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Abstract

Despite the importance of gene regulatory enhancers in human biology and evolution, we lack a comprehensive model of
enhancer evolution and function. This substantially limits our understanding of the genetic basis of species divergence
and our ability to interpret the effects of noncoding variants on human traits.

To explore enhancer sequence evolution and its relationship to regulatory function, we traced the evolutionary origins
of transcribed human enhancer sequences with activity across diverse tissues and cellular contexts from the FANTOM5
consortium. The transcribed enhancers are enriched for sequences of a single evolutionary age (“simple” evolutionary
architectures) compared with enhancers that are composites of sequences of multiple evolutionary ages (“complex”
evolutionary architectures), likely indicating constraint against genomic rearrangements. Complex enhancers are older,
more pleiotropic, and more active across species than simple enhancers. Genetic variants within complex enhancers are
also less likely to associate with human traits and biochemical activity. Transposable-element-derived sequences (TEDS)
have made diverse contributions to enhancers of both architectures; the majority of TEDS are found in enhancers with
simple architectures, while a minority have remodeled older sequences to create complex architectures. Finally, we
compare the evolutionary architectures of transcribed enhancers with histone-mark-defined enhancers.

Our results reveal that most human transcribed enhancers are ancient sequences of a single age, and thus the evolution
of most human enhancers was not driven by increases in evolutionary complexity over time. Our analyses further suggest
that considering enhancer evolutionary histories provides context that can aid interpretation of the effects of variants on
enhancer function. Based on these results, we propose a framework for analyzing enhancer evolutionary architecture.
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Introduction
Enhancers are noncoding DNA sequences bound by tran-
scription factors (TFs) that regulate gene transcription and
establish tissue- and cell-specific gene expression patterns
(Shlyueva et al. 2014). Rapid turnover of sequences with en-
hancer activity is a common evolutionary process that con-
tributes to species-specific gene regulation and phenotypic
diversity (Wittkopp and Kalay 2012). Despite the importance
of gene regulatory enhancers in human biology and evolution,
we lack a comprehensive model of their evolutionary and
functional dynamics.

Comparative genomic studies have demonstrated that
gene regulatory activity turns over rapidly between species.
For example, active liver enhancers defined by histone mod-
ifications are rarely shared among 20 placental mammals,
though most liver enhancer sequences are alignable across

diverse species (Villar et al. 2015). Similarly, the majority of
liver TF DNA binding events among five vertebrates are pri-
vate to a single species, and DNA binding site divergence
between species is largely explained by lineage-specific muta-
tions that activate and inactivate binding sites (Schmidt et al.
2010).

Although enhancer activity is often species-specific, DNA
sequences underlying active enhancers are often alignable
across species and originate from a common ancestor. For
example, 80% of mouse DNase I hypersensitive site (DHS)
sequences originate from the last common ancestor of
mice and humans, yet only 36% of DHS sites have shared
open-chromatin activity between humans and mice (Vierstra
et al. 2014). Similarly, a comparison of human, rhesus, and
mouse enhancers involved in embryonic limb development
showed that most human-specific gains in enhancer activity
occurred in ancient mammalian sequences, most often due
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to a small number of substitutions (Cotney et al. 2013). These
studies indicate that most enhancer sequences do not main-
tain consistent activity over evolutionary distances and sug-
gest that a common mode of enhancer evolution has relied
on the evolution of new functions in DNA sequences with
ancient origins (sometimes referred to as exaptation). Thus, it
is important to distinguish the evolutionary history of en-
hancer activity, which is often species-specific, from the his-
tory of the underlying DNA sequence, which is often ancient.
For brevity, we use the term “enhancer” when discussing
sequence with enhancer activity in a context of interest.

Species-specific patterns of enhancer activity can arise
from a range of genomic changes. Human-specific adaptive
nucleotide substitutions in conserved developmental
enhancers have been shown to drive robust in vivo reporter
activity in mouse compared with chimpanzee and rhesus
orthologs (Prabhakar et al. 2008; Capra, Erwin, et al. 2013).
Despite this, most gains of enhancer activity are not under
strong positive selection (Pollard et al. 2006; Thurman et al.
2012; Moon et al. 2019). Repetitive sequences derived from
transposable elements (TEs) also contribute to species-
specific enhancer activity (Chuong et al. 2017). Though im-
portant, TE derived sequences (TEDS) are depleted in sequen-
ces with enhancer activity compared with the rest of the
genome (Emera et al. 2016; Simonti et al. 2017). Together,
these results illustrate that enhancer sequence evolution is
dynamic and can proceed through different evolutionary
trajectories.

Determining evolutionary origins by estimating sequence
age—that is, the common ancestor in which a homologous
sequence first appeared—has expanded knowledge of en-
hancer sequence evolution, biological functions, and associa-
tions with complex human diseases. Most sequences with
human liver enhancer activity are ancient, even though their
activity turns over rapidly between species (Villar et al. 2015).
Furthermore, regulatory elements of different ages have dif-
ferent gene targets and cross-species analyses have revealed
three periods of regulatory sequence innovation during ver-
tebrate evolution (Lowe et al. 2011), suggesting sequences
from distinct periods have been co-opted to regulate specific
gene pathways. Specific TE insertions provided new TF bind-
ing motifs through these evolutionary epochs, expanding
gene regulatory regions and, in some cases, driving shifts in
nearby gene expression (Marnetto et al. 2018). Enhancer evo-
lutionary origins may also be relevant to their roles in disease,
as human enhancers with older sequence ages are more
enriched for heritability of complex traits than enhancers in
younger sequences, independent of the conservation of en-
hancer function across species (Hujoel et al. 2019). When
interpreting these and our results, we emphasize that esti-
mating the age of sequences with human enhancer activity is
not necessarily the age when the sequence first gained en-
hancer activity.

Further complicating these analyses, regulatory regions can
contain sequences of multiple ages, suggesting that the jux-
taposition of sequences of different origins may benefit or
change enhancer function over time. A pioneering analysis
of conserved mammalian neocortical enhancers found that

many had composite sequences of multiple ages and origins
(Emera et al. 2016). A two-step life cycle model was proposed
to explain enhancer sequence evolution. In the first step,
short proto-enhancer sequences of a single evolutionary or-
igin gain weak enhancer activity, and most are inactivated
over time. In the second step, a fraction of proto-enhancers
acquires more stable activity through the integration of youn-
ger sequences carrying relevant TF binding sites (TFBSs) that
could create or modify TF-complex interactions.

It is unclear whether the juxtaposition of sequences of
different origins represents the common mode of enhancer
sequence evolution across contexts. Further, how these evo-
lutionary histories influence human enhancer function has
not been explored. Previous work has largely overlooked
the evolutionary architecture of enhancers—that is, the evo-
lutionary age(s) of sequences with enhancer activity—which
more precisely reflects the evolutionary events that produced
them. Thus, there is a gap in our understanding of the evo-
lutionary dynamics that result in sequences with enhancer
activity and how these histories relate to gene regulatory
function.

Here, we build on previous work (Lowe et al. 2011; Emera
et al. 2016; Marnetto et al. 2018; Hujoel et al. 2019) to quantify
enhancer sequence age architecture—the age of every base
pair within a sequence with enhancer activity—across human
transcribed enhancers. We then evaluate how sequence age
architecture relates to enhancer function, evolutionary stabil-
ity, and tolerance to human variation. We find that tran-
scribed enhancer sequences have simpler age architectures
than expected, with the majority consisting of sequence of a
single age and a minority with multi-age evolutionary archi-
tectures. Surprisingly, given recent work (Emera et al. 2016),
enhancers of both architectures have similar evolutionary
conservation after accounting for age differences, suggesting
that increasing complexity over time is not required for stable
gene regulatory function. Nonetheless, enhancers with differ-
ent architectures differ in their associated functional features.
Pleiotropy and cross-species activity are higher in enhancers
with multi-age architectures, while functional differences in
enhancer activity due to natural human variation occur
slightly more frequently in enhancer sequences of a single
age. Based on these observations, we present a model of en-
hancer sequence evolution and provide a framework for dis-
secting the evolution and function of human enhancer
sequences.

