 µg/g for Sb [11,12]. Another
example is represented by the limits for elements present as impurities in cosmetic products
imposed by the Government of Canada, which are 3 µg/g for As, Cd and Hg, 10 µg/g for
Pb, and 5 µg/g for Sb [11,13].

The safety of cosmetics means not only to avoid as much as possible the presence of
heavy metals, but also to ensure that the product has an adequate microbiological purity
and stability [14]. For this purpose, producers usually use preservatives such as parabens,
which are biodegradable and do not change the consistency or color of products. According
to different regulatory agencies such as the FDA and the European Chemicals Agency
(ECHA), parabens are considered safe, but several works report that a continuous use of
cosmetics containing this class of compounds can be harmful for the human body [2,15–18].

Other categories of compounds used in cosmetics for several purposes, such as UV
filters for their photoprotective action or microplastics for their texture-extending and
feel-modifying abilities, raise concerns both from the consumer health and environmen-
tal perspectives. For instance, in the marine environment, these chemicals can damage
fragile and precious ecosystems such as coral reef, causing a loss of biodiversity, and can
bioaccumulate in the consumed fish species, again endangering human health.

To address these health and environmental concerns, it is therefore necessary to
produce and use innovative, natural, and safe ingredients that have high biocompatibility
and biodegradability and are non-toxic. A class of materials that has all these requisites
is represented by calcium phosphates (CaPs), whose application in cosmetics is raising
interest and will be discussed and analyzed in detail in this review.

2. Calcium Phosphates

CaPs are a family of materials and minerals that constitute the inorganic component
of hard tissues in vertebrates (e.g., bones and teeth) and are also present in milk and blood
as the principal mineral of calcium [19,20]. Nowadays, the main application of CaPs is in
medicine, where they are used as biomaterials in orthopedics for regenerating or replacing
bone tissue thanks to their excellent biocompatibility, bioactivity and bioresorbability [21].
Synthetic CaPs can be recognized by the body as a sort of endogenous material due
to their chemical and structural similarity to the mineral phase of bone, and this is the
reason for their high biocompatibility. Indeed, in comparison to other materials used in
orthopedics, CaPs have a higher osteoconductivity and osteoinductivity, do not induce
immune responses or rejections, and can stimulate bone self-healing. In the last 50 years
CaPs were used as: (i) bone replacement as three-dimensional massive bioceramics or
scaffolds, (ii) as injectable self-hardening cements to fill bone defects for setting exogenous
implants, (iii) as filling material in soft bio-composites and hybrid biomaterials, or (iv)
as coating for metallic and polymeric protheses [22–26]. In the case of massive CaP
bioceramics, a limitation for their wider use in clinical application is related to their poor
mechanical properties. Pure CaPs are characterized by being fragile, as they have both low
impact resistance and low tensile stress (6 to 10 MPa), making them unsuitable for replacing
bone (which has a tensile strength of 50 to 150 MPa in the case of cortical bone) [21]. For
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these reasons, they can be used in the form of powder or cements combined with several
elements, such as Fe, Ag, Cu, Mg, Mn, Sr or Zn, or are reinforced with polymers to form
bio-hybrid composites [27–32]. One of the most successful applications of CaPs is as
coatings of metallic or polymeric implants that have poor osteoconductivity to improve
their integration with the bone [33–38]. The CaP coating can initiate a bioactive fixation of
the prothesis after surgery and increase the long-term activity of the implant, and at the
same time limit the fibrous tissue encapsulation around it. In addition, CaPs in the form
of nanoparticles (NPs) were recently proposed as innovative materials in nanomedicine,
to treat diseases not related to bone (i.e., cardiovascular diseases, cancer, etc.), harnessing
their superior biocompatibility for drug delivery applications [39–42]. One of the main
aims of the drug delivery systems is to convey a poorly bioavailable drug to the target
tissue using the capability of a nanomaterial to cross biological barriers and to avoid its
early clearance [43]. CaP NPs are interesting vectors for drug delivery since they can load a
high variety of bioactive molecules, thus protecting the therapeutic agent from degradation
in the biological environment.

As mentioned before, CaPs are widely present in nature and in particular as minerals in
vertebrate bones, mammalian teeth, and fish scales. Thus, CaPs cannot be only synthesized
by chemical reactions, but they can be also prepared in several ways from biogenic sources
such as eggshells, bones, and seashells (Figure 1). The conversion of these food industry
by-products to compounds with high added value, applying the principles of circular
economy, is nowadays a significant topic for social, environmental, and economic reasons.
CaPs from bones are commonly obtained by removing all the organic components by
thermal treatment [44], while CaPs from eggshells or seashells that are made of calcium
carbonate are usually prepared with a two-step process based on thermal treatment to
convert CaCO3 in CaO and subsequent precipitation with a phosphorus source [45].
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Irrespective of the application, all the functions of CaPs are tightly related to their
physicochemical characteristics, such as particle size, morphology, crystallinity, porosity,
density, composition, Ca/P atomic ratio, or pH stability range, and all these characteristics
can be tailored by modifying the CaP synthesis (Figure 2) [26,46,47]. In addition, different
CaP crystal phases can be prepared, which in turn have different morphologies, chemical
compositions, or structures [26,46,47]. In this section, the main proprieties of the four more
relevant CaP phases for cosmetic applications will be described.
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2.1. Amorphous Calcium Phosphate

Amorphous calcium phosphate (ACP) is a non-crystalline CaP phase and represents
the mineral precursor for bone and tooth formation in vertebrates [48,49]. As the other
CaP phases, ACP is bioactive, osteoconductive and has found application as bone repair
material in cements, for coatings of metallic or polymeric bone implants and as a drug
delivery platform [50,51]. In addition, being a non-crystalline phase, ACP is more soluble
than the crystalline CaPs and it can release a high amount of calcium and phosphate ions
in a short time span. This property has been harnessed in the dental field, leading to the
development of ion-releasing toothpastes containing ACP that trigger enamel and dentin
remineralization. Indeed, the high concentration of ions in the oral environment generated
by ACP-containing products induces the formation of a new mineral phase onto the dental
tissue, restoring the mineral loss caused by caries [52]. Commonly, ACP is obtained by a
wet precipitation in an aqueous environment, even though precipitations in ethanol or by
sol-gel processes were also reported [50]. In order to produce an amorphous product, it is
necessary to use high supersaturation conditions, additives, and fast precipitation times.
ACP does not have a precise stoichiometry, and on the basis of the precipitation conditions
its Ca/P molar ratio ranges from 1.18 to 2.50 [53]. ACP is highly unstable, and it easily
transforms into crystalline CaPs. This is due to the high structural similarity in the short-
range order of ACP with octacalcium phosphate (OCP) and hydroxyapatite (HA), and in
the presence of water or moisture the amorphous structure rearranges spontaneously to
form a crystalline lattice. The crystallization process is affected by many factors, such as
pH, temperature, humidity, and the presence of ions/additives [50,53]. As the superior
ion-releasing properties of ACP are lost with the spontaneous crystallization, many studies
were conducted to stabilize ACP in the long term to enhance its shelf-life. The most common
stabilizers of ACP are ions such as Mg2+, CO3

2− and P2O7
4−, as they hinder crystalline

lattice formation [54,55]. Otherwise, other common stabilizers are organic molecules
that attach to the ACP surface and inhibit the dissolution–reprecipitation mechanisms of
crystallization. Among them, the most successful stabilizers are casein phosphopeptide,
which is a milk protein, or citrate, which is a relatively abundant organic molecule of
bone [21,24,50,53,56–60].
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2.2. Hydroxyapatite

Hydroxyapatite (HA) has the formula of Ca10(PO4)6(OH)2 with a Ca/P ratio of 1.67,
is the most thermodynamically stable CaP phase in physiological conditions and is the
mineral phase of vertebrate bones, mammalian teeth, and fish scales. HA is characterized
by several features, such as superior bioactivity, osteoconductivity, non-toxicity, non-
immunogenicity, and biocompatibility in comparison to other CaPs [61]. These properties
are enhanced when HA is synthesized to have the same crystallinity, chemical composition,
ion doping, size, and morphology of the biogenic minerals, which in this case is defined as
biomimetic HA [61]. Usually, biological and biomimetic HAs are non-stoichiometric, con-
tain foreign doping ions in their hexagonal structure such as Na+, K+, Mg2+, Sr2+, Fe2+/3+,
Zn2+, CO3

2−, Cl−, or F−, as the HA structure is flexible, and can accommodate many
ions by the substitution of Ca2+, PO4

3−, or OH− ions [62]. Indeed, HA has been doped
with monovalent, divalent, and trivalent cations by substitution of calcium ions, and with
divalent or trivalent anions by substitution of phosphate ions; in addition, hydroxyl ions
can also be substituted with monovalent or divalent anions [62]. Furthermore, some dopant
ions can also be introduced in interstitial position of the crystal lattice. These ionic substitu-
tions can greatly alter HA properties, e.g., increase HA solubility, bioactivity, stability, or
impart additional capabilities such as magnetic sensitivity or luminescence [21,56,57,63,64].
A peculiar feature of HA is its pH-dependent water solubility, as it is stable in alkaline so-
lutions, poorly soluble at neutrality and soluble at acidic pH. Therefore, this pH sensitivity
can be harnessed for pH-triggered drug delivery applications, where a drug associated to
HA is released only when the material encounters an acidic environment, as in the cases of
inflammatory regions or in endosomes and lysosomes after cellular intake [42]. Finally, it
has also been demonstrated that HA nanocrystal size and morphology can significantly
affect its biocompatibility, bioactivity, and cell and tissue penetration capability. HA is
a tailorable material, and there is a wide array of methods for its preparation to obtain
different products, which were exhaustively reported in the work of Sadat-Shojai et al. [65].

2.3. Octacalcium Phosphate

Octacalcium phosphate (OCP) is a CaP with formula Ca8H2(PO4)·6.5H2O, and is
thought to be a precursor of biogenic HA in hard tissues of vertebrates [66]. Indeed, OCP
triclinic structure is very similar to the hexagonal structure of HA, as it is composed of
“apatitic layers” that have the same atomic arrangement of HA intercalated by “hydrated
layers” that contain water molecules [21,56,57,67–69]. As a consequence of this, OCP has
good osteoconductivity and it can convert into HA through a dissolution–reprecipitation
mechanism or a topotaxial conversion mechanism [67], and for these reasons it has found
successful application in bone-related biomaterials [21,56,57,67–69]. It has also been pro-
posed that the HA of bones is formed by conversion of an OCP precursor [67]. Synthetic
OCP can be obtained by wet precipitation at neutral or mildly acidic pH or by the hydroly-
sis of α-TCP or dicalcium phosphate [67]. Interestingly, the Ca/P molar ratio of OCP (1.33)
is variable and can change according to the quantity of calcium present in the structure.
Indeed, its structure could be both Ca-deficient (Ca/P 1.26), or it can include an excess of
calcium (Ca/P up to 1.48) [26].

