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ABSTRACT: We establish a computational approach to extract the
bending modulus, KC, for lipid membranes from relatively small-scale
molecular simulations. Fluctuations in the splay of individual pairs of lipids
faithfully inform on KC in multicomponent membranes over a large range
of rigidities in different thermodynamic phases. Predictions are validated
by experiments even where the standard spectral analysis-based methods
fail. The local nature of this method potentially allows its extension to
calculations of KC in protein-laden membranes.

Elastic properties of lipid membranes have been suggested
to play a critical role in the function and organization of

membrane proteins.1−4 Yet, a detailed understanding of how
the mechanical properties of the lipid bilayer matrix regulate
membrane associated proteins is currently missing. A major
obstacle in making this link is the lack of robust methodologies
able to reliably quantify elastic parameters, such as the bending
rigidity, KC, for membranes of different lipid compositions and
in different fluidity states (i.e., thermodynamic phases). In this
Letter, we establish a general computational approach to
determine KC for multicomponent membranes over the entire
biologically relevant range of rigidities (in different thermody-
namic phases) and illustrate its advantage over currently
existing computational methodologies used to extract bending
modulii from molecular simulations.
In the past decade, the spectral analysis of bilayer undulations

in simulated lipid membranes has emerged as an attractive
method for calculating bilayer bending rigidities.5−11 In this
approach, thermally excited fluctuations in the bilayer interface
shape u(x,y) of a pure lipid membrane are sampled in the
course of a molecular dynamics (MD) trajectory, and the
energy cost for bilayer deformations is expanded to lower order
terms in u(x,y), according to the Helfrich continuum
description.12 Analysis of the bending rigidity from the bilayer
undulations is then performed in Fourier space in terms of the
two-dimensional reciprocal space vector q ⃗. The bending
modulus is obtained by realizing that, by the equipartition
theorem, the spectral amplitude profile ⟨u2(q)⟩ for the small-q
modes scales as (kBT/ABOX) × KC × q−4, where ABOX represents
the lateral area of the simulation box.5,7

This method has been mostly applied to single-component
phospholipid membranes in the disordered (fluid) phase (Ld)
and was shown to give KC values that matched well with
experiments.5−7,9 However, several limitations of the method
have emerged. Specifically, the size of the simulated membrane
patch under consideration should be large enough (typically
>1000 lipids) to allow for sustained long-wavelength (low q)
undulations, and in addition the simulation trajectory subject to
the spectral analysis must be sufficiently long to efficiently
sample shape fluctuations.5,6 Due to these limitations, a
statistical error of 20−25% for the bending modulii values
predicted in this way has been reported.6 Importantly, for
cholesterol-enriched liquid ordered (Lo) membranes, where the
bilayer bending rigidity is expected to be particularly high (>60
kBT), the bending constants obtained with the spectral analysis
appear to be significantly underestimated6,10 (as we also discuss
in the following).
Recently, taking advantage of the relationship between the

bending deformations of a lipid bilayer and the deformation
modes originating from lipid splay and tilt, a new class of
methods that rely on fluctuations in lipid tilt and splay from
molecular simulations has been introduced.10,13−15 Thus,
Watson et al.15 suggested modifying the spectral analysis
approach to sample in Fourier space the fluctuations in lipid tilt
instead of undulations of membrane shape. This allowed for
accurate bending constant calculations even when simulations
of rather small membrane patches (∼400 lipids) were involved.
However, the application of this method has been as well
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limited to reports on single-component membranes in the
relatively soft Ld phase, as the extension of the method to
determine KC for multicomponent lipid mixtures has yet to be
illustrated on specific examples.
We have been using a molecular-level approach to follow in

MD simulations the fluctuations in tilt of all membrane
components, and of the splay of all possible pairs of molecules
in the membrane.10,14 These probability distributions, in turn,
allow one to derive splay and tilt modulii for each molecule or
molecular pairs, respectively. In contrast to methods that rely
on a spectral analysis of lipid tilt,15 the analysis at the molecular
level is inherently local in nature and therefore can easily extend
to mixtures of any number of membrane components.
Specifically, by calculating the probability of different molecular
encounters, the contributions of the different splay terms to the
overall rigidity can be determined. This is crucial, because one
of the potential advantages for the tilt fluctuation-based
methodology is its ability to predict even high membrane
rigidities, which are typical for biologically relevant multi-
component lipid mixtures that contain cholesterol in addition
to several types of lipids (saturated and unsaturated).16