Results

Estimating Enhancer Ages Using Vertebrate Multiple
Species Alignments
In this study, our goal is to characterize the evolutionary ar-
chitecture of human enhancer sequences and associations
with regulatory function. In this section, we describe the
data sets and strategies we used to define enhancer sequence
ages and provide context necessary for interpreting our
results. We analyzed 30,438 transcribed human autosomal
enhancers identified in 112 cell and tissues based on enhancer
RNA (eRNA) data sets from the FANTOM5 consortium
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(Andersson et al. 2014). We focused on transcribed
enhancers, because eRNA are enriched for sequences with
functional activity in massively parallel reporter assays
(MPRA) and mark sequence boundaries that are sufficient
for enhancer function with high specificity (Andersson et al.
2014; Benton et al. 2019; Tippens et al. 2020). We also ana-
lyzed the architectures of enhancers identified based on his-
tone modification patterns from the Roadmap Epigenomics
Consortium to complement the main eRNA results.

We assigned sequence ages to enhancers based on the
evolutionary histories of the overlapping syntenic blocks
from the UCSC 46-way alignment of diverse vertebrate spe-
cies spanning 600 My of evolution (fig. 1; Materials and
Methods). For simplicity, we grouped most recent common
ancestor (MRCA) nodes into 10 age categories and report
sequence age as the oldest ancestral branch on which the
sequence first appeared (Materials and Methods). We gener-
ated random sets of enhancer-length-matched, chromo-
some-matched, noncoding genomic sequences throughout
to create null distributions for interpreting enhancer attrib-
utes (Materials and Methods and supplementary fig. S1,
Supplementary Material online).

Enhancers Are Older, Longer, and More Conserved
Than the Genomic Background
As expected from previous observations (Lowe et al. 2011;
Villar et al. 2015; Emera et al. 2016; Marnetto et al. 2018), we
find that sequences with human enhancer activity are older,
longer, and more conserved than expected from the noncod-
ing genomic background, supporting that they have been
maintained due to their regulatory functions. Among human
enhancer sequences, 54% originate from the common ances-
tors of Eutherians, while 35% can be traced to older ancestors,
and 11% can be traced to younger ancestors. Human
enhancers are significantly older than matched sets of ran-
dom sequences from across the human genome

(supplementary fig. S2A and D, Supplementary Material on-
line). Old enhancer sequences (origins before the Eutherian
ancestor) are significantly longer than younger enhancer
sequences and longer than expected from age-matched
regions from the random genomic background sets
(Materials and Methods; supplementary fig. S2B and E,
Supplementary Material online). Conversely, younger
enhancers are shorter than expected. Similarly, older
enhancers are more conserved than younger enhancers and
more conserved than expected from the genomic back-
ground (supplementary fig. S2C, Supplementary Material on-
line). This highlights that sequence age and conservation
provide complementary information; age estimates the origin
of the sequence, while conservation estimates constraint on
sequence variation.

Enhancers Are Enriched for Simple Evolutionary
Sequence Architectures
The majority (65%, N¼ 19,857) of human transcribed
enhancers are found within a single syntenic block (i.e., they
are of a single age). The median enhancer length is 292 bp,
and the median syntenic block genome-wide is 54 bp (sup-
plementary fig. S3, Supplementary Material online). Thus, it
was surprising that only 35% (N¼ 10,581) of enhancers
mapped to more than one syntenic age (fig. 2B). To evaluate
whether the sequence age architectures of transcribed
enhancers differ from what would be expected given the
length distributions of enhancers and syntenic blocks, we
compared the number of syntenic bocks with distinct ages
in enhancers versus matched non-coding regions from the
genomic background (Materials and Methods).

Human enhancers are enriched for simpler architectures
compared with the noncoding genomic background (fig. 2C;
1.3-fold enrichment for a single age; P¼ 7.6e�107 Fisher’s
Exact Test; 0.1–0.5-fold depletion for multiple age segments;
P¼ 7.1e�12). This suggests constraint against insertions and

FIG. 1. Illustration of the method for mapping enhancer sequence age architecture. We quantify the age of a sequence with human enhancer
activity based on the oldest most recent common ancestor (MRCA) in overlapping syntenic blocks from the MultiZ multiple sequence alignments
of 46 vertebrates (inset). Enhancer age is assigned as the oldest, overlapping syntenic block age. Millions of years ago (Ma) divergence estimates
from TimeTree (Hedges et al. 2015) are annotated in parenthesis in the color key. As expected from previous work, we find that enhancers are
older, longer, and more conserved than expected from the genomic background (supplementary fig. S2, Supplementary Material online).
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deletions among sequences with gene regulatory potential.
These differences were greatest among enhancer architec-
tures with Therian and Eutherian sequence origins (supple-
mentary fig. S5B, Supplementary Material online), and
complex architectures are depleted among enhancers of
most ages (supplementary fig. S6B, Supplementary Material
online). This further supports that enhancer architecture is
constrained across ages and does not favor complex
architectures.

For simplicity, we refer to enhancer sequences with greater
than or equal to the median segments of different ages across
enhancers as having complex sequence age architectures
(“complex” enhancers). Enhancers with fewer than the me-
dian age segments have simple sequence age architectures
(“simple” enhancers, fig. 2A). Given that the majority (65%)
of transcribed enhancers consist of a single age segment, all
enhancer sequences of two or more ages are classified as
complex (35%). We assigned complex enhancer ages

according to its oldest sequence age, and note that human-
specific enhancers can only be classified as simple enhancers
because the oldest sequence age maps to the human branch
(Materials and Methods).

The Oldest Sequences Occur in the Middle of
Complex Enhancers
Among complex enhancer sequences, we define the oldest
sequence as the “core” and younger sequences as “derived”
segments (fig. 2A). The core is generally at the center of the
enhancer, while younger sequences are generally flank core
sequences in complex enhancers (fig. 2D; Materials and
Methods). This organization is specific to enhancer sequen-
ces; we do not observe similar organization in matched
regions from the genomic background with complex archi-
tectures. Stratifying complex enhancers by core age revealed
that this pattern was driven by enhancers with older se-
quence origins (supplementary fig. S7, Supplementary

FIG. 2. Simple and complex enhancers have distinct evolutionary architectures, lengths, and ages. (A) Schematic of simple and complex enhancer
architectures based on overlapping syntenic block ages. Simple FANTOM enhancers are composed of sequence of one evolutionary age, while
complex FANTOM enhancers contain sequence of multiple ages. Within complex enhancers, the oldest segment is the “core” and younger
segments are “derived.” (B) Example simple and complex enhancer architectures from 921 random autosomal FANTOM enhancers. The majority
(65%, N¼ 19,857) have simple architectures. For illustration, the age of each enhancer sequence is summarized across 100 equally spaced bins;
color indicates the age of each sequence in each bin. (C) Enhancers have significantly fewer segments of different ages than expected by chance;
simple FANTOM enhancers are 1.3-fold enriched versus 100 length-matched random shuffled sets; P¼ 7.6e�107, Fisher’s Exact Test. (D) Complex
enhancers are older at their centers on average. Dividing complex enhancers and length- and architecture-matched genomic background into 100
equally spaced bins, mean complex enhancer sequence age from 10,581 complex enhancers and 17,277 complex genomic background sequences
from random shuffle is shown; the light green and light gray regions represent bootstrapped 95% confidence intervals. The middle 50% of complex
enhancer bins are significantly older than the outer 50% of bins (0.275 vs. 0.265 substitutions per site; P¼ 4.9e�166, Mann–Whitney U). This
pattern is mainly driven by older enhancers (supplementary figs. S7 and S8, Supplementary Material online). (E) Complex enhancers are longer
than simple enhancers (median 347 bp vs. 259 bp; P< 2.2e�308, error bars give 95% bootstrapped confidence intervals). The number of enhancers
of each type in each age bin are given below the panel. (F) Complex enhancers are significantly older than simple enhancers (61% complex vs. 19%
simple enhancers older than Eutherian).
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Material online). Enhancers with three or more age segments
also are enriched for the oldest sequence in the middle, fur-
ther supporting the prevalence of this organization across
complex enhancer sequences (supplementary fig. S8,
Supplementary Material online). In younger complex
enhancers, core sequences are located slightly more towards
sequence edges. This may reflect the fact that most young
complex enhancers consist of only two ages, one older and
one younger (supplementary fig. S5, Supplementary Material
online). This suggests that older core sequences and younger
flanking sequences are nonrandomly arranged within com-
plex enhancer architectures.