2.4. Tricalcium Phosphate

Tricalcium phosphate (TCP) is characterized by the chemical formula Ca3(PO4)2 and
a Ca/P ratio of 1.50 [26]. TCP exists in two allotropic forms that have the same chemical
composition but different structure, density, and solubility: α-TCP and β-TCP. The latter
allotropic form is the more thermodynamically stable, but usually is further stabilized by
including magnesium ions into calcium ion vacancy. β-TCP has a lower interfacial energy
than HA, and for this reason, in aqueous ionic solutions, it can induce the precipitation
of an apatitic layer. Furthermore, it is osteoconductive and osteoinductive [70]. α-TCP
has similar properties, but it is more soluble and reactive than β-TCP [21,56,57,63,71,72].
Usually, TCPs are obtained by the high-temperature solid-state reaction of solid Ca and
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P precursors (e.g., calcium carbonate and ammonium hydrogen phosphate), or by the
thermal transformation of CaP precursors with a Ca/P molar ratio equal to 1.50 that can
be calcium-deficient hydroxyapatite or ACP. Depending on the reaction temperature, a
different allotropic form can be produced. Indeed, to obtain β-TCP, the CaP precursors
are calcined at 700–800 ◦C, while to achieve α-TCP the process temperature increases
up to 1200 ◦C. In addition, α-TCP could also be prepared by thermal transformation
from crystalline β-TCP, and this is the most direct and simplest approach to produce α-
TCP [71,73–75]. The main medical application of TCP, in particular α-TCP, is as self-setting
CaP cements. Cements are formed when TCP or a blend of CaP powders are mixed with
an aqueous solution, obtaining a viscous paste that can be injected in the bone defect and
progressively hardens in situ, restoring mechanical resistance [76]. The hardening is due to
the hydrolysis of TCP that recrystallizes into HA, as the newly formed crystallites interlock
with one another during growth, forming a hard conglomerate [77].

3. Applications of Calcium Phosphates in Cosmetics

In the last few years, CaPs have been used for different applications besides the med-
ical field, such as controlled-release fertilizer and bio-stimulant in agriculture, catalyst,
anticorrosive material for paintings, flame retardant agent, etc. [78–81]. Indeed, the excel-
lent properties of CaPs that made them a versatile material in medicine can also be useful
in the cosmetics field. First and foremost, the excellent biosafety of CaPs allows one to
substitute cosmetic ingredients raising health concerns with safer alternatives. In addition,
the compositional flexibility and high variability of CaP properties permits one to design
materials that can fulfil different functions requested by the cosmetics industry.

The purpose of this review is to provide an overview of the state of the art of the use
of CaPs as cosmetic ingredients and to highlight future challenges and trends in this topic.
In the next sections, we will report the importance of CaP phases in cosmetics as innovative
and safe materials and the research works in this field. The main applications of CaPs as a
cosmetic ingredient reported in the scientific literature that we have found are in oral care,
skin care, hair care, and deodorants (Figure 3).
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As a matter of fact, there is a rich body of literature on patents about CaPs for cosmetic
applications and, for this reason, the most significant patents in the field are also reported
and the general trends are discussed. In particular, we performed a patent search with
the open database Espacenet of the European Patent Office [82], and subsequently we
refined the result according to the flowchart reported in Figure 4. Briefly, we searched all
the patents that present the combination of terms between the most relevant CaP phases
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(HA, ACP, TCP, OCP, and the generic term “calcium phosphate”) and the broadest terms
for the cosmetics industry (cosmetics, oral, hair, sunscreen, skin care, deodorant), obtaining
1635 hits from the query. Afterward, we refined the results by eliminating the patents
that were not filled in English and for which there is not an official English translation, or
were already expired, thinning down the list to 950 patents. Finally, we have manually
sorted the patents excluding the ones that were not appropriated, that is to say the ones
where CaP was not a key element to the innovation but just a generic ingredient, and the
ones that had only medical applications. In this way, the final number of relevant patents
was 99. The patents were divided in the same categories as the research articles reported
above, obtaining 61 patents for skin care materials, 7 for deodorant materials, 29 for dental
whitening material, and 2 for hair care materials.
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3.1. Oral Care

Oral care is a sector that lies in between health and cosmetics. CaPs are widely
known for their efficacy as remineralizing agents, desensitizing agents, and anti-caries
materials [83,84]. However, these medical applications are not considered in this work.

The tooth is composed of an outer mineral layer, the enamel, that covers an inner layer
of dentin. Both enamel and dentin are mineralized tissues and are mainly composed of HA
and collagen. In enamel, HA is more crystalline and the organic matter is less than 1 wt.%,
while in dentin HA is less crystalline and organic molecules account for ca. 20 wt.% [85].
Intrinsic tooth color is due to enamel light absorption and scattering; as HA is white,
natural enamel has a white color with partial translucency [86]. On the other hand, the
higher organic matter content of dentin gives it a yellowish taint. The progressive wear of
enamel with age makes it thinner and more translucent, allowing dentin to be more visible
and darkening the tooth color [87]. Apart from this naturally occurring phenomenon,
teeth can also change color due to intrinsic or extrinsic stains. Intrinsic stains take place
inside the tooth, either in enamel or in dentin. Commonly, these stains are associated
to pathologies such as fluorosis (excessive fluoride intake at a tender age) or are due to
amalgam fillings or blood from pulpal hemorrhages that penetrate into dentinal tubules
and cause a dark color [88,89]. Extrinsic stains are due to the adsorption of organic and
inorganic chromophores onto enamel and exposed dentin, especially on rough surfaces that
are difficult to clean, or are incorporated into calculus (a pathologic calcification formed
by plaque), or into the bacterial biofilm, which is an aggregate of bacterial cells embedded
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within a matrix of extracellular polymeric substances [89]. Organic chromophores are
colored molecules such as tannins or nicotine from red wine, coffee, smoke, or tea, while
inorganic chromophores are colored metal ions [89,90]. Moreover, some oral care products,
such as chlorhexidine or SnF2, can induce an indirect staining after long-term use [90].

Several products for tooth whitening exist nowadays on the market and can be divided
into two categories: (i) bleaching agents and (ii) abrasives [88,91,92]. Bleaching agents are
usually in the form of gels that contain hydrogen peroxide or carbamide peroxide, and their
effect is to produce reactive oxygen radicals that oxidize the chromophores, make them
colorless and detach them from the tooth’s surface [93]. Abrasives are insoluble mineral
ingredients, usually included in toothpastes, that remove the extrinsic stains by mechanical
abrasion [94]. Common abrasives are silica, calcium carbonates, alumina, and perlite [95].
Abrasives were shown not only to remove stains, but also to prevent stain formation by
polishing the teeth and thus forming a smooth surface that adsorbs less chromophores [96].

Whitening agents present drawbacks. The strong oxidation of bleaching agents
degrades the organic matrix of enamel and dentin, while their acidic components damage
the mineral component, creating porosities, grooves, and micro-cracks in the enamel,
reducing its mechanical resistance, and causing a higher susceptibility to deformation
and fracture [97–99]. Furthermore, the increased roughness of bleached enamel makes it
more prone to new extrinsic staining and/or biofilm adhesion [100,101]. In addition, after
bleaching, people commonly suffer tooth sensitivity due to opened dentinal tubules [102].
Finally, bleaching agents can also damage the bond between resin composites and dental
hard tissues, making them more at risk of failure [103,104]. Regarding abrasives, their
action is limited by the accessibility of the toothbrush to stained areas of the teeth, and
less accessible sites can remain stained [92]. Furthermore, the prolonged use of very hard
abrasives can give a significant wear of enamel and dentin [105,106]. Therefore, there is the
need of innovative whitening agents to overcome the limitations of current materials. CaPs
can fill this role, and several research works have already proved this [107–118]. CaPs as
whitening agents have been proposed as innovative abrasive agents, as carrier of peroxides,
or as adjuvant of bleaching agents.

In this regard, the distinction of CaPs between cosmetic ingredients and therapeu-
tic ingredients is labile because CaPs have a two-fold whitening action: (i) as an abra-
sive, to remove the stains by mechanical friction, and (ii) as a remineralizing ingredient,
to restore the enamel structure and improve light scattering and absorption, leading
to teeth brightness and whiteness [109,112,116]. In addition, it was demonstrated that
the remineralization action of CaPs makes the enamel surface smoother and less prone
to staining [113,116]. The whitening effect of CaPs has been studied in vitro [116], ex
vivo [109–115], and in vivo [107,108,115,116]. The majority of the works employ HA as
CaP phase [107–116], as HA is the natural mineral phase of the teeth, while some other
works also investigated the effect of TCP [109,111], or mixtures of HA, ACP, and pyrophos-
phates [113]. However, based on the published papers, it is not possible to assess whether
a CaP phase is more efficient than another as a whitening agent. In addition, these works
have studied the whitening effect of CaPs as a raw material [109,110,113,115], as a proto-
type gel or toothpaste formulation [112,116], or as a commercial product [107,108,111,114],
making it very difficult to discriminate the influence of HA on the whitening effect from
other ingredients. Furthermore, the analysis of tooth color is problematic because in vivo
assessment is subjective and made by comparison with a color scale, while ex vivo is
strongly dependent on the variability of the tested teeth [119]. Taking into account these
aspects, it is not possible to compare the results between different works. The work of
Niwa et al. [116] dated back to the early 2000s is the first to propose the use of HA as a
whitening agent. In this work, the abrasiveness of toothpastes containing HA onto sintered
HA blocks that mimicked enamel was studied, and the brightness and color of the teeth of
people that used the toothpastes for 4 weeks were monitored. It was found that the wear
caused by HA toothpastes was limited, while a significant increase in brightness and white-
ness occurred, with the effect being dose-dependent on HA content in the product. From
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these results, it was postulated that the whitening effect of HA (and other CaP phases) is
mainly due to the remineralization of enamel than by its abrasion. In this respect, the study
of Dabanoglu et al. [109] has shown that HA or TCP particles attach to the enamel surface
and are not removed even by the shear forces of brushing. This induced an improvement
of color that increased at every treatment, becoming appreciable also with the naked eye
after more than four treatments. The concept was further deepened by Lee et al. [113],
who compared the whitening effect, surface attachment, and enamel remineralization of a
commercial carbamide peroxide bleaching gel with those of a remineralizing gel containing
three non-bleaching ingredients: HA, ACP, and tetrasodium pyrophosphate (TSP). The
tested gels had a concentration of active ingredients that ranged from ACP 3.0%, HA 2.0%,
and TSP 1.0% to ACP 0.3%, HA 0.2%, and TSP 0.1%. It was found that both the bleaching
and the remineralizing gel generate a significant improvement of whiteness in comparison
to the control, and that the remineralizing gel with the highest content of HA, ACP, and
sodium pyrophosphate has an efficacy that was comparable to the carbamide peroxide gel.
On the other hand, the bleaching gel induced a strong demineralization of enamel both
on the surface and in depth (up to 60 µm), while the remineralizing gel restored enamel
and improved its smoothness (Figure 5). Unfortunately, in this work the single role of HA,
ACP, and sodium pyrophosphate was not studied and therefore it is not possible to assess
the contribution brought by every single ingredient to the final effect.
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Figure 5. Scanning electron microscopy (SEM) micrographs of enamel surface treated with (A):
control; (B): bleaching with 10% carbamide peroxide; (C–F): whitening treatment with different
mixtures of HA, ACP, and tetrasodium pyrophosphate (TSP); (C): ACP 0.3%, HA 0.2%, and TSP 0.1%;
(D): ACP 0.75%, HA 0.5%, and TSP 0.25%; (E): ACP 1.5%, HA 1.0%, and TSP 0.5%; (F): ACP 3.0%,
HA 2.0%, and TSP 1.0%. (Reprinted from [115]).

In the works of Mellgen et al. and Qin et al. [117,118], CaP microspheres were
loaded with hydrogen peroxide and/or carbamide peroxide. The CaP microspheres were
prepared by a hydrothermal process in the presence of strontium and magnesium ions and
were proved to be spherical hollow particles with a diameter between 500 and 1000 nm
constituted by Mg-doped TCP. These spheres adsorbed ca. 15 wt.% of carbamide peroxide
(the amount of adsorbed hydrogen peroxide is not disclosed) and were found to slowly
release it when incorporated into a gel formulation, inducing the whitening of the ex vivo
tooth (Figure 6). The authors claim that this formulation has the advantage of having a
sustained release of peroxide on the tooth’s surface over time in comparison to commercial
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bleaching agents due to the attachment of the microspheres on the enamel surface. At
the same time, the microspheres could also be able to remineralize the structural damage
caused by the bleaching.
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CaPs have also found successful application as an adjuvant of common bleaching
agents [120–124]. In this case, CaPs have an indirect action, as the whitening is generated by
the bleaching ingredients and the purpose of CaPs is to remineralize the enamel damaged
by the bleaching. The majority of works reporting on this application of CaP ingredients
employ casein-phosphopeptide-stabilized ACP (CPP-ACP) [120–122,124], as this material is
already commercially available and was proved to have a strong remineralizing action [59],
even though in one study HA was also used [123].

Finally, all the articles on this topic proved that the presence of CaPs did not hinder
the whitening action of the bleaching agents but allowed such agents to overcome their
drawbacks. Indeed, the combination of CaPs with bleaching agents improved tooth
whiteness and at the same time prevented enamel demineralization, hardness loss, tooth
sensitization, and surface roughening [120–124].

The excellent whitening effect of CaPs reported in scientific literature is reflected by
the high number of patents comprising CaPs as abrasive and bleaching agents reported
in Table 1. In general, about half of the patents protect toothpaste or gel formulation
containing CaPs [125–131], while the other half protect CaPs as an ingredient for generic
whitening products [132–147]. This indicates that there is an interest in the use of CaP both
as a commercial product and as refined materials to be incorporated into other products.

Indeed, the use of CaP as tooth whiteners has the lion’s share, with 29 registered
patents that comply with our search criteria. The majority of these patents have been de-
posited in the last decade and derive from cosmetics companies [125–130,132–152], while on
the other hand for two patents the inventors belong to universities [131,153]. Similar to the
scientific literature, almost all of these patents protect the use of CaPs as a whitener in virtue
of their remineralizing and abrasive action [125–132,136,137,139,141–143,146,148,152], al-
though many of them do not disclose whether the abrasive effect or the remineralizing one
is more relevant. An interesting application is reported in a patent by Mectron SPA [137],
where the CaP powder is used for the air-polishing of teeth. There are also several patents
on the use of CaPs in synergy with bleaching agents [135,138,144,147,150,153]. In these
patents, the bleaching action is exerted by peroxides [135,141,143,144] but also by en-
zymes [138,147,150,153], where this latter case was never reported in scientific papers.



Materials 2021, 14, 6398 11 of 37

Apart from these two categories, some patents propose a whitening effect through the
formation of a CaP coating onto teeth by using varnishes or polymers [133,134,140,149]. In
this case, the function of CaP is to impart a white color that should be as close as possible
to the natural color of teeth. The coating-forming agents can be varnished as the copal
resin (natural tree resin) [149], or polymers such as polyvinylpyrrolidone [133,134,140]
and polyvinylpyrrolidone/vinyl acetate copolymers [140]. These ingredients are dissolved
together with CaPs in a volatile solvent, and when the solvent evaporates, they form a film
onto enamel with CaP particles embedded in it. Therefore, in these patents, the enamel is
actually not restored but only varnished with a white coating.

It is worth noting that all patents specify HA as the only materials of the invention,
except for three patents [132,141,143] claiming that any CaP phase is suitable for their
invention. The prevalence of HA over the other CaP phases is explained by the fact that it
is the same mineral phase of enamel, and thus has a better remineralizing action due to its
biomimetism. Interestingly, the patent [133] protects a method to directly produce HA onto
the tooth’s surface by using TCP and hydrogen phosphate ions. All patents about tooth
whitening do not involve ion-doped HAs, even if in literature the effect of ion substitution
on HA for oral care application has been extensively studied. In this regard, only the
patent [126] mentions the use of a strontium-doped HA. The patent [151] is interesting
because it reports the invention of a toothbrush bristle containing HA and antibacterial ions
for both tooth whitening and anti-caries action. In comparison to literature, patents on CaPs
for dental whitening focus more on the remineralizing and stain removal effect than on the
use of bleaching agents, suggesting that the former approach could be more appealing.

Table 1. List of patents about calcium phosphates in oral care.

Ref Title Applicants Publication
Year Description

[132] Set for tooth bleaching Lion Corp 2000
Product for tooth whitening by stain

abrasion. CaP: HA, fluorine or carbonate
doped HA, TCP, OCP

[133] Manufacturing method of
hydroxyl apatite Nippon Zettoc Co., Ltd. 2001 Coating varnish for tooth whitening.

CaP: TCP + hydrogen phosphate ions

[140] Rapid temporary tooth whitening
composition Colgate Palmolive Co 2005 Adhesive for tooth whitening by HA

adhesion. CaP: HA

[125] Dentifrice composition Sangi Co., Ltd. 2005 Toothpaste for tooth whitening.
CaP: HA

[141] Dental whitening compositions Discus Dental LLC 2006

Product for tooth whitening by stain
abrasion and for desensitization and

remineralization.
CaP: HA, TCP, OCP

[142] Instant tooth whitening with
silicone resin and silicone adhesive Colgate-Palmolive Company 2006 Product for tooth whitening.

CaP: HA

[143] Dental Whitening Compositions Discus Dental LLC 2008

Product for tooth whitening by stain
abrasion and for desensitization and

remineralization.
CaP: HA, TCP, OCP

[131] Pastes for improving tooth using
micro hydroxyapatite powders

Pusan National University Cooperation
Foundation Ryu Su Chak 2009 Toothpaste for tooth whitening.

CaP: HA

[148] Oral composition Sangi Co., Ltd. 2005
Product for tooth whitening and for

remineralization.
CaP: HA

[149] Dental colorant
Zakrytoe Aktsionernoe Obshchestvo
Opytno-ehksperimental’nyj Zavod

“Vladmiva”
2011 Resin varnish for tooth dyeing.

CaP: HA

[144] Teeth whitening composition and
method OCSLabo—Oral Care Science Lab Sagl 2011 Product for tooth whitening by bleaching.

CaP: HA

[145] Compositions and methods for
altering the color of teeth Colgate Palmolive Co 2007 Product for tooth whitening by coating.

CaP: HA
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Table 1. Cont.

Ref Title Applicants Publication
Year Description

[126] Total effect toothpaste and
preparation method thereof Yiwu Aishang Commodity Co., LTD. 2011 Toothpaste for tooth whitening.

CaP: strontium doped HA, TCP

[150]

Mineral-enzyme complex for
fortifying and whitening tooth

enamel, oral hygiene composition
and toothpaste

Belous, Elena Yurievna; Galimova, Anna
Zufarovna; Maltabar, Svetlana

Alekseevna; Obshchstvo S
Ogranichennoj Otvetstvennostyu

“Splat-Kosmetika”

2014
Product for tooth whitening by bleaching

and for remineralization.
CaP: HA

[151] Brush structure with
health-care effect

Nakata Tomoko; Tanaka Fumiko; Tanaka
Kimiko 2014

Toothbrush bristle with whitening and
antibacterial ingredients.

CaP: HA

[146]
Tooth-whitening compositions

comprising silicone polymer and
methods therefor

Colgate Palmolive Co 2005, 2014 Product for tooth whitening.
CaP: HA

[127]

Toothpaste for simultaneously
cleaning, whitening, and restoring
teeth and preparation method of

toothpaste

Masson Group Co., Ltd. 2013
Toothpaste for tooth whitening by

abrasion and remineralization.
CaP: HA

[128] Dentifrice composition comprising
sintered hydroxyapatite Glaxo Group Limited 2015

Toothpaste for tooth whitening by
stain abrasion.

CaP: HA (sintered)

[152]
Natural bacteriostatic tooth

whitening powder and
preparation method thereof

Qingdao Bright Medicine Hall Medical
Treatment Co., Ltd. 2016 Powder for tooth whitening by stain

abrasion. CaP: HA

[153] Whitening gel composition based
on natural agents

Universitatea “Babes Bolyai”—Institutul
de cercetari in chimie “Raluca Ripan”

Cluj-Napoca
2017 Gel for tooth whitening by bleaching.

CaP: HA

[147]

Mineral-enzyme complex for
strengthening and whitening tooth
enamel, oral hygiene composition,

and toothpaste

Elena Yurievna Belous, Svetlana
Alekseevna Maltabar, Anna Zufarovna

Galimova
2017

Product for tooth whitening by bleaching
and for remineralization.

CaP: HA

[134] Tooth coating agent and
compositions thereof Medice Co., Ltd. 2018 Product for tooth whitening by coating.