Complex Enhancers Are Longer and Older Than
Simple Enhancers
Complex enhancers are significantly longer than simple
enhancers (fig. 2E and supplementary fig. S9,
Supplementary Material online; median 347 vs. 259 bp;
P< 2.2e�308, Mann–Whitney U test). Some length differ-
ence is expected based on the definition of complex
enhancers, since longer regions are more likely to overlap
multiple syntenic blocks by chance. To evaluate whether
the length difference between simple and complex enhancers
was greater than expected, we shuffled noncoding genomic
regions matched on enhancer length and assessed architec-
tures (simple or complex) and ages in the resulting random
regions (Materials and Methods; supplementary fig. S1,
Supplementary Material online). We observed that complex
enhancer sequences are slightly, but significantly, longer than
expected (median 347 bp vs. 339 bp; P¼ 2.5e�06, Mann–
Whitney U test) and that complex enhancers have a stronger
positive correlation between length and age than expected
(supplementary fig. S9B, Supplementary Material online;
10.6 bp/100 My; P¼ 1.1e�17 vs. 4.3 bp/100 My;
P¼ 3.7e�251, linear regression). In contrast, simple
enhancers retain similar lengths over time (–0.7 bp/100 My;
P¼ 0.5 vs. –5.5 bp/100 My, P< 2.2e�308) and are also
slightly longer than expected (supplementary fig. S9A,
Supplementary Material online, median 259 bp vs. 255 bp;
P¼ 7.3e�05). We note that complex enhancer length pla-
teaus among sequences older than the Mammalian ancestor
(supplementary fig. S9A, Supplementary Material online).
This pattern also holds when broken down by syntenic block,
though complex syntenic blocks are consistently shorter than
simple syntenic blocks (supplementary fig. S10,
Supplementary Material online).

Next, we compared the sequence age distribution for sim-
ple and complex architectures (fig. 2F). Complex enhancers
are generally older than simple enhancers. Sixty-eight percent
of simple enhancer sequences are derived from the Eutherian
ancestor, while 12% are younger and 19% are older. Simple
enhancers are enriched for Eutherian sequences and are older
than expected overall (supplementary fig. S6A,
Supplementary Material online; P< 2.2e�308). Conversely,
30% of complex enhancers are derived from the Eutherian
ancestor, 9% are younger than the Eutherian ancestor and
61% of complex enhancers are older. Complex enhancers are
enriched for sequences older than Eutherian ancestor and are

also older than expected (P< 2.2e�308). Consistent with the
overall depletion for complex architectures reported in the
previous section, enhancers stratified by age are also depleted
of complex architectures and this trend does not appear
time-linear (supplementary fig. S6B, Supplementary Material
online). The presence of many simple enhancers with old
sequence ages suggests that complex evolutionary architec-
ture is not necessary for survival over long periods.

Complex Enhancers Are More Pleiotropic and More
Conserved in Activity across Species Than Simple
Enhancers
In this section, we evaluate whether simple and complex
enhancers have different patterns and breadth of activity
across tissues and species. Among tissues and cell types, the
enrichment for simple enhancers versus complex varies. Most
contexts are enriched for simple enhancers, including many
blood cell, brain, and pregnancy-related cell types, while the
contexts with complex architecture enrichment include
smooth muscle and digestive tissues (supplementary fig.
S11, Supplementary Material online).

Enhancers with ancient origins and conserved activity
across diverse mammals are known to be more pleiotr-
opic—that is, they have activity across multiple human tis-
sues (Fish et al. 2017). Thus, we hypothesized that complex
enhancers would be more pleiotropic than simple enhancers
given their older age distribution. To test this, we quantified
the overlap of enhancer activity across 112 tissue and cell
enhancer data sets and stratified by architecture (Materials
and Methods). To control for length differences between
simple and complex enhancers in this and subsequent anal-
yses, we trimmed or expanded enhancers around their mid-
points to match the data set-wide mean length (310 bp).

Complex enhancers have activity across significantly more
biological contexts than simple enhancers (fig. 3A; 7.4 vs. 4.8
contexts; P¼ 5.9e�199, Mann–Whitney U). Enhancer pleiot-
ropy overall increases with age, and complex enhancers are
consistently more pleiotropic than age-matched simple
enhancers (fig. 3A). Considering the full length of enhancers,
we find that length is similarly correlated with pleiotropy in
age-matched simple and complex enhancers (supplementary
fig. S12, Supplementary Material online). These results suggest
that complex enhancers are more likely to have activity across
biological contexts than simple enhancers, and increased
length associates with increased pleiotropy in both simple
and complex enhancers.

We next asked if simple and complex architectures differed
in the conservation of enhancer activity across species. This
analysis required enhancer maps from the same tissue across
species; thus, we assigned age architectures to H3K27acþ
H3K4me3– enhancers identified across liver samples from
nine placental mammals (Villar et al. 2015). In this analysis,
we used the same median age segment strategy for defining
simple and complex enhancers as we used for the FANTOM
enhancers (Materials and Methods). To control for differen-
ces in length, we matched the length distribution of complex
enhancers to simple enhancers (n¼ 11,799 simple enhancers
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and n¼ 12,357 matched-length complex enhancers) and
evaluated cross-species activity. As expected from previous
studies, human liver enhancers are largely species-specific, but
complex liver enhancers are active across significantly more
species than simple liver enhancers (fig. 3B left; 1.8 vs. 1.2
mean species; P¼ 5.2e�88, Mann–Whitney U). In general,
older enhancers are more active across species than younger
enhancers. Given that younger sequences have fewer oppor-
tunities to overlap multiple species than older sequences, we
compared cross-species overlap between age-matched
sequences (fig. 3B, right). We observe consistent activity dif-
ferences between age-matched enhancers, indicating that
complex enhancer sequence histories are associated with
higher cross-species activity compared with simple enhancers
from the same age. We also found that human developmen-
tal neocortex enhancers with complex architectures (supple-
mentary fig. S13, Supplementary Material online) have more
cross-species activity among rhesus macaque and mouse
enhancers than simple human neocortex enhancers, though
the difference is smaller than for liver enhancers (supplemen-
tary fig. S14, Supplementary Material online; 1.29 v. 1.26 spe-
cies in complex, simple enhancers; P¼ 7.9e�13), perhaps due
to the shallower sampling of these enhancers across species or
differences between developmental and adult tissues. These
analyses support the conclusion that complex enhancer ar-
chitecture is associated with more stable activity across spe-
cies than simple enhancers at each age.

Simple and Complex Enhancers Are Under Similar
Levels of Purifying Selection
Given the older ages, greater pleiotropy, and greater cross-
species activity observed in complex enhancers, we hypoth-
esized that complex enhancers would be under stronger pu-
rifying selection than simple enhancers. To evaluate this, we
compared LINSIGHT scores between simple and complex
enhancers. Briefly, LINSIGHT estimates the probability of pu-
rifying selection on sites in the human genome at a base-pair
level using both functional genomics annotations and evolu-
tionary conservation metrics; higher scores indicate stronger
purifying selection (Huang et al. 2017). Complex enhancers
have slightly higher LINSIGHT scores than simple enhancers
overall, suggesting slightly stronger purifying selection in com-
plex enhancers (fig. 3C, left; 0.16 vs. 0.14 mean LINSIGHT
score; P< 2.2e�308). Given that simple and complex en-
hancer sequences have different age distributions, we strati-
fied by age to evaluate whether simple enhancers had lower
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FIG. 3. Complex enhancers are more active across tissues and species
and under stronger purifying selection than simple enhancers. (A)
Complex enhancers are more pleiotropic than simple enhancers.
Simple and complex enhancer activity was evaluated across 112
FANTOM enhancer contexts. Overall, simple enhancers are active
in 4.8 contexts on average and complex enhancers are active in 7.4
contexts (left, P¼ 5.9e�199, Mann–Whitney U test). Activity across
tissues increases with sequence age, but the effect is stronger for
complex enhancers overall and stratified by enhancer age (right).
(B) Complex human liver enhancers are active across significantly
more species than simple liver enhancers (left, 1.8 vs. 1.2 mean species;
P¼ 5.2e�88). To enable cross-species comparison, this analysis is
based on simple enhancers and matched-length complex human
liver enhancers defined by H3K27acþ H3K4me3– ChIP-peaks from
Villar 2015 (Materials and Methods, N¼ 11,799 and 12,357) that were
evaluated for enhancer activity across nine placental (Eutherian)

mammals. Stratifying by enhancer age reveals that older complex
enhancers are active across more species than age-matched simple
enhancers (right). (C) Complex enhancers are under slightly stronger
purifying selection on the human lineage than simple enhancers (left,
0.16 vs. 0.14 mean LINSIGHT score per bp; P< 2.2e�308). However,
estimates stratified by age generally showed similar levels among
complex and simple enhancers (right). To account for length differ-
ences between architectures, all enhancers were trimmed or ex-
panded to the mean enhancer length of 310 bp. In all panels, error
bars represent 95% confidence intervals based on 10,000 bootstraps.
Sample size for each age is annotated beneath the x-axis.
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scores than complex enhancers of the same age (fig. 3C, right).
This revealed that per age, simple and complex enhancers do
not show a consistent pattern and generally have similar
LINSIGHT scores. Similarly, analysis of PhastCons conserved
element overlap supports that complex enhancers are overall
more conserved than simple enhancers and that the majority
of both simple and complex enhancers are highly conserved
at older ages (supplementary fig. S15, Supplementary Material
online). These results suggest that simple and complex
enhancers of similar age experience similar purifying selection
pressures.