CaP: HA

[135]
Tooth cold-light whitening

composition and application
thereof

Jilin dengtaike Dentistry material Co.,
Ltd. 2018

Product for tooth whitening by bleaching
and for remineralization.

CaP: HA

[129] Whitening toothpaste Foshan Yuan Po Xin
Technology Co., Ltd. 2018 Toothpaste for tooth whitening.

CaP: HA

[130]

Whitening tooth paste capable of
effectively removing stains on
teeth and preparation method

thereof

Anhui Wanchun Daily
Chemical Co., Ltd. 2019 Toothpaste for tooth whitening.

CaP: HA

[136] Dental care product for tooth
whitening Credentis AG 2016

Product for tooth whitening by stain
abrasion and for desensitization and

remineralization.
CaP: HA

[137]

Method for teeth cleaning by
means of a composition in the

form of powder based on
hydroxyapatite

Mectron SPA 2019
Product for tooth whitening by

air polishing.
CaP: silica particles containing HA

[138]

Mineral-enzyme complex for
strengthening and whitening tooth
enamel, oral hygiene composition,

and toothpaste

Obshchestvo S Ogranichennoj
Otvetstvennostyu “Splat-Kosmeticka” 2014

Product for tooth whitening by bleaching
and for remineralization.

CaP: HA

[139]
Pearl whitening and refreshing

toothpaste and preparation
method thereof

Henan Shuiantinglan Cosmetics Co., Ltd. 2020
Product for tooth whitening by

stain abrasion.
CaP: HA
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3.2. Skin Care

The skin is the largest body organ, and its key role consists of protection against
several harmful environmental agents, such as pathogens, chemical threats, radiations,
temperature changes and dehydration. The skin is composed of several components,
acting as (i) a physical barrier, which consists of the stratum corneum, (ii) a chemical or
biochemical barrier that consists of fatty acids, antimicrobial peptides, and macrophages,
and (iii) an immunological barrier composed by humoral and cellular constituents of
the immune system. The stratum corneum serves as the principal barrier against per-
cutaneous penetration of chemicals and microbes and is capable of strong mechanical
forces. Furthermore, it is involved in the transepidermal water loss, consisting of the
regulation of the water loss from the body to the surrounding atmosphere via diffusion
and evaporation processes [154–156]. To ensure excellent skin conditions, it is necessary
to consider, control, and optimize several skin parameters, such as surface texture, color,
and physiologic properties (hydration, sebum content, and surface acidity). Furthermore,
it was proved that there are also interactions between skin state, diet, and the content of
nutrients in blood serum. Indeed, Boelsma et al. reported that changes in diet and intake
of nutrients may affect skin conditions [157]. In general, macro and micronutrients such as
vitamins or minerals have a relevant importance for skin health and appearance [158–160].
For this reason, micronutrients are used as therapeutic agents for skin diseases and as
ingredients in cosmetics, which nowadays are designed not only to beautify the skin, but
also to improve skin health [161–163]. The beautification of skin is referred to as make-up,
while the improvement of skin health is achieved by skin care routines (e.g., daily cleaning,
scrubbing, and hydration). Most of the works in this field—which will be discussed in
the present section—are focused on the use of CaPs as: (i) sunscreens, i.e., products that
protect from solar UV radiation, (ii) cleansers, which are products that ensure skin health
by removing sebum or contaminants and promoting normal exfoliation, and (iii) make-up
products, which beautify the skin and hide topical disorders.

A total of 61 patents focused on CaPs in skincare cosmetics were deposited between
2001 and 2021. These are divided as follows: 10 patents on sunscreens, 17 on skin cleansers,
and 30 on make-up formulations. However, there are four patents on the use of CaPs as
skin care material that do not fall into any of the above categories and are very different
from each other (Table 2) [164–167]. Two of them employ CaPs as a vehicle to deliver
nutraceuticals to the skin [165,167], as CaPs are widely known to be efficient carriers to
deliver biomolecules into cells and tissues. Contrastingly, in patent [164], HA is used to
stabilize and deliver the ubiquinone molecule (coenzyme Q10), a nutrient widely used in
cosmetics that suffers of poor thermal stability. In the majority of these patents, the full
chemical composition of the materials is not disclosed and generally are organic–inorganic
hybrids of CaP and polymers, such as HA and polyhydroxyalkanoates [165], HA and
polycarbonates [167], and CaPs and poly(L-dihydroxyphenylalanine) [166].

3.2.1. Skin Protection—Sunscreen (UV Protection)

Natural sunlight consists of a wide spectrum of electromagnetic waves. The solar
ultraviolet (UV) radiation that reaches the earth is composed of 5–10% of energetic UVB
(290–320 nm) radiation and 90–95% of UVA (320–400 nm). The latter is less energetic than
UVB, but it penetrates deeper into the skin due to its longer wavelength. The exposure
to solar radiation, especially UVA and UVB, can cause skin diseases such as sunburn,
erythema, photoaging, wrinkles, altered pigmentation, or even skin cancer [168,169]. To
prevent these diseases in cases of strong or prolonged sun exposure, it is necessary to
use sunscreens to protect the skin and to reduce the risks of melanoma and other types
of cancer [170,171]. As reported by Pirotta in the book of Tovar-Sanchèz et al. [172],
“sunscreens reflect, absorb, and scatter both UVA and UVB to provide protection against
both types of radiation”. Usually, commercial sunscreens contain different UV filters to
obtain a formulation that is effective at protecting from the whole UV range. Serpone et al.
and Egambaram et al. published two review papers that resume a discussion of the most
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common topical sunscreen agents used nowadays and consider such agents’ effect on skin,
the current concerns on their health and environment safety, and future perspectives in the
sunscreen field [173,174]. Generally, UV filters are categorized in two classes: (i) organic or
chemical filters, capable of absorbing UV radiation, and (ii) inorganic or physical filters,
which reflect or scatter incident radiation. Both kinds of UV filters can cause problems for
one’s health and the environment, which are widely reported [175–178]. Indeed, filters
might cause photo-allergies, phototoxic reactions, and skin irritations. Moreover, the high
refractive index of inorganic filters decreases the aesthetic value of sunscreens due to
the unnatural white color acquired by the skin after application [179,180]. To solve these
drawbacks, inorganic filters are frequently used in a micro- or even nano-sized form, but
this latter form might cause the penetration of the UV filter into the skin, causing skin
allergies or irritation [181,182].

Table 2. List of patents about calcium phosphates used to aid the delivery of biomolecules to skin.

Ref Title Applicants Publication
Year Description

[164] Ubiquinone-containing composition Sangi Co 2007
Base material for ubiquinone

stabilization.
CaP: HA

[165]

Compositions comprising polyesters of
biological origin and biocompatible

inorganic compounds, and uses thereof
in the cosmetics field

Bio On SpA 2019
Base material for delivery of

ingredients to the skin.
CaP: HA composite with polymers

[166]

A pH hybrid nanoparticle comprising
calcium phosphate a preparation

method thereof and a smart delivery
vehicle for loading and delivery of

bioactive agents

University-Industry
cooperation group of

Kyung Hee University
2019

Product for skin.
CaP: non-disclosed composite

particle with CaP and polymers

[167]

Compound composed of aliphatic
polycarbonate and inorganic compound
and application of compound in related

fields of cosmetics

Zhongkai University of
Agriculture and

Engineering
2020

Base material for delivery of
ingredients to the skin.

CaP: non-disclosed composite
particle with HA and polycarbonate

Titanium dioxide (TiO2) and zinc oxide (ZnO) are the most used inorganic UV filters.
These filters can be particularly dangerous when they are in nano-sized form due to their
photocatalytic properties. Indeed, under sunlight irradiation, the photocatalytic process
generates free radicals or other reactive species that could cause skin damage or long-term
illnesses, and this can occur even if these NPs are coated by an inert oxide layer [183–190].
However, the discussion about the dangerousness of these inorganic UV filters is still
open, as despite the recent concerns on their safety, TiO2 and ZnO were proposed by the
FDA as the only two Generally Recognized As Safe and Effective (GRASE) ingredients for
sunscreens, prompting the need of more research on the topic of percutaneous absorption
and the health effects of UV filters [191].

Regarding organic filters, a recent review by Narla et al. about the last FDA results
confirms the high danger level of some filters for both humans and the environment [192].
Several studies show that UV filters contaminate almost all water sources around the
world, and the removal of these substances by using common wastewater treatment
techniques is very difficult [176,193]. Sunscreen pollution in a marine environment brings
serious consequences in a coastal ecosystem. It was estimated that 14,000 tons of UV filters
are released in coral reef areas each year, leading to the coral bleaching phenomenon, a
consequence of UV filter toxicity that causes the death of the coral organism by photo
oxidation with the production of reactive oxygen species (ROS), by endocrine disruption
and by DNA damage [194].



Materials 2021, 14, 6398 15 of 37

To overcome these problems, alternative and effective sunscreens should be developed.
The requisites of the ideal sunscreen should be broad protection over UVA and UVB, non-
toxicity, no photocatalytic effects, and environmental safety. In recent years, HA has been
proposed as a safe sunscreen ingredient, and the interest in CaPs for this application is
growing [195,196]. In the literature, there are several examples that report the preparation
of HA as a safe inorganic sunscreen ingredient to replace ZnO and TiO2 [197–211]. Indeed,
it was found that HA shows not only non-toxicity and biocompatibility properties, but
also screening capability, high dermal tolerance, and a lower whitening effect than other
inorganic sunscreen agents. HA can be either synthetic or can be obtained from natural
sources. In the next sections, the use of synthetic or natural HA as a sunscreen ingredient
will be described. However, the main problem of both synthetic and natural CaPs for
sunscreen application consists in their intrinsic UV absorption limit, which is related to
the electronic structure. In fact, CaP has optical absorption only in the range from 200
to 340 nm with a strong band below 247 nm, and it depends on the thermal treatment
carried out on it [212], but by introducing foreign elements into the CaP crystal structure
as dopants it is possible to improve their limits in the adsorption. The addition of metal
cations into the HA structure is allowed by a cation exchange reaction with the calcium
ions on the surface of the material. In the literature, there are many articles that describe the
differences between the absorption spectrum of doped and undoped CaPs, allowing the
material to absorb in the range from UVB to UVA. In the next sections, several examples
regarding the advantages of synthetic and natural HA also doped with other elements or
transition metals to improve UV protection will be described.