Genetic Variants in Simple Enhancers Are More Likely
to Be Associated with Human Traits and Disease Than
Variants in Complex Enhancers
The majority of genetic variants associated with human com-
plex traits and disease are located in functional, non-coding
regulatory regions (Maurano et al. 2012; Corradin and
Scacheri 2014). Based on the differences in pleiotropy and
constraint observed between architectures, we hypothesized
that enhancer evolutionary architecture could provide con-
text for interpreting the effects of enhancer variants on traits.
To test this, we evaluated enrichment of 55,480 significant
(P< 5e�8, linkage disequilibrium expanded at r2¼ 1) GWAS
Catalog single-nucleotide variants from 2,619 genome-wide
association studies (Buniello et al. 2019) in simple and com-
plex enhancer architectures against length- and architecture-
matched background regions. We observed GWAS enrich-
ment in both simple enhancers and complex enhancers

compared with expected levels (fig. 4A; 1.17-fold-change for
simple vs. 1.14-fold-change complex; P¼ 0.01, two-tailed per-
mutation test). Stratifying by age, we observe GWAS variant
enrichment across ages and architectures (supplementary fig.
S17, Supplementary Material online). Simple enhancer GWAS
enrichment is greater at Primate, Eutherian, and Tetrapod
origins, while complex enhancer enrichment is greater in
Boreotherian, Mammalian, and Vertebrate origins. This dem-
onstrates that enhancer sequences across different ages and
architectures have variant enrichment and association with
human traits. More work is needed to evaluate variation in
simple and complex enhancer enrichment across tissues, for
example by matching the GWAS considered to the different
tissue contexts or evaluating variant effect sizes.

To explore the patterns of clinically relevant variants in
different enhancer architectures, we evaluated ClinVar
disease-associated variant enrichment in simple and complex
enhancers (Landrum et al. 2018). While GWAS associations
reflect variant effects on common, complex diseases, ClinVar
pathogenic variants are often the cause of rare Mendelian
disorders. Simple enhancer variants overlapped more
“pathogenic” annotations while complex enhancers over-
lapped more “benign” annotations than expected, though
these differences were not statistically significant (supplemen-
tary fig. S18, Supplementary Material online). Together, these
results confirm enrichment for trait and rare disease variants
in both complex and simple enhancer architectures com-
pared with regions without enhancer activity; however,
known complex trait-associated variation occurs more fre-
quently in simple enhancer architectures.
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FIG. 4. Simple enhancers are enriched for GWAS hits and variants with significant regulatory activity in massively parallel reporter assays. (A)
Simple and complex enhancers are both enriched for GWAS catalog variant overlap compared with random matched regions (1.17-fold enrich-
ment in simple enhancers [N¼ 690 SNPs], and 1.14-fold enrichment in complex [N¼ 591 SNPs]). Simple enhancers are more enriched for GWAS
variants than complex enhancers (P¼ 0.01, two-tailed permutation test). Error bars represent 95% confidence intervals based on 10,000 boot-
straps. (B) Common genetic variants in simple enhancers are enriched for significant changes in regulatory activity compared with complex
enhancers in massively parallel reporter assays (MPRAs). In K562 cells (left), 3.3% of variants in simple enhancers (N¼ 12,523 variants) and 2.8% of
variants in complex enhancers (N¼ 9,054 variants) exhibit significant changes in MPRA activity compared with 1.7% of all variants tested (simple
odds ratio [OR] ¼ 1.9; P¼ 2.1e�35, and complex OR ¼ 1.6; P¼ 1.7e�10). This difference in enrichment over background for simple versus
complex is significant (OR¼ 1.2; P¼ 0.04, Fisher’s Exact Test). In HepG2 cell (right), 4.1% of variants in simple enhancers (N¼ 568 variants) and
3.8% of variants in complex enhancers (N¼ 289 variants) produce significant changes in MPRA activity compared with 1.8% of background
variants (simple OR ¼ 2.3; P¼ 1.6e�66 and complex OR ¼2.1; P¼ 3.8e�29). The enrichment over background is modestly higher in simple
enhancers (OR¼ 1.1; P¼ 0.26). The dashed horizontal lines represent the fraction of all variants tested with significant activity per cell line. Error
bars represent 95% confidence intervals based on 1,000 bootstraps. Number of overlapping variants are annotated in white.
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To complement these findings, we evaluated the enrich-
ment of known expression quantitative trait loci (eQTL).
Simple and complex enhancers were similarly enriched for
GTEx eQTL across 46 tissues (GTEx Consortium 2017) at
�1.1� fold-change (supplementary fig. S19, Supplementary
Material online; median 1.09� and 1.11� for simple and
complex, respectively; P¼ 0.38, Mann–Whitney U). This indi-
cates that both architecture types are similarly likely to con-
tain variants associated with gene expression variation across
individuals.

Genetic Variants in Simple Enhancers Are Enriched for
Changes in Biochemical Regulatory Activity
Compared with Variants in Complex Enhancers
Given the differences in constraint and complex trait associ-
ated variants between simple versus complex enhancers, we
hypothesized that there would be architecture-related differ-
ences in the effects of variants on gene regulatory biochemical
activity. We tested for enrichment of variants that signifi-
cantly affect biochemical regulatory activity among trimmed
simple and complex architectures. We considered >110,000
common human variants shown to affect regulatory activity
in recent MPRA performed in K562 and HepG2 cells (van
Arensbergen et al. 2019). For both cell lines, variants in anno-
tated enhancers are significantly more likely to have regula-
tory effects than all background variants tested in the assay
(fig. 4B; simple odds ratio [OR] ¼ 1.9; P¼ 2.1e�35 in K562
and OR ¼ 2.3; P¼ 1.6e�66 in HepG2; complex OR ¼ 1.6;
P¼ 1.7e�10 in K562 and OR ¼2.1; P¼ 3.8e�29 in HepG2,
Fisher’s exact test). Simple architectures are more enriched
than complex architectures for variants that significantly af-
fect regulatory activity in both K562 (OR¼ 1.2; P¼ 0.04) and
in HepG2 cells, although the enrichment is smaller (OR¼ 1.1;
P¼ 0.26). We repeated this analysis using only granulocyte
and liver FANTOM enhancers to match the cellular contexts
tested and found even stronger enrichment among simple
enhancers in these data sets (supplementary fig. S20,
Supplementary Material online; liver OR ¼ 1.8; P¼ 0.08
and granulocyte OR ¼ 1.3; P¼ 0.13, Fisher’s exact test).
These findings indicate that common human variants in sim-
ple enhancers are more likely to significantly affect enhancer
biochemical regulatory activity than common variants in
complex enhancers.

Simple Enhancers Overlap TEDS More Often Than
Complex Enhancers
TEDS have enhancer activity across many cellular contexts
(Su et al. 2014; Sundaram et al. 2014; Chuong et al. 2017;
Simonti et al. 2017; Trizzino et al. 2017; Marnetto et al.
2018;). A previous study identified that TE insertions occur
nearby sequence age breaks (Marnetto et al. 2018). We hy-
pothesized that TEDS might have different influences on sim-
ple and complex enhancer architectures, and that TEDS
integration might contribute to sequence patterns observed
in complex architectures. To explore this, we tested TEDS
enrichment in simple and complex enhancers against the
genomic background. To control for length differences, we

evaluated both 310 bp and 1 kb trimmed/expanded
enhancers. Both length-control strategies yielded similar
results, and we present the 310 bp results below. We inter-
sected the enhancers with genome-wide maps of TEDS
(Materials and Methods). We find that 48% of simple
enhancers and 42% of complex enhancers contain TEDS. As
expected from previous reports (Emera et al. 2016; Simonti et
al. 2017), both simple and complex enhancers are depleted of
TEDS compared with architecture-matched genomic back-
grounds. However, we find that complex enhancers are sub-
stantially more depleted (fig. 5A; OR ¼ 0.50 vs. 0.25;
P< 2.2e�308, Fisher’s Exact Test). The majority of enhancer
sequences younger than the Eutherian ancestor contain TEDs
(fig. 5C). Complex enhancers younger than the Therian an-
cestor and simple enhancers younger than the Eutherian an-
cestor highly overlap TEDS. This establishes that patterns in
both simple and complex enhancers are consistent with pre-
vious observations that the majority of young human/pri-
mate cis-regulatory elements contain TEDS (Simonti et al.
2017; Trizzino et al. 2017).

TE Sequences Can Both Nucleate and Remodel
Enhancers
Sequences with regulatory potential have been hypothesized
to nucleate enhancer activity, which can then be expanded
and remodeled by the addition of younger sequences (Emera
et al. 2016). To explore the role of TEDS in this process, we
tested for TEDS enrichment in complex enhancer core
sequences versus younger derived sequences. Overall, com-
plex enhancer cores are depleted of TEDS compared with
derived sequences (fig. 5A and supplementary fig. S21,
Supplementary Material online; OR ¼ 0.56; P¼ 9.7e�89).
We also found strong depletion for TEDS at the centers of
complex enhancers and enrichment at their edges (fig. 5B,
green; median z-score ¼ –0.73 vs. 0.17, inner vs. outer 50%
bins; P¼ 6.4e�18, Mann–Whitney U). These results are con-
sistent with our finding that younger sequences flank older
core sequences in general (fig. 2D), and suggest that TEDS
often contribute younger sequences to complex enhancer
architectures. However, this general trend is largely driven
by old complex enhancers; young complex enhancers (youn-
ger than the Therian ancestor) are enriched for TEDS in their
cores (supplementary fig. S22, Supplementary Material on-
line). By comparison, TEDS are also enriched at the edges of
simple enhancers, though the central regions of simple
enhancers do not show strong TEDS depletion (fig. 5B, right
panel and supplementary fig. S21, Supplementary Material
online). These results support a model where TEDS can
both nucleate and remodel enhancer sequences.

Different TE Families Are Enriched in Simple and
Complex Enhancers
As discussed above, TE insertions can disrupt functional ele-
ments and lead to genome instability. Thus, the probability of
TE insertions gaining gene regulatory activity is influenced by
their genomic sequence context. We hypothesized that
enhancers with different architectures and origins would be
enriched for TEDS from specific TE families. Several TE families
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show biases for simple or complex enhancer architectures at
different evolutionary ages (fig. 5D). Complex enhancers are
consistently enriched across ages for SINE/Alu, DNA/TcMar-
Tigger, and LTR/ERVL-MaLR elements. SINE/Alu elements are
abundant in the Primate lineage (Batzer and Deininger 2002),
but are also frequently observed in complex enhancers with
origins before the Primate ancestor. Integrating young SINE/
Alu TEDS with these older sequences may have altered an-
cient regulatory activity or created new regulatory activity.
Simple enhancers are consistently enriched across ages for
LINE/CR1, LINE1/L1, and LTR/ERVL elements (fig. 5D). LTR/
ERV1 elements are significantly enriched in both older com-
plex and younger simple enhancers, while LINE/L2, DNA/
hAT-Charlie, and DNA/hAT-Tip100 are enriched for younger
complex enhancers and older simple enhancers. This suggests
that these families have contributed sequence to both archi-
tectures during different evolutionary phases. Together, dif-
ferent TE families have contributed to enhancer sequences of
different origins and evolutionary architectures, and some
more often nucleate simple enhancers, while others integrate
into complex enhancer architectures.

Age Architectures of Enhancers Identified by Histone
Modifications Show Similar Trends
Differences in assays commonly used to identify enhancers
influence the sequence resolution, spatiotemporal variability,
and many other attributes of the identified enhancers. Both
eRNA and histone modification patterns provide imperfect
operational definitions for enhancer activity and often dis-
agree with one another (Benton et al. 2019; Gasperini et al.
2020). Given the sequence and temporal specificity of tran-
scribed eRNA enhancers (Tippens et al. 2020), we focused on
them throughout the main text. However, we also evaluated
our main findings with additional analysis of 2,827,573
autosomal enhancers identified by histone-modification
chromatin immunoprecipitation sequencing (ChIP-seq) in
98 cell and tissue contexts from the Roadmap
Epigenomics Mapping Consortium (Roadmap Epigenomics
Consortium et al. 2015). Histone-mark-identified sequences
are more likely to capture an entire regulatory locus, while
eRNA-identified sequences capture specific sub-regions with
high transcriptional activity (Andersson and Sandelin 2020).
Whether the entire length of a putative enhancer sequence is
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necessary and sufficient for endogenous enhancer function
and how this activity is modified by nearby regulatory ele-
ments is an area of active research (Gasperini et al. 2020). In
this section, we summarize results on Roadmap enhancers
and report details in Supplementary Material. Many, but not
all, of our findings are consistent between eRNA and
Roadmap enhancers identified based on ChIP-seq for histone
modifications (supplementary table 1, Supplementary
Material online).

Roadmap enhancers are substantially longer than
FANTOM enhancers (supplementary fig. S23C,
Supplementary Material online; median 2.4 kb vs. 292 bp)
and many times the average length of a syntenic block
(54 bp). Thus, Roadmap enhancers overlap a median four
syntenic blocks (supplementary fig. S24, Supplementary
Material online; range 2–8 syntenic blocks per enhancer
data set), and enhancers made up of a single syntenic block
are rare (2%). To compare Roadmap enhancer architectures
to FANTOM enhancers accounting for these differences, we
took two complementary approaches. First, we quantified the
evolutionary architecture of Roadmap enhancers trimmed to
the median FANTOM enhancer length (310 bp centered on
the middle of the ChIP-peak). Second, we considered the
entire Roadmap enhancer sequence using the same “relative”
simple versus complex architecture criterion as we had ap-
plied to the FANTOM enhancer; enhancers with fewer syn-
tenic blocks than the median over all enhancers in the
context were considered simple (Materials and Methods).
As with the FANTOM enhancers, the trimmed Roadmap
enhancers exhibit enrichment for simple architectures com-
pared with random regions (supplemental fig. 30A; 58% sim-
ple). Under both approaches for analyzing Roadmap
enhancers, relative enrichment for simple versus complex
enhancer architectures varies across contexts (supplementary
figs. S26 and S29, Supplementary Material online). Roadmap
enhancers also recapitulate our main findings that complex
enhancers exhibit older sequence ages in their centers (sup-
plementary figs. S28–S30, Supplementary Material online),
and are more pleiotropic across tissues (supplementary fig.
S31A, Supplementary Material online). This relationship be-
tween complex enhancers and increased pleiotropy was con-
sistent in both adult and developmental tissues
(supplementary fig. S31B, Supplementary Material online).
They also support that purifying selection pressures are
similar between simple and complex architectures (sup-
plementary fig. S32, Supplementary Material online),
while GWAS variant (supplementary fig. S33,
Supplementary Material online), ClinVar pathogenic
annotations (supplementary fig. S34, Supplementary
Material online) and variants affecting biochemical activ-
ity (supplementary fig. S20, Supplementary Material on-
line) more often occur in simple enhancers. Thus,
evolutionary architecture patterns in histone-mark-
defined enhancers largely reflect the findings in tran-
scribed enhancers; however, due to their greater length
histone mark-defined enhancers are rarely of a single evo-
lutionary origin.