Synthetic Calcium Phosphates as Sunscreens

As discussed thoroughly before, one of the major advantages of CaPs consists in the
easy possibility of controlling and tuning the chemical and physical properties varying the
synthesis parameters, thus making them suitable as sunscreen ingredients [213]. In their re-
search, Amin et al. studied a sunscreen system based on rod-like nanosized monoclinic crys-
talline HA modified by ascorbic acid (AA) and stabilized with poly(vinylpolypyrrolidone)
(PVP). This work aimed to prepare an advanced sunscreen that harnesses the UV optical
absorption of HA and AA, and at the same time is able to scavenge the dangerous ROS
due to the presence of AA [197]. The authors observed a significant decrease in the level
of intracellular ROS of cells treated with a different concentration of the nanocomposite.
Moreover, this material showed absorption peaks at 225 and 250 nm that represent the blue
shift of the absorption of pure HA at 247 nm and of AA at 262 nm, respectively. The blue
shift confirmed the correct conjugation between HA, AA and PVP. Morsy et al., instead,
developed a multifunctional hydroxyapatite–chitosan (HA–chitosan) gel that works as
an antibacterial sunscreen [198]. Despite the capability of protecting the skin from UV
exposure due to its reflectivity and good opacity, HA does not show any antibacterial
activity. To prevent side effects such as erythema, blisters, and pimples caused by the solar
UV radiation, this work proposed the use of chitosan as an anti-bacterial natural compound.
They noticed that the multifunctional gel exhibited optical absorption in the ultraviolet
(254 nm) and showed a significant inhibitory effect on the growth of multidrug-resistant
bacterial colonies.

Finally, to improve the UV absorption of HA-based materials, a cation exchange
between calcium and other transition or metallic elements has been proposed. An example
is Fe3+ that is largely used as dopant in HA and, as other elements, it could lead to an HA
lattice contraction or extension depending on the iron concentration and on the mechanism
of iron insertion [214,215]. In addition, as a result of the exchange between Fe3+ and
Ca2+ the Ca/P ratio decreases showing the formation of a calcium-deficient HA [201].
The addition of Fe in HA improves the optical properties of the material; in particular, it
shows a higher UV absorption over the whole UV range [202–204]. In addition to iron,
in the literature are reported articles in which the influence of Mn2+ and Zn2+ in the
photo-physical properties of HA using different methods of production are studied. De
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Araujo et al. evaluated the optical properties of HA or β-TCP doped with these latter
ions, but also the effect of Cr3+, Zn2+, and Fe3+ in the HA structure [206,207]. The authors
evaluated the optical absorption of pure β-TCP and β-TCP doped with Zn2+ and Mn2+,
and they concluded that β-TCP cannot be used as an ingredient in sunscreens because it
did not absorb in any region of the solar spectrum. They observed that the introduction
of Cr3+, Fe3+, Zn2+ and Mn2+ generates different absorption bands in comparison to pure
HA, which absorption band presents a maximum at 207 nm. In particular, the addition of
Fe3+ and Cr3+ allowed for the enlargement of the HA absorption spectrum from the UV to
visible region, even though this could induce the generation of a colored film of sunscreen.
Fortunately, this problem could be resolved by optimizing the cosmetic formulation and
providing a good dispersion of the ingredient on the skin, giving a transparent appearance
when applied. In summary, the authors reported the successful production of doped HA
with suitable optical absorption that could be used as an active ingredient in sunscreens.
The papers of De Araujo et al. have inspired more studies about the comparison between
doped HA and pure HA structures for sunscreen applications [208,209]. Eventually, another
element that was incorporated to modify the UV properties of HA is silver. In their research,
Pyo et al. reported the preparation of silver-doped HA (Ag-HA) NPs and the study of their
blocking capability of UV and visible radiation. They observed that the addition of Ag
significantly increased both UV and visible absorption compared with pure HA [211]. Ag+

and Zn2+ are widely known as ions showing an antibacterial effect even when added to
CaPs, but this feature was not evaluated in the papers about sunscreens reported above.
Therefore, it is certainly of interest to further study the effect of CaPs doped with Ag+ and
Zn2+ as a multifunctional material with antibacterial and sunscreen abilities.

Natural Calcium Phosphates as Sunscreens

Sunscreen is the only cosmetics sector where, according to scientific literature, CaPs
from natural sources were also used. All of them come from fish industries, as they pro-
duce large amounts of by-products every year; therefore, the CaP production from fish
by-products for different applications is widely studied because it has great relevance
in terms of the benefit for both the environment and the economy of the industrial sec-
tor [65,216–218]. An example is reported by Hernandez-Cocoletzi et al. that developed
a system based on HA achieved from fishbone waste in order to absorb heavy metals
from aqueous effluents [219]. Granito et al. exploited the high potential of this kind of
HA from natural sources in biomedicine application due to the intrinsic biocompatibility
of the material [220]. Furthermore, Mohd Pu’ad et al. provided an interesting review
about several methods to synthetize HA from natural sources, including the marine ones,
which are: thermal treatment, alkaline hydrolysis, wet precipitation or mechanochemical
processes [221]. Therefore, in recent years, the use of HA from marine sources as sunscreen
materials has received increased interest [199,200,222]. Cunha et al. reported the prepara-
tion and characterization of films made of chitosan and Fe-modified HA of marine origin.
They noticed excellent UV-absorbing properties, antibacterial activity, and non-cytotoxicity.
This material could be used for wound dressing, because it reduces bacterial infection while
protecting wounds from UV exposure [205]. Another example is the work of Ghazali et al.,
which reports the preparation of an active sunscreen ingredient from clamshells by substi-
tuting calcium ions of HA structure with Fe3+ or Mn2+ [210]. The authors characterized the
materials through X-ray diffraction, infra-red spectroscopy, and UV-visible spectrometry,
and they determined the capability of samples to absorb UV light. They noticed that the
substitution of calcium ion with Fe3+ and Mn2+ increased the absorption values of pure
HA because these dopants can reflect UV light. Therefore, they highlighted an increase in
the sun protection factor (SPF) of emulsions prepared with Fe-HA and Mn-HA compared
to the emulsion of pure HA.
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Patents about Calcium Phosphates as Sunscreens

Overall, the use of CaP as an ingredient in sunscreen products has recently gained
interest, as shown also by the production of patents. Indeed, there are 10 deposited patents
about CaP products with a sunscreen effect, and most of them were deposited in the last
5 years (Table 3). All patents protect the preparation of a raw ingredient that adsorbs
or scatters UV radiation and can be incorporated into sunscreen formulations [223–232].
In some cases, CaPs are directly responsible for UV shielding [223–225,227–231], while
in other cases their function is to boost the efficiency of an organic filter [226,232]. In
comparison to other patents described herein, for sunscreen application there is a wide
variety of CaP phases: HA [224,226], ion-doped HA [228–231], mixtures of HA and metal
oxides [228,230,231], composites of HA with organic molecules [232] or with inorganic
materials [223,225], and in some cases the mineral phase was not reported at all [227,232].
This variety suggests that for this application the crystal phase of CaP is not critical, while
chemical composition has a higher relevance. Indeed, as also reported in the literature, in a
high number of patents the UV absorption of HA was enhanced by incorporating iron or
titanium ions into its structure—even if the patents do not exclude the formation of metal
oxides as side products [228–231], or by associating HA with UV-adsorbing inorganic or
organic materials [223,225,232]. It is worth mentioning the patent [231], in which the CaP
material derives from renewable sources, specifically fishbones. Overall, the approaches
used in the patents described so far are similar to those reported in scientific literature ((i)
the use of ionic doping with transition metals and (ii) the use of CaP from natural sources).
The use of CaPs as an SPF-booster of organic UV filters has been reported in three patents,
including the two most recent ones [226,231,232]. An SPF-booster is an inorganic material
that enhances the absorbing properties of organic filters by scattering the incident UV
radiation. The use of CaPs as boosters is one of the most interesting approaches in their
application for sun care cosmetics.

3.2.2. Skin Cleaners

As mentioned before, the skin is an important organ that protects us from the environ-
ment. For this reason, it is necessary to ensure the skin health also by using cleansers, which
are surfactants used to reduce sebum, remove make-up residuals or exogenous contami-
nants such as sweat, pollution or dirt, and promote normal exfoliation [233–237]. However,
the repeated and prolonged interaction between these surfactants and the proteins or lipids
of stratum corneum could weaken the skin barrier function. The consequences of skin
barrier degradation might be the after-wash tightness, which consists in rapid evaporation
of water from the skin surface causing tightness, itch, dryness, irritation, or inflamma-
tion [238,239]. Therefore, there is a need to develop cleansing systems that preserve and
respect the skin barrier. The colloidal stability of cleansers is critical and thus the use
of stabilizing agents is necessary. In this regard, scientific literature reports considerable
examples describing the advantages of using solid particles (Pickering emulsions) [240,241]
or natural minerals to achieve the optimal emulsion stabilization for topical application
purposes [242–244]. In recent years, the use of solid particles was largely studied because
they might offer sustainable and eco-friendly solutions as stabilizers. Among all the solid
particles, calcium carbonate is often used for this purpose [245–247]. An example is re-
ported by Marto et al. that has optimized a biocompatible Pickering emulsion formulation
using calcium carbonate as a stabilizer [248]. Regarding CaP, to the best of our knowl-
edge, there are no articles that describe these materials as stabilizers even if they could
successfully substitute calcium carbonate in Pickering emulsions.
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Table 3. List of patents about calcium phosphates as sunscreens.

Ref. Title Applicants Publication
Year Description

[223] Coated powdery material and cosmetics
containing the same Pola Chem Ind INC 2006 Powder for UV absorption.

CaP: HA-coating on a multilayer material

[224] Sunscreen cosmetics Fancl Corp 2009 Sunscreen for UV absorption.
CaP: HA

[225]
Organic-inorganic composite powder, a

preparation method thereof, and a use of
the same

Woongjin Coway Co., Ltd. 2011 Powder for UV absorption.
CaP: HA-coating on a hollow particle

[226] Sunscreen product comprising
hydroxyapatite as physical filter Kalichem Italia SRL 2012 Product for solar radiation protection.

CaP: HA

[227]

Sunscreen Compositions Comprising
Uniform, Rigid, Spherical, Nano porous

Calcium Phosphate Particles and Methods
of Making and Using the Same

Laboratory Skin Care Inc. 2016 Product for solar radiation protection.
CaP: not disclosed

[228]
UV-filters, method of producing the same

and their use in compositions, in
particular sunscreens

Universidade Catolica
Portuguesa 2017

Product for UV absorption in sunscreen
and textiles.

CaP: iron-doped HA + iron oxide

[229]
Physical solar filter consisting of
substituted hydroxyapatite in an

organic matrix

Consiglio Nazionale Delle
Ricerche 2017 Product for solar radiation protection.