Discussion
Here, we evaluate the genomic, evolutionary, and functional
features associated with human enhancers with different evo-
lutionary age architectures. Human transcribed enhancers
have many distinct age architectures—they can consist of
sequence of a single origin or complex composites of sequen-
ces of many different ages. We demonstrate that simple
architectures are favored over complex architectures; how-
ever, these patterns vary by cellular context. Functionally,
simple and complex architectures show differences in
tissue-specific and cross-species activity profiles, but both
architectures experience similar selective constraints by age.
Simple architectures are slightly more enriched for variants
associated with complex traits in GWAS studies, rare patho-
genic variants in ClinVar, and variants that significantly alter
biochemical activity. Sequences derived from TEs are de-
pleted among all enhancers, but they are more depleted in
complex architectures than simple. Nonetheless, these TEDS
provided genomic material for many younger enhancers of
both architectures and many modified older sequences into
complex architectures with enhancer activity. Distinct TE
families are enriched in different architectural contexts.
Thus, TEDS have made important contributions to the evo-
lution of human enhancers with both simple and complex
sequence age architectures. Finally, the consistency of many
of these architecture observations across enhancer sequences
identified from both eRNA and histone modification patterns
(supplementary table 1, Supplementary Material online) sup-
ports their generality.

Our work expands current understanding of enhancer se-
quence evolution in several dimensions. We show that
aspects of the two-step proto-enhancer life-cycle model pro-
posed by Emera et al. are present in enhancers across diverse
tissues and many of our results hold in their original data set
(supplementary figs. S13 and S14, Supplementary Material
online). However, the depletion for complex architectures
among transcribed enhancer sequences suggests that evolv-
ing multi-aged sequence architecture is not necessary for their
function and that the juxtaposition of sequences of different
origins was not the most common evolutionary history for
human transcribed enhancer sequences. Furthermore, several
lines of evidence suggest that simple enhancers are not simply
a snapshot of proto-enhancers in the first step of the en-
hancer life cycle: 1) Simple enhancer sequences are often as
old as complex enhancers. 2) Simple and complex enhancers
of similar ages are under similar levels of purifying selection
pressure. 3) Simple enhancers are enriched for tissue-specific
functions. 4) Simple enhancers are enriched for GWAS var-
iants, pathogenic ClinVar variants, and variants modifying
biochemical activity, implying that simple enhancer variation
contributes to human trait variation and changes in molec-
ular function. Together, these results support that enhancers
with simple evolutionary architectures play important roles in
human gene regulatory biology.

However, simple enhancer sequences may be less evolu-
tionarily stable, as fewer older simple enhancers are observed.
In contrast, complex enhancers may be more functionally
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robust to mutations and evolutionary turnover given their
older ages, increased cross-species activity, and trait-
associated variant patterns. We speculate that younger de-
rived sequences may protect complex enhancers from inac-
tivating mutations. Future biochemical work could address
whether architectural features of complex enhancers may
make them more robust to mutations and resistant to evo-
lutionary turnover.

Our analyses consider sequences with human enhancer
activity, but enhancer activity often turns over between
closely related species (Villar et al. 2015). Thus, we cannot
assume that these sequences have maintained enhancer ac-
tivity since their origin. Highly expressed genes and genes with
more evolutionary stable expression patterns are associated
with enhancers that have conserved activity across species
(Berthelot et al. 2018). When enhancers have evidence of
shared activity across species, we show that they are more
often complex than simple, even when accounting for age.
Many factors likely contribute to this finding. We speculate
that older enhancers (whether simple or complex) are more
likely to regulate genes with more important and evolution-
arily stable expression patterns, and thus experience stronger
purifying selection.

Determining how relationships between pleiotropy, cross-
species activity, sequence length, and purifying selection pres-
sures shape these enhancer age and architecture observations
is challenging. We observed that length is positively correlated
with pleiotropy in both simple and complex enhancers (sup-
plementary fig. S12, Supplementary Material online). Thus, we
tested whether enhancers with higher pleiotropy are under
stronger purifying selection, but found that pleiotropy only
weakly correlates with purifying selection in both architec-
tures and fluctuates with age (supplementary fig. S16,
Supplementary Material online). This suggests that pleiotropy
is not the main driver of enhancer constraint and survival.
Dissection of these relationships while controlling for other
functional variables must be pursued in future work.

To integrate our findings and provide a framework for
future work, we propose a general model for enhancer evo-
lutionary architecture and activity (fig. 6). In our model, in-
spired by Markov models, sequences occupy either simple or
complex architecture states and either active or inactive
states. Genomic events (e.g., substitutions and rearrange-
ments) drive transitions between these states over time.
Based on our results, we propose that certain paths through
the model are common in the enhancer life cycle. Most
sequences that ultimately obtain enhancer activity likely be-
gin as inactive or weakly active sequence segments (fig. 6, left).
Small-scale genomic events, like point mutations, can
strengthen regulatory activity and create simple enhancers
(fig. 6, top right). Examples include human accelerated
regions, such as HACNS1/HAR2, where human-specific sub-
stitutions have created human-specific enhancer activity in
limb bud formation (Prabhakar et al. 2008; Cotney et al. 2013).
TE insertions also give rise to simple enhancers by integrating
sequence with regulatory potential into genomes (Chuong et
al. 2017); for example, the mouse-specific RLTR13

endogenous retrovirus sequence is sufficient to drive gene
expression in rat placental cells (Chuong et al. 2013).

Complex enhancers can emerge from multiple different
evolutionary paths. For example, large-scale (greater than a
few nucleotides) genomic insertions or rearrangements com-
bined with small-scale substitutions may remodel active sim-
ple enhancers into complex enhancers with stronger or
different activity patterns (fig. 6, right). Work in Drosophila
has demonstrated that small-scale substitutions in complex
cross-vein and wing spot enhancers “co-opt” ancestral en-
hancer activity to develop lineage-specific wing pigmentation
patterns (Prud’homme et al. 2006; Koshikawa et al. 2015).
Isolated derived segments in these complex enhancers were
not sufficient to drive enhancer activity during development,
but may function to support lineage-specific enhancer activ-
ity in other ways, such as facilitating cooperative or co-
activator binding (Long et al. 2016). Complex enhancers
can also be created when genomic rearrangements place
weakly active sequences of different origins adjacent to
each other in such a way that these sequences interact
and/or accumulate additional substitutions to create a new
active complex enhancer (fig. 6, bottom right). TE insertions
can facilitate such interactive effects. For example, the inter-
action of a LINE/L2 insertion and flanking sequence formed a
new enhancer that was both necessary and sufficient for driv-
ing increased, lineage-specific GDF6 expression and evolution-
ary changes in armor-plate size in freshwater stickleback
(Indjeian et al. 2016). Older active regulatory sequences

Simple

Inactive

Activation

Remodeling

Complex

Interaction

FIG. 6. Model of enhancer evolutionary architecture change and ac-
tivity. Sequences with the potential to be enhancers (rectangles) can
occupy active or inactive states and have either simple or complex
evolutionary architectures. Sequences transition between these
states as a result of large- and small-scale genomic variants. Inactive
sequences can become simple enhancers through small-scale geno-
mic changes, such as substitutions that increase activity or nearby
chromatin changes that increase accessibility. Complex enhancers
sequences of different evolutionary origins are brought together by
genomic rearrangements. In some cases, the integration of these
sequences and subsequent substitutions produce activity. In others,
already active simple enhancers are remodeled into active complex
enhancers with presumably different activity patterns. Sequences
regularly transition between these states over evolutionary time.
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may protect TEDS from inactivation by the host genome,
creating substrates for complex enhancers to form (Levin
and Moran 2011; Varshney et al. 2015; Elbarbary et al.
2016). Finally, deletions can change or inactivate complex
and simple sequences with enhancer function. For example,
human-specific conserved deletion of a complex enhancer
sequence reduces expression of the androgen receptor and
is correlated with loss of penile spine and sensory vibrissae
anatomy in humans (McLean et al. 2011). Whether complex
enhancers undergo deletions to become simple enhancers is
not known, and we speculate this rarely occurs. Without
experimental dissection, it is currently challenging to trace
the history of functional activity, especially for complex en-
hancer sequences.

We emphasize that most enhancer sequences do not
reach a final stable state; sequences continue to change and
activity turns over rapidly (Villar et al. 2015). Thus, we con-
structed our model (fig. 6) to emphasize that sequences reg-
ularly transition between these states over evolutionary time.
Large comparative regulatory genomics data sets across spe-
cies and tissues are needed to estimate these transition prob-
abilities. Previous comparisons of both conserved non-coding
sequences and TEs suggests that these transition probabilities
are not stable over evolutionary time. Instead, there were
likely different period of regulatory innovation driven by
waves of TE insertions and new cell-signaling modalities
(Lowe et al. 2011; Chuong et al. 2013; Lynch et al. 2015).
The prevalence of simple architectures indicates many
enhancers emerge from a single age, while transitions from
simple to complex architecture challenges the idea that
enhancers maintain a single function. We hope that future
work will enable estimation of rates of simple and complex
enhancer emergence, decay, and turnover across other spe-
cies and over time.