CaP: HA doped with titanium and iron

[230]

Hydroxyapatite-transition metal composite
preparation method thereof and material
for blocking ultraviolet rays and visible

rays comprising the same

Industry-Academic
Cooperation foundation

Gyeongsang National
University

2018 Product for UV and Vis shielding.
CaP: iron-doped HA + iron oxide

[231]

Physical sunscreen comprising
hydroxyapatite or modified hydroxyapatite

obtained from fisheries and aquaculture
waste, process for its production and

photoprotective compositions comprising it

Consiglio Nazionale Delle
Ricerche 2020

Product for solar radiation protection and
photoprotective boost effect.

CaP: HA derived from natural sources
doped with metal ions, TCP + metal oxides

[232]
Calcium phosphate-folic acid composite

particles, preparation method and
application thereof

Hunan Yujia Cosmetics
Manufacturing Co ltd 2020

Product for UV absorption and scattering.
CaP: non-disclosed composite with

folic acid

Contrastingly, skin cleansing is actually a well explored cosmetic application of CaPs
by the industry, with 17 published patents, even though the majority of them were de-
posited more than 10 years ago (Table 4) [249–265]. Almost all patents harness the high
adsorption capability of CaPs to adsorb sebum [252–256,258–261,264], while the others
use CaPs to promote skin turnover or generically clean the skin [249–251,257,260–263,265].
For the former application, the role of CaPs is to adsorb and hold sebum, and in par-
ticular the fatty acids of sebum, in order to improve skin cleanliness, to favor make-up
product adhesion and avoid make-up smearing, and to prevent the formation of malodor-
ous substances. In the case of generic skin-cleaning patents, the role of CaPs is to favor
the exfoliation of dead skin though their abrasive action, as well as removing dirt and
bacteria. Interestingly, all the selected cleansing patents protect only complete formula-
tions, in contrast to the patents about CaPs for other cosmetic applications [249–260]. It
is likely that the cleansing effect arises from the whole combination of the ingredients
of the formulation, and for this reason the whole final product was protected. Similarly
to the patents for oral and sun care, the majority of skin cleansing patent refers to HA
as the CaP phase [249,251–256,259], while only in few cases other phases as TCP, OCP,
pyrophosphates, and ACP, are reported [257,258]. In the patent [250] the term “amorphous
HA” is used, which is incorrect since HA is a crystalline phase, and it likely meant an
HA with poor crystallinity. While in most of the patents HA was used as it is, in others
it was used as a coating of inorganic or polymeric materials [255,256,258,259,263]. It is
interesting to note that there is a mismatch between the high number of patents on CaPs as
skin cleansing agents and the complete absence of scientific papers on the same topic. A
possible explanation for this is that skin-cleaning formulations, being very complex and
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rich in coadjutants, are difficult to study in a systematic way since the individual effect and
influence of each ingredient cannot be extrapolated.

Table 4. List of patents about calcium phosphate as skin cleansers.

Ref Title Applicants Publication
Year Description

[249] Creamy apatite face cleanser Kazushi Hirota,
Katsunari Nishihara 2002 Skin cleaner cream.

CaP: HA

[250] Cosmetics Sangi Co 2001 Product for skin renewal.
CaP: amorphous HA

[251] Skin care preparation Noevir Co., Ltd. 2002 Product for skin renewing.
CaP: HA

[252] Skin care preparation Fancl Corp 2003 Product for sebum control.
CaP: HA

[253] Sebum secretion control kit Fancl Corp 2004 Product for sebum control.
CaP: HA

[254] Sebum adsorbing powder and
use thereof Miyoshi Kasei Inc. 2004

Powder for sebum adsorption and
deodorant. CaP: zinc oxide-coated

HA

[255]
Porous particle of synthetic resin

bonded with hydroxy apatite particle,
external preparation and cosmetics

Fancl Corp 2005 Product for sebum adsorption.
CaP: HA coating on resin particles

[256]

Synthetic resin porous particle
combined with hydroxyapatite
particle, external preparation,

and cosmetics

Fancl Corp 2005 Product for sebum adsorption.
CaP: HA coating on resin particles

[257]
Application method of nano calcium

phosphate like salt for
cosmetics product

Sun Zhenlin 2006
Product for skin cleansing.

CaP: TCP, HA, OCP, calcium
pyrophosphates

[258] Cosmetics Sekisui Plastics Co.,
Ltd., Shiseido Co., Ltd., 2007 Product for sebum adsorption.

CaP: ACP coating of mica particles

[259] Make-up composition Procter & Gamble 2007 Product for sebum control.
CaP: HA coating of zinc oxide

[260] Cosmetics for cleaning skin Mandom Corp 2008
Product for skin cleansing, sebum

removal, and skin smoothing.
CaP: surface-modified HA

[261] Cosmetics for cleansing skin Mandom Corp 2009
Product for skin cleansing, sebum

removal, and skin smoothing.
CaP: surface-modified HA

[262] Skin-cleaning agent composition Mandom Corp 2010 Product for skin cleansing.
CaP: HA

[263] Cosmetics and cleansing agent having
detox function

Kankyo Hozen
Kenkyusho: Kk, 2011

Product for skin cleansing,
and deodorant.

CaP: non-disclosed CaP coating on
titanium dioxide

[264] Gommage cosmetics material Mikimoto Pharmaceut
Co., Ltd. 2012

Gommage product with
sebum control.

CaP: HA

[265] Biomass nerve soothing facial
mask liquid Gao Xinwen 2019 Liquid for facial mask.

CaP: HA
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3.2.3. Skin Beautifying—(Make-Up)

The use of cosmetics for beautification has increased due to the desire to achieve high
ideals of beauty imposed by modern society. Make-up could be included in the group
of beauty treatments, which have a positive impact on people. Studies have revealed
that the use of make-up products improves the well-being and affects the self-confidence
of people [266–268]. Furthermore, another use of make-up consists in hiding topical
disorders. An example is the bleaching of dark spots, also called age spots, characteristics
of hyperpigmentation, demanding skin-whitening products [269,270]. The repeated contact
between make-up products and skin may expose consumers to both localized skin problems
and systemic effects caused by the absorption of chemical substances. In particular, the
ingredients of make-up products derived from mineral pigments used as coloring agents
could contain several harmful elements due to their origin or preparation process (i.e., Sb,
As, Cd, Cr, Co, and Ni) [3,11,271].

Finally, cosmetic ingredients for make-up are commonly used in powder form to
provide adhesiveness, smoothness, absorbency, and coverage. Moreover, powder ingredi-
ents can also be found in liquid formulations, where they improve cohesion, viscosity, or
texture. The use of mineral powders (talc, silica, mica, starches, or clays) lead to a matte
make-up product, but at high concentrations they show a lack of luminosity and may
exhibit poor color stability [272]. Among all the powder ingredients, talc represents the
most controversial ingredient. Indeed, its safety has been the topic of lots of debate over the
years [273–275]. Recently, Fiume et al. assessed that the use of talc could lead to granulomas
if it is applied on the skin when the epidermal barrier is absent. Therefore, it is necessary
to find novel powder ingredients that are safe and biocompatible even if the skin barrier
is damaged [276]. For this purpose, Bamford et al. developed a mesoporous magnesium
carbonate (MMC) material with a high surface area and pore volume that can be used as a
powder ingredient [277]. The authors noticed that the MMC shows an excellent absorption
capacity, provides a long-lasting mattifying effect, and does not induce any skin irritation or
sensitization. By similarity, another class of materials that could be used as a powder ingre-
dient in cosmetic formulations is CaP, which may improve the biocompatibility of the final
product while providing the same effects. Currently, there are no papers that describe these
materials as a possible biocompatible substitution to controversial powder ingredients
such as talc. On the other hand, 30 patents on this topic were filed over the years (Table 5).
In particular, there are patents on make-up stabilizers and anti-smearing agents [278–285],
foundations [223,279,286–291], pigments [281,287,292,293], lipsticks [294,295], products for
enhancing skin collagen fibers [296–298], and many others. Several patents protect CaPs as
enhancers for conventional make-up products, imparting an anti-sebum effect due to their
adsorption action, giving a smooth sensation on the skin related to their microstructure,
and incrementing make-up persistence and resistance to sweat and sebum. In this regard
many different CaPs were patented, as HA [223,279,280,282,284,287–289], composites of
HA or other CaP phases and inorganic particles [223,279,284,287–289,299], or composites
of HA with organic particles [280,282].

Another interesting application of CaPs is in cosmetic pigments. In this case, the
function of CaP is to impart a white color [292], or to host colored cerium phosphors [293],
or to stabilize oil-soluble dyes [281,287]. For the first and last application, HA was the
chosen crystal phase. Additionally, CaPs were also introduced in anti-age products whose
aim is to stimulate production and to restore skin collagen fibers, incrementing skin
elasticity [296–298]. In this case, the claimed action of CaPs is to directly stimulate skin
fibroblasts to produce new collagen. The patent [300] is particularly interesting, as it
protects the use of HA NPs as a stabilizer for O/W Pickering emulsion. As for other
cosmetic patents, almost all patents about CaPs for make-up claim the use of HA as the
preferred crystal phase, while some others employ mixtures or composites of CaPs with
ZnO, TiO2, or other inorganic materials [223,279,286,287,289,299]. It is interesting to note
that contrastingly to the other applications, ion doping was not considered to improve CaP
properties. Even if the high number of patents suggests that there is interest in this field,
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there is no peer-reviewed data on the efficacy of these formulations or accepted standards
on material testing for this application.

Table 5. List of patents about calcium phosphates in make-up.

Ref Title Applicants Publication
Year Description

[286] Powder cosmetics Kose Corp 2004

Cosmetics powder product to be
loaded on sponges and mats.
CaP: HA and zinc oxide on a

flaky powder

[278] Cosmetics paper Shiseido Co., Ltd. 2002 Sebum absorbing paper.
CaP: HA

[279] Solid powder cosmetics Kose Corp 2005

Cosmetics powder product with
make-up persistence and

UV shielding.
CaP: HA as sandwich between zinc

oxide and platy powder

[297]

Therapeutic calcium phosphate
particles in use for aesthetic or

cosmetics medicine, and methods of
manufacture and use

Biosante
Pharmaceuticals,

Inc.
2006

Anti-age cosmetics for topical
application.

CaP: non-disclosed

[223] Coated powdery material and
cosmetics containing the same Pola Chem Ind INC 2006

Powder material for make-up of
UV-shielding product.

CaP: HA as layer with titanium oxide,
alumina, silica

[295] Stick-line cosmetics Shiseido Co., Ltd. 2007 Stick-like cosmetics for lips.
CaP: HA

[287] Makeup cosmetics
Club Cosmetics Co.,

Ltd., Sekisui
Plastics Co., Ltd.,

2007 Make-up cosmetics product.
CaP: ACP-coated glass flakes

[288] Powdery cosmetics Shiseido Co., Ltd. 2008
Cosmetics powder product as
foundation or make-up base.
CaP: HA or HA composites

[289] Solid powder cosmetics Pola Chem Ind INC 2008 Cosmetics powder product.
CaP: HA coating on sericite

[280] Cosmetics
Clover Cosmake:

Kk, Sekisui Plastics
Co., Ltd.

2009
Product for suppressing smearing of
make-up. CaP: dicalcium phosphate

mixed with resin particles

[294] Cosmetics composition for lips Amorepacific
Corporation 2010 Cosmetics product for lips.

CaP: HA

[298]

Topical formulations comprising
hydroxyapatite particles for

stimulation and maintenance of
collagen fibers

Laboratory Skin
Care, Inc. 2010

Product for stimulation and
maintenance of collagen fibers of skin.

CaP: HA (sintered)

[281] Bright pigment and cosmetics
composition using the same

Nippon Sheet Glass
Co., Ltd. 2010

Bright pigment and stabilizer for
make-up.
CaP: HA

[296] Collagen production enhancer SofSera Corp 2012
Product for stimulation and

maintenance of collagen fibers of skin.
CaP: HA

[301] Two-in-one mixed curative effect
type cosmetics Zhou Qinghai 2013

Whitening and freckle-removing
product.

CaP: not disclosed
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Table 5. Cont.

Ref Title Applicants Publication
Year Description

[290] Cosmetics material and cosmetics

Horie Kako Co.,
Ltd.; Kinki
University;

Sofusera Co., Ltd.

2015 Cream or make-up cosmetic products.
CaP: HA (sintered)

[282] Composite particle and a cosmetics
composition containing the same

Chanel Perfume
Beauty Company 2015

Product for suppressing smearing of
make-up and sebum adsorption.

CaP: ACP coating of resin particles

[287] Makeup cosmetics Shiseido Co., Ltd. 2016 Make-up colored product.
CaP: HA

[302]

Preparation method and application
of fibroblast growth factor covering

lipide calcium phosphate
nanoparticles

Guangzhou Jipeng
Biotechnology Co.,
Ltd., Medical and

Biological
Technology

Research and
Development

Center Jinan Univ
G

2016
Product for drug delivery to the skin.
CaP: non-disclosed lipid-coated CaP

nanoparticles

[299] Calcium carbonate complex Kotegawa Sangyo
Kk 2017 Oil adsorbing product.

CaP: HA coating of calcium carbonate

[291] Makeup cosmetics Shiseido Co., Ltd. 2018 Make-up colored product.
CaP: HA

[300]

Stable O/W-type pickering emulsion
by using hydroxyapatite nano

particles and preparation
method thereof

Xuchang University 2018 Pickering emulsion stabilizer.
CaP: HA

[303] Collagen production promoting agent Sofsera Corp 2018
Product for stimulation and

maintenance of collagen fibers of skin.
CaP: HA (sintered)

[283] Powder cosmetics and
makeup method

Mikimoto Seiyaku
KK 2018 Product for make-up stabilization.

CaP: HA

[292]
Preparation method of whitening and

moisturizing cream containing
bismuth oxychloride

Guangzhou Lakel
Stem Cell Research

Institute
2020 Whitening moisturizing cream.

CaP: HA

[293] Calcium phosphate cerium phosphor Sakai Chem Ind
Co., Ltd. 2020

Phosphorescent cosmetics product.
CaP: Non-disclosed cerium doped

CaP

[284] Cosmetics Kose Corp 2020
Base material for cosmetics

stabilization.
CaP: HA-zinc oxide composite

[285]
Composition with makeup

maintaining and oil controlling effects
and cosmetics

Guangdong Bawei
Biotechnology Co

ltd
2020

Base material for make-up
stabilization and sebum adsorption.

CaP: HA

3.3. Hair Care

Hair does not have vital functions, but it represents an element of body image, and it
is a complex organized structure that aims to protect the scalp. In particular, it is composed
of proteins and different morphological components: (i) cuticle, consisting of several layers
of thin and flat cells that aim to overlap one another to protect the cortex from physical
and chemical insults; (ii) cortex, consisting of thick, rod-like cells, which contain keratin
protein; and (iii) the medulla, which is located at the fiber’s center and consists of round
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cells, separated by air pockets [304,305]. Hair products can be categorized into two main
categories on the basis of the duration of the treatment effect: (i) temporary products, such
as shampoos, conditioners, sprays, and temporary dyes, and (ii) permanent products, such
as permanent waves, relaxers, bleaches, and permanent dyes. In general, the repeated
and systematic exposure to potentially harmful molecules contained in hair products can
have negative outcomes [306–310]. An innovation in hair care products could be the use
of NPs. As reported by Rosen et al., nanocarriers have optical transparency, due to their
nanometric size, which enhances their cosmetic appeal [311]. Moreover, NPs are able to
encapsulate insoluble ingredients, optimizing their delivery and their penetration into
hair. For this reason, NPs were studied to specifically target the hair follicle and shaft,
reintroducing necessary nutrients for the proper growth, texture, and health of the hair. To
the best of our knowledge, there are no articles suggesting the use of CaP NPs in this field.
However, considering several pieces of evidence in the literature that suggest the capability
of CaP to act as a nanocarrier in the drug delivery system [22,42,312–314], this material can
easily find application also in hair care products with the same purpose. Despite what has
just been written and contrastingly to the other applications, the use of CaPs as hair care
ingredients is not common.

Indeed, according to our search, only two relevant patents were found, where the
application of CaP is as a dye carrier inside temporary hair dye products (Table 6) [315,316].
In both cases, HA was used thanks to its ability to encapsulate water-insoluble ingredients,
optimizing their delivery and their penetration into hair. Interestingly, both patents report
the use of HA as an ingredient for solid hair products. This is probably related to the
rising interest in the development of solid shampoos as an eco-friendly alternative to liquid
ones. Considering the continuous request for innovative, safe, sustainable and eco-friendly
ingredients in cosmetics, it is expected that more patents and scientific papers on this topic
will be published in the next years.

Table 6. List of patents about calcium phosphates in hair care.

Ref Title Applicants Publication Year Description

[315] Temporary hair dye
cosmetics composition Cosmax INC 2015 Solid temporary hair dye product.

CaP: HA

[316] Hair dye composition Kuriya Yumi: Kk 2013
Temporary hair dye product.

CaP: HA particles adsorbed on
titanium dioxide powder

3.4. Deodorants

Body odor, especially axillary odor, is mainly generated by bacterial metabolism
and oxidation of organic molecules of sweat. Sweat is produced by eccrine, apocrine
and sebaceous glands and at the moment of its release is odorless, but the metabolism
of cutaneous bacteria quickly transforms some of its components in several malodorous
volatile substances, such as alcohols, aldehydes, ketones, and fatty acids [317,318]. The
cosmetics industry has developed deodorant products in order to suppress or mask body
odors. Deodorant ingredients can be divided into three categories on the basis of the
method to control the odor: (i) antiperspirants, which suppress the production of sweat
by physically blocking the glands duct, (ii) antimicrobials, which inhibit bacterial activity,
and (iii) fragrances, which cover the malodors [319]. Usually, commercial products employ
more deodorant ingredients in order to improve their effectiveness. However, even if these
ingredients are widely used, they have also serious limitations. The most common antiper-
spirants are water-soluble aluminum chloridrate salts, which form aluminum hydroxide
plugs inside the glands, that obstruct the excretory tubule, preventing sweating [320,321].
At the same time, these salts produce HCl as a side product, which causes skin irritation
and erythema, and furthermore the aluminum metabolization can also cause toxicity ef-
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fects [322,323]. The extensive use of antimicrobials, on the other hand, can alter the axillary
microbiome, which might also favor the survival of odor-inducing bacteria [324,325].

Recently a new category of deodorant ingredients, the adsorbing materials, has been
proposed as an interesting alternative to the currently used ingredients to overcome their
limitations. Adsorbing materials suppress malodor by adsorbing volatile malodorous
substances through non-covalent interactions, and thus limit their volatilization. In this
regard, CaPs can be interesting adsorbent materials for malodor control. Indeed, biomedical
research has shown that CaPs can adsorb a wide variety of organic molecules, such as
carboxylic acids, amino acids, proteins, nucleic acids, urea, and many others [326–331]. In
addition, the presence of both positive and negative charges on the CaP surface allows
for adsorbing both cationic and anionic molecules. CaPs can be also easily prepared as
nanomaterials that, due to their high surface to volume ratio, have a high surface area
and can adsorb great amounts of organic molecules. Despite these promising features,
the use of CaP as an adsorbent for malodorous molecules is still in its infancy and the
number of research articles on this application is scarce. In the work of Nishida et al. [332],
the adsorption capability of pure and metal-doped HA toward malodorant H2S and NH3
gases was studied. HA was doped with divalent and trivalent cations (e.g., Co2+, Cu2+,
Fe2+, Ni2+, Zn2+, Al3+, and Fe3+) by ionic exchange with surface Ca2+ ions to introduce
the metal ions onto the HA particle surface. The adsorption efficiency of each gas on the
various samples was related to surface composition, surface area, and the chemical nature
of doping ions. It was found that NH3 was strongly adsorbed by HA doped with trivalent
metals Fe3+ and Al3+, with less than 5% gas left after 30 min of exposure and was attributed
to cation’s Lewis acidity and to structural effects (Figure 7).

Materials 2021, 14, x FOR PEER REVIEW 26 of 40 
 

 

 
Figure 7. Scanning electron microscopy (SEM) micrographs of HA doped with (a) Ca, (b) Fe(II), (c) 
Fe(III), (d) Co, (e) Ni, (f) Cu, (g) Zn, and (h) Al. Below: adsorption of NH3 (lower left) or H2S 
(lower right) by HA doped with Ca (full circle), Co (empty circle), Zn (full triangle), Ni (open 
triangle), Cu (full square), Fe(II) (open square), Fe(III) (full diamond), and Al (open diamond). 
(©Elsevier. Reprinted with permission from [332].) 