Several limitations must be considered when interpreting
our results. First, sequence age estimates are influenced by the
accuracy of sequence alignment methods, genome quality,
and different rates of sequence divergence across the genome
over evolutionary time (Cooper and Brown 2008; Margulies
and Birney 2008; Capra, Stolzer, et al. 2013). Assembling and
aligning repetitive elements is particularly challenging and
may limit TEDS detection (Ewing 2015). Thus, our estimates
should be viewed as lower bounds on the actual sequence
age. Second, our analyses are limited by the availability and
concordance of enhancer data sets. Histone-modification-
based ChIP-seq measurements and quantification of eRNA
transcription produce enhancer boundary estimates with dif-
ferent resolution and expected functional properties
(Andersson et al. 2014; Benton et al. 2019; Tippens et al.
2020) Whether eRNA transcripts represent local enhancer
units within larger, multi-cluster chromatin regions, or even
sub-regions within “super enhancers” is not resolved (Hay et
al. 2016; Moorthy et al. 2017). Further, current enhancer def-
initions in tissue-level data sets do not capture underlying
cellular heterogeneity in epigenetics and expression (Carter
and Zhao 2020). Similarly, our cross-species activity analysis is
limited by the number of tissues and species assayed, which
reduces our power to detect conserved activity. Third, we are

limited in our knowledge of human-trait and disease-
associated variants. GWAS-variant enrichment reflects tag
SNPs and LD-linked loci associated with measurable common
human traits; whether the mechanisms underlying their asso-
ciations to disease pathology or trait variation are mediated
by enhancer activity is not clear. The ClinVar variant enrich-
ment analyses are limited by the small number of known
pathogenic noncoding variants. As a result, these analyses
were underpowered, and the trends for associations between
simple architectures and pathogenic variants in both data
sets did not reach common thresholds for statistical signifi-
cance. Finally, we do not explore sequence-level features that
distinguish simple and complex architectures. We envision
that a thorough analysis of sequence features (e.g., binding
site motifs) will reveal distinct sequence patterns between
evolutionary periods and evolutionary architectures.

In conclusion, we defined evolutionary architectures of
human enhancers and related them to function and genetic
variation. Evaluating these architectures revealed different
evolutionary origins and evolutionary trajectories among hu-
man enhancer sequences. Based on these results, we present a
model of enhancer sequence evolution that encompasses the
multiple possible evolutionary trajectories. Our work provides
a foundation for future studies that dissect the relationships
between enhancer evolutionary architecture, sequence pat-
terns, and the consequences on function and noncoding var-
iation in the human genome.

Materials and Methods

Syntenic Block Aging Strategy
The genome-wide hg19 46-way vertebrate multiz multiple
species alignment was downloaded from the UCSC genome
browser. Each syntenic block was assigned an age based on
the MRCA of the species present in the alignment block in
the UCSC all species tree model (fig. 1A). For most analyses,
we focus on the MRCA-based age, but when a continuous
estimate is needed we use evolutionary distances from
humans to the MRCA node in the fixed 46-way neutral spe-
cies phylogenetic tree. Estimates of the divergence times of
species pairs in millions of years ago (Ma) were downloaded
from TimeTree (Hedges et al. 2015). Sequence age provides a
lower-bound on the evolutionary age of the sequence block.
Sequence ages could be estimated for 93% of the base pairs
(bp) in the human genome.

eRNA Enhancer Identification, Aging, and
Architecture Assignment
We considered enhancers called from eRNAs identified across
112 tissue and cell lines by high-resolution cap analysis of gene
expression sequencing (CAGE-seq) carried out by the
FANTOM5 consortium (Andersson et al. 2014). This yielded
a single set of 30,438 autosomal enhancer coordinates. We
assigned enhancer ages by intersecting their genomic coor-
dinates with aged syntenic blocks using Bedtools v2.27.1
(Quinlan and Hall 2010). Syntenic blocks that overlapped at
least 6 bp of an enhancer sequence (reflecting the minimum
size of a TFBS [Lambert et al. 2018]) were considered when
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assigning the enhancer’s age and architecture. We considered
enhancers with one syntenic age as “simple” enhancer archi-
tectures and enhancers overlapping more than one syntenic
age as “complex” enhancer architectures. Given that some
enhancers are composed of multiple sequence ages, we
assigned complex enhancer age according to the oldest age.
Sequences without an assigned age were excluded from this
analysis.

From the human syntenic blocks that could be assigned
ages, the plurality (44%) are derived from the placental
(Eutherian) ancestor, while 40% are younger than the placen-
tal ancestor, and 16% are older (supplementary fig. S3A,
Supplementary Material online). This result was consistent
with syntenic age estimates using hg38 and 100-way species
alignments (Marnetto et al. 2018). Younger syntenic blocks
are generally longer than older syntenic blocks (median
128 bp for Primate-specific blocks vs. 42–66 bp for older syn-
tenic blocks) (supplementary fig. S3B, Supplementary
Material online).

ChIP-Peak Enhancer Identification, Aging, and
Architecture Assignment
We explored the architectures of enhancers identified by the
Roadmap Epigenomics Mapping Consortium (Roadmap
Epigenomics Consortium et al. 2015) across 98 cellular con-
texts. Roadmap defined enhancers from histone modification
chromatin immunoprecipitation (ChIP-seq) peaks by sub-
tracting H3K4me3þ peaks from H3K27acþ peaks to exclude
active promoters. This resulted in 2,827,573 predicted auto-
somal enhancers. Enhancers <10 kb in length were consid-
ered. Roadmap enhancers were assigned ages as described
above for the FANTOM enhancers. Because of increased
ChIP-peak lengths, most absolute simple enhancers (i.e.,
enhancers of a syntenic age) are rare (2%). To account for
the differences in the number of possible underlying syntenic
blocks, we considered enhancers with less than the median
number of syntenic blocks per enhancer (typically one or
several syntenic blocks) as “simple” enhancer architectures,
while enhancers overlapping equal to or more than the me-
dian number of syntenic blocks of different ages have
“complex” enhancer architectures. Four age segments per
enhancer was the median for multiple Roadmap data sets
(supplementary fig. S24, Supplementary Material online),
though there was some variation in the median number of
age segments per data set.

Trimming and Expansion of ChIP-Peak Enhancer
Lengths
For some analyses, we trimmed or expanded Roadmap
enhancers to 310 bp to equalize enhancer lengths between
ChIP-seq and eRNA sets. However, trimming ChIP peak
sequences has limitations. First, it assumes peak centers rep-
resent the most stable segment of the enhancer sequence.
Second, we exclude flanking sequences that may be impor-
tant for opening chromatin or recruiting transcriptional ma-
chinery. Third, it may bias analysis of complex enhancers
toward older sequences, as older sequence ages tend to occur
at enhancer centers. Finally, multiple active enhancer

subregions might be dispersed throughout a peak or consti-
tute superenhancers.

Human Syntenic Block PhastCons Conservation
PhastCons vertebrate hg19 conserved elements were down-
loaded from the UCSC genome browser (last accessed April 1,
2017) (Siepel 2005). PhastCons elements were assigned ages
using the same MRCA-based strategy described for
enhancers. As expected, sequence age is correlated with se-
quence conservation (R2 ¼ 0.82; P¼ 0.009), since sequence
homology is the basis for estimating both sequence age and
sequence conservation. However, these metrics capture com-
plementary information about regions of interest. Sequence
conservation summarizes the evidence that purifying selec-
tion has acted on the region, and conserved sequences have
high similarity across species. Sequence age estimates a lower
bound on the evolutionary origin of a sequence and can be
assigned both to conserved sequences and neutrally evolving
sequences with lower sequence identity among species. For
example, only 35% of the oldest syntenic blocks have signif-
icant evidence of evolutionarily conservation (Vertebrate
PhastCons overlap, supplementary fig. S3C, Supplementary
Material online). In other words, not all old sequences have
evidence of significant conservation. Thus, even though neu-
trally evolving sequences become more difficult to accurately
age with time (such that age reflects a lower bound estimate
of sequence origin), sequence age provides complementary
information about sequences shared among vertebrates.