In the case of H2S, only Cu2+-doped HA showed a strong adsorbing capacity, which 
was even higher than pure copper salts. It was hypothesized that the adsorption capacity 
of Cu-HA was related to the electronic structure of copper in the crystal lattice. In a follow-
up work authored by Nishida et al. [333], a composite material of HA and zeolite was 
prepared and subsequently functionalized with Cu2+ and amino groups. It was found that 
the copper-doped composites have an excellent adsorption capacity for H2S and NH3 
gases, and the amino functionalization also imparted a good adsorption capacity for 
acetaldehyde. In addition, the composite material was also functionalized simultaneously 
with Cu2+ and amino groups, and was proved to adsorb H2S, NH3, and acetaldehyde gases 
at the same time. The article by Onota et al. [334] presents a CaP for malodor adsorption 
that is derived from renewable sources. In this work, calcium carbonate from corbicula 
shell waste was converted into brushite by dissolution with phosphoric acid and 
reprecipitation with ammonia. Some of the products were proven to have a good 
adsorption capacity for the malodorous trimethylamine gas, although the mechanism of 
adsorption was not cleared. Finally, in the article by Rastrelli et al. [335], the deodorant 
effect of HA was tested in vivo. This work evaluated the sweat production from 
volunteers in controlled conditions treated with a test emulsion formulation containing 
magnesium- and zinc-doped HA in conjunction with zinc pidolate. It was found that the 
HA formulation led to a production of sweat that was ca. 30% less than the treatment with 
an HA-free placebo formulation, although the single contributions of HA and zinc 
pidolate were not discriminated. Therefore, the work implies that HA could also have an 
antiperspirant effect. 

The number of patents about CaPs as deodorant materials is more limited in 
comparison to other cosmetic applications, as only seven patents were registered in the 
last two decades (Table 7). Interestingly, the majority of these patents were deposited 
between 2001 and 2011 [254,336–339], suggesting that the interest in this field is not rising. 
In agreement with the scientific literature, for this application, almost all the examined 
patents protect the use of CaPs as absorbing materials capable of catching volatile 
malodorous substances through non-covalent interactions, limiting their volatilization 
[254,337,339,340]. However, a few of them also claim an antiperspirant or antimicrobial 

Figure 7. Scanning electron microscopy (SEM) micrographs of HA doped with (a) Ca, (b) Fe(II),
(c) Fe(III), (d) Co, (e) Ni, (f) Cu, (g) Zn, and (h) Al. Below: adsorption of NH3 (lower left) or H2S
(lower right) by HA doped with Ca (full circle), Co (empty circle), Zn (full triangle), Ni (open triangle),
Cu (full square), Fe(II) (open square), Fe(III) (full diamond), and Al (open diamond). (©Elsevier.
Reprinted with permission from [332]).

In the case of H2S, only Cu2+-doped HA showed a strong adsorbing capacity, which
was even higher than pure copper salts. It was hypothesized that the adsorption capacity of
Cu-HA was related to the electronic structure of copper in the crystal lattice. In a follow-up
work authored by Nishida et al. [333], a composite material of HA and zeolite was pre-
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pared and subsequently functionalized with Cu2+ and amino groups. It was found that the
copper-doped composites have an excellent adsorption capacity for H2S and NH3 gases,
and the amino functionalization also imparted a good adsorption capacity for acetaldehyde.
In addition, the composite material was also functionalized simultaneously with Cu2+ and
amino groups, and was proved to adsorb H2S, NH3, and acetaldehyde gases at the same
time. The article by Onota et al. [334] presents a CaP for malodor adsorption that is de-
rived from renewable sources. In this work, calcium carbonate from corbicula shell waste
was converted into brushite by dissolution with phosphoric acid and reprecipitation with
ammonia. Some of the products were proven to have a good adsorption capacity for the
malodorous trimethylamine gas, although the mechanism of adsorption was not cleared.
Finally, in the article by Rastrelli et al. [335], the deodorant effect of HA was tested in vivo.
This work evaluated the sweat production from volunteers in controlled conditions treated
with a test emulsion formulation containing magnesium- and zinc-doped HA in conjunc-
tion with zinc pidolate. It was found that the HA formulation led to a production of sweat
that was ca. 30% less than the treatment with an HA-free placebo formulation, although
the single contributions of HA and zinc pidolate were not discriminated. Therefore, the
work implies that HA could also have an antiperspirant effect.

The number of patents about CaPs as deodorant materials is more limited in compari-
son to other cosmetic applications, as only seven patents were registered in the last two
decades (Table 7). Interestingly, the majority of these patents were deposited between 2001
and 2011 [254,336–339], suggesting that the interest in this field is not rising. In agreement
with the scientific literature, for this application, almost all the examined patents protect
the use of CaPs as absorbing materials capable of catching volatile malodorous substances
through non-covalent interactions, limiting their volatilization [254,337,339,340]. However,
a few of them also claim an antiperspirant or antimicrobial action exerted by aluminum,
copper, magnesium, iron, silver, or zinc oxide doping in HA [336,338,341].

Table 7. List of patents about calcium phosphates as deodorants.

Ref Title Applicants Publication
Year Description

[254] Sebum adsorbing powder and
use thereof Miyoshi Kasei Inc. 2004

Powder for sebum and fatty acids
adsorption and deodorization.

CaP: zinc oxide-coated HA

[336]

Antimicrobial fine particle,
method for producing the same
and cosmetics or antimicrobial

insecticide containing the
antimicrobial fine particle

Kyowa Industrial Co.,
Ltd., Sangi Co., Ltd.,
Suzuki Yushi Kogyo

Kk

2005
Deodorant, antimicrobial, antiperspirant,

sebum absorbing product.
CaP: HA

[337] Non-aqueous powder aerosol Nivea Kao KK 2005
Deodorizing powder, specifically for low

MW fatty acids.
CaP: HA

[338] Bactericidal/deodorizing agent Asahi Shokai: Kk 2007 Deodorant and sterilizing product.
CaP: silver-HA composite

[339]
Body odor suppressing agent and
cosmetics product compounded

therewith
Miyoshi Kasei Inc. 2011 Deodorizing powder.

CaP: HA

[340] Bentonite deodorant
Tianjin Zhongtian
Jingke Technology

Co., Ltd.
2018 Deodorant product.

CaP: HA

[341] Antiperspirant and deodorant
compositions Kalichem S.r.l. 2020

Antiperspirant and deodorant product.
CaP: HA doped with aluminum, zinc,

magnesium, zirconium, titanium, copper,
silver, or iron
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It should be noted that for this application HA is the only CaP phase used, and its
doping with foreign elements has great relevance. Indeed, as reported in scientific literature,
aluminum is usually used in antiperspirant products, while other elements—often in the
form of oxides—are used as bactericidal/deodorizing agents. For this reason, doped
HAs reported in patents can have both odor-absorbing and bactericidal effects. Finally,
even though the number of research works showing the potential of CaPs as a deodorant
ingredient is high, the number of patents in the field is relatively low.

4. Conclusions and Perspectives

Cosmetic products are applied on the human body to clean, beautify, or alter the
appearance without affecting body physiology or functions. Despite the recent concerns
regarding the health and environmental hazards of cosmetics posed, for example, by heavy
metal or paraben exposure, the cosmetics market is ever-growing. However, the rising
awareness of these hazards is pushing towards the development of innovative, natural,
sustainable, and safe cosmetics using non-toxic ingredients that have high biocompatibility
and biodegradability. For this purpose, being one of the most used classes of biocompatible
and biodegradable materials in medicine, CaPs represent an excellent alternative to several
currently used ingredients. The main applications of CaPs in cosmetics that we have found
searching through patents and scientific papers are as tooth whiteners, make-up products
for skin cleaning and beautification, deodorants and agents for hair dyes. Among the
different CaP phases, HA is the most studied due to its intrinsic similarity with the mineral
phase of bone and tooth.

The scientific literature on this topic is still in its infancy, while, interestingly, the
use of CaPs in cosmetics has gained considerable interest from the industry, leading to a
massive production of patents to protect industrial research work and know-how. This
discrepancy can be due to the fact that (i) cosmetic formulations are very complex and rich
in coadjutants, thus making it difficult to study in a systematic way since the individual
effect and influence of each ingredient cannot be perfectly assessed, and that (ii) there is a
deficiency of well accepted analytical protocols to evaluate the efficacy of raw materials
for cosmetic applications. In this view, the current lack of scientific literature suggests that
there are still unexplored opportunities for material scientists to design new CaP-based
materials as well as a new useful methodology for testing in this field.

Regarding the different applications of CaPs in cosmetics, some perspectives can
be drawn. For tooth whitening, since all CaP products for remineralization also have a
whitening effect, it is likely that the focus of this research will be on the development of
more efficient remineralization materials than on bleaching ones. In the field of sunscreen,
the use of ingredients able to improve the SPF of a product represents an interesting
approach in the development of safer and sustainable sunscreens. The so-called “SPF
boosters” are raw materials that, with different mechanisms of action, can enhance the
SPF of a solar formulation, and thus allow for a reduction in the concentration of chemical
and physical filters. Therefore, we can envisage more consideration for the use of CaPs as
boosters and thus more studies on their efficacy with organic and inorganic UV filters. For
skin care applications, the abrasive properties of CaPs can make them interesting products
for skin cleaning, as well as sebum adsorbent materials, and their efficacy should be
studied and optimized. Furthermore, nanometric CaPs can act as biocompatible stabilizers
for Pickering emulsions and could substitute the currently used emulsifying agents. In
application for hair care, CaPs can act as vehicles to deliver dyes, nutrients, and other
useful molecules to the follicle and to hair skin, while, for deodorants, the research effort
could be addressed by tuning the surface chemistry of CaPs to enhance their sorption
properties and to fully substitute modern deodorants. In addition, the capability of CaP
NPs to act as antiperspirants through pore blocking should be studied in more detail.

Some general trends can be also anticipated. Firstly, we envisage a growth in the use
of CaPs from biogenic sources, and in particular from by-products, as this represents a way
to prepare sustainable and natural cosmetics, as sustainability and naturality have already
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become two keywords of the cosmetics market trend worldwide. On this topic, several
studies have proved that CaPs produced from natural sources have the same properties
attributed to synthetic CaPs. Secondly, we predict that, similar to what occurred for CaPs
in the medical field, the relevance of ion doping as a strategy to impart new properties
will become more and more relevant. Indeed, the high number of works that employ this
strategy show that doping could be a successful method to enhance the efficacy of CaPs for
cosmetic application. Another opportunity that has been neglected until now is the use of
alternative CaP crystal phases to HA. Indeed, almost all of the research works reported
in this review have been focused on HA, as it is the most used material in medicine and
cosmetics. Different CaP phases have different properties, such as solubility, morphology,
and surface chemistry, that could make them attractive for specific applications. Finally, as
in nanomedicine, CaP NPs are becoming appealing materials for drug delivery, and the
same features could be used in cosmetics to deliver nutraceuticals, biologically relevant
molecules, dyes, and many other substances.
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