Background Random Genome Regions and
Architectures
For FANTOM enhancers, 100 random shuffles of the genomic
regions in each data set of interest (e.g., cellular context) were
performed using BEDTools. For Roadmap enhancers, each of
the 98 tissue data sets was shuffled 10 times, resulting in 980
shuffled data sets total. The shuffled sets were matched on
chromosome number and enhancer length, and they ex-
cluded both Ensembl exon coordinates (supplementary fig.
S28, Supplementary Material online) and ENCODE blacklist
regions and genomic gaps as defined by the hg19 UCSC gaps
track (Amemiya et al. 2019). Random genomic regions were
then assigned ages and architectures with the same strategy
used for enhancers described above (supplementary fig. S1,
Supplementary Material online). We calculated enrichments
by comparing the observed enhancer age and architecture
distribution with the expectation from the appropriate sets of
shuffled regions.

Enhancer Pleiotropy
To account for the effects of enhancer architecture length
differences in quantification of enhancer activity across bio-
logical contexts, FANTOM enhancers were trimmed around
their midpoints to the mean length of all enhancers in the
data set (310 bp). Roadmap enhancers were similarly
trimmed to the mean length per data set. Trimmed enhancer
data sets were intersected with 112 FANTOM eRNA tissue
facets and cell line data sets or with 98 Roadmap ChIP-seq
data sets using BEDTools multi-intersect command. We
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considered an enhancer pleiotropic when at least 50% of the
enhancer length overlapped enhancers in other contexts.

Cross-Species Enhancer Activity
Human liver enhancers from a cross-species analysis of ver-
tebrate livers (Villar et al. 2015) were assigned ages and archi-
tectures. Briefly, the authors used pairwise lastZ alignments to
determine the sequence conservation of H3K27acþ
H3K4me3– peaks from nine placental mammal livers.
Sequence conservation was required to map peak accessibil-
ity in both species. The authors then evaluated whether
sequences were found in active chromatin of either or both
species in order to call cross-species activity. In other words,
sequence must be sufficiently conserved to identify cross-
species activity. Simple architecture was assigned to
enhancers with <5 age segments, as five was the median
number of age segments in this data set. To account for
length differences, complex enhancer lengths were matched
to the simple enhancer lengths (N¼ 11,799 and N¼ 12,357
matched-length complex and simple enhancers).

Further, we leveraged a H3K27ac ChIP-seq data set assayed
in developmental mouse, rhesus macaque, and human neo-
cortex samples from Reilly et al. (2015). The Emera et al data
set is derived from the Reilly et al. data set and filtered on
human–mouse active enhancer overlap and alignment.
Sequence conservation was required to determine if ChIP-
peaks were active across species. Enhancer sequences were
assigned ages and architectures. Simple architectures were
defined as enhancers with <5 age segments per element
(data set-wide median number of age segments). Enhancer
architectures were matched on length for analysis of cross-
species activity (N¼ 17,670 simple and N¼ 22,506 complex
enhancers).

Enhancer Sequence Constraint
LINSIGHT scores were downloaded from http://compgen.
cshl.edu/�yihuang/LINSIGHT/ (last accessed August 1,
2019). LINSIGHT provides per base pair estimates of negative
selection (Huang et al. 2017). Enhancers were intersected with
LINSIGHT base pair estimates. 46-way hg19 vertebrate
PhastCons elements were downloaded from the UCSC ge-
nome browser. Enhancers overlapping any PhastCons ele-
ment by at least 6 bp were considered conserved.

GWAS Catalog Enrichment
Enrichment for overlap with 55,480 GWAS Catalog variants
(P< 5e�8) from 2601 traits (last downloaded September 24,
2019) (Buniello et al. 2019) were linkage disequilibrium ex-
panded (r2 ¼1.0) using European 1000 Genome phase refer-
ence panels (The 1000 Genomes Project Consortium 2015).
Enrichment was tested by comparing the observed overlap
for a set of regions of interest with overlaps observed across
100 shuffled sets matched on length, sequence age architec-
ture, and chromosome. Median fold-change was calculated
based on the GWAS Catalog variants overlapping enhancer
architectures compared with these random genomic sets.
Confidence intervals (CI ¼ 95%) were generated by boot-
strapping the 1,000 random genomic fold-change values

10,000 times. P-values were corrected for multiple hypothesis
testing by controlling the false discovery rate (FDR) at 5%
using the Benjamini–Hochberg procedure.

ClinVar Variant Enrichment
ClinVar variants in VCF format were downloaded from ftp://
ftp.ncbi.nlm.nih.gov/pub/clinvar/ (last downloaded February
12, 2019). Trimmed FANTOM and Roadmap enhancers were
intersected with ClinVar variants. FANTOM enhancers over-
lapped 21 annotated variants total (n¼ 9 simple, n¼ 12
complex). Among 98 Roadmap tissue enhancer sets, non-
exonic enhancers overlapped 24 annotated ClinVar variants
(n¼ 7 simple, n¼ 17 complex). ClinVar variants were con-
sidered pathogenic if annotated with the term “pathogenic”
and excluded if annotated with the term “conflicting.” Similar
inclusion and exclusion criteria were used for “benign” and
“protective.” The fraction of annotated variants per architec-
ture was estimated as the number of “pathogenic,” “benign,”
or “protective” annotations versus all ClinVar variants over-
lapping that architecture.

eQTL Enrichment
Enrichment for GTEx v6 eQTL from 46 tissues (last down-
loaded July 23, 2019) (GTEx Consortium 2017) in enhancers
with simple and complex architectures was tested against a
null distribution determined by shuffling observed enhancers
using the same strategy as described for GWAS variant
enrichment.

MPRA Data
Results from recent MPRAs (van Arensbergen et al. 2019)
were downloaded. Significant changes in MPRA activity and
p-values were calculated by the authors using a Wilcoxon
rank-sum test with a 5% FDR separately identified in K562
and HepG2 cell lines. Trimmed enhancers were intersected
with alleles tested in MPRA. Ninety-five percent confidence
intervals were estimated with 1,000 bootstraps. Fisher’s Exact
Test was used to estimate the odds an allele with significant
changes in MPRA activity occurred in a specific architecture
compared with the background set of alleles that do not
overlap enhancers. Significant allele overlap was also com-
pared between simple and complex enhancer architectures
to estimate an OR of enrichment.

TEDS Enrichment
TEDS identified by RepeatMasker were downloaded from the
UCSC genome browser and liftedOver to hg19 from hg38
(last downloaded April 14, 2018). Trimmed enhancers
(310 bp) were intersected with TEDS coordinates. TEDS over-
lapping enhancers �6 bp were evaluated further for enrich-
ment in FANTOM enhancers of different ages. Enrichment
was estimated as the number of TEDS in enhancer architec-
tures compared with random-shuffled regions matched on
both length and architecture using Fisher’s Exact Test. We
compared enrichment between core and derived segments of
complex enhancers by using Fisher’s Exact Test on TEDS
overlap counts in core and derived syntenic blocks. To esti-
mate TEDS family enrichment in enhancers with different
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sequence age architectures, we compared the number of
simple/complex enhancers overlapping a TEDS family with
the number of simple/complex architectures overlapping any
other TEDS family of that age. Enrichment significance was
evaluated using Fisher’s Exact Test and FDR controlled at 10%.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Reilly (Reilly et al. 2015)—GSE63649.

Hg19 46-way vertebrate species multiz alignment—https://
hgdownload.soe.ucsc.edu/gbdb/hg19/multiz46way/

LINSIGHT (Huang et al. 2017)—http://compgen.cshl.edu/
LINSIGHT/LINSIGHT.bw

Phastcons—https://genome.ucsc.edu/cgi-bin/hgTrackUi?
db¼hg19&g¼cons46way

Van Arensbergen (van Arensbergen et al. 2019)—GSE128325.

GWAS (Buniello et al. 2019)—https://www.ebi.ac.uk/gwas/
api/search/downloads/full

ClinVar (Landrum et al. 2018)—https://ncbi.nlm.nih.gov/
pub/clinvar/vcf_GRCh37/

Repeatmasker—http://genome.ucsc.edu/cgi-bin/hgTrackUi?
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All data analysis scripts are available at: https://github.com/
slifong08/enh_ages/tree/master/age_arch
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