Prominent examples, as pointed out above, are the cholester-
ol-rich Lo phases, or membrane microdomains (“rafts”)17 that
are expected to have similarly high rigidities.
In this Letter, we show that extensions of our molecular-

based method can be used to derive accurate bending rigidities
for multicomponent membranes over a wide range of values,
reaching even very high values of bending constants (KC ≈ 100
kBT). We show that these predictions fit well the experimentally
determined values. To contrast, the traditional spectral analysis
technique fails to derive similar predictions for the same (or
even larger) membrane patches and simulation times. This sets
the molecular-based method in a unique position to faithfully
determine bending constants of single or multicomponent
membranes over the entire biologically relevant range of
rigidities with relative computational ease.
The starting point for our framework is a well equilibrated

trajectory from MD simulations of a lipid membrane containing
Nlip different molecular (lipid) species. In principle, the system
could also contain membrane-associated proteins, but for
simplicity in this Letter we focus on pure membrane systems
(the possible extensions to protein-decorated membranes are
discussed below). The molecular representation of the system
can vary from all-atom lipid bilayers immersed in explicit
solvent, to a coarser description, where atoms on lipid and
solvent components are grouped into coarse-grained beads. To
demonstrate that the methodology performs equally well under

different molecular representations, we present results from
comparative MD studies using two distinct descriptions applied
to bilayers having the same lipid compositions (see Table 1):
first, all-atom (AA) represented lipid membranes in an explicit
water environment (simulated with the NAMD 2.9 package18

and with the CHARMM36 lipid force field19) and, second,
membranes represented by the Martini coarse-grained (CG)
force field.20 To illustrate the versatility of our approach, we
studied several complex ternary lipid mixtures composed of a
saturated component (either DPPC (dipalmitoylphosphatidyl-
choline), or DSPC (distearoylphosphatidylcholine) lipid), an
unsaturated component (DOPC, dioleoylphosphatidylcholine,
lipid), and cholesterol (Chol). Simulating various concentration
and temperature conditions allows studies of these mixtures in
both the fluid Ld and liquid-ordered Lo phases

21,22 (Table 1).
Because it relies only on spatially localized molecular

encounters, one advantage of our approach is that it allows
one to use as input relatively small simulated lipid patches
without compromising the evaluated value of the bending
modulus. The results presented below are for bilayers
containing 400−500 lipids in total, but we found the bending
modulus values calculated from converged 128-lipid size
patches to be within 1% of those obtained with 400−500
lipid-size membranes (see Table S1 in the Supporting
Information). In fact, the only requirement for reliable
determination of the bending rigidities with our method is to
start with a trajectory in which the model membrane patch
satisfies its experimentally validated structural properties, and
for which the tilt and splay distributions are statistically well
sampled.
To extract the elastic constant, KC, from the MD trajectory,

we take advantage of the fact that, as previously noted,14 the
bending deformation mode in a lipid bilayer is closely related to
the splay modulus, χ12, associated with the free energy cost for
splaying one lipid molecule with respect to another. Therefore,
we proposed that by calculating χ12 for all possible pairs of
lipids and by appropriately weighting the corresponding splay
contributions, it should be possible to obtain the macroscopic
bending modulus parameter. To average these χ12’s, we follow
the analogous weighting of Kozlov and Helfrich23 for the
bending rigidity of mixed membranes with several components,
where each has its own KC when it is pure. Then, weights for
each splay component are taken with proportion to the number
of molecular encounters found in the simulations. This is
somewhat similar to the weighting previously proposed for
calculating the spontaneous curvature of binary surfactant
mixtures.24 Here, we generalize our formulation to lipid

Table 1. Lipid Systems Studied by MD Simulationsa

DOPC/DPPC/CHOL DOPC/DPPC/CHOL DOPC/DSPC/CHOL DOPC/DSPC/CHOL

Ld Lo Ld Lo

0.66:0.19:0.15 0.12:0.58:0.3 0.74:0.09:0.17 0.12:0.56:0.32

T = 15 °C T = 15 °C T = 22 °C T = 22 °C

ALL-ATOM (AA) NT = 400 NT = 400 NT = 400 NT = 400
t = 60 ns t = 60 ns t = 60 ns t = 60 ns

Martini Small (MS) NT = 512 NT = 512 NT = 512 NT = 512
t = 16 μs t = 16 μs t = 16 μs t = 18 μs

Martini Large (ML) NT = 2048 NT = 2048 NT = 2048 NT = 2048
t = 6 μs t = 6 μs t = 6 μs t = 6 μs

aT, simulation temperature; NT, number of lipids in the simulation; t, trajectory durations (neglecting initial equilibration phases) used for the
analysis.
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mixtures with an arbitrary number of components, and suggest
the following heuristic approximation for calculating the
monolayer bending modulus km = KC/2 from MD trajectories
based on the molecular pairwise splay contributions:

∑
φ

φ

χ
=

⟨ ⟩k
1 1

i j

ij
ij

m total , 12 (1)

In the above, χ12
ij denotes the splay modulus for the ijth pair

type and φij is the number of near-neighboring ij encounter
pairs, obtained directly from MD trajectories; finally, φtotal =
∑⟨i,j⟩φij represents the total number of encounters in the
simulation for all possible pairwise contributions ⟨i,j⟩ for which
the splay is calculated (for example, there are 0.5Nlip(Nlip + 1) =
6 such ij types of contributions for ternary mixtures). We note
that the expression in eq 1 is analogous to the Reuss averaging
used in effective medium theories for estimating the stiffness of
composite biomaterials under uniform stress,25 which is most
applicable to fluid mixtures. We also point out that for the
special case of a single-component lipid bilayer, the expression
in eq 1 simply represents the bending rigidity of the respective
pure lipid membrane, as previously reported in ref 14.
To obtain χ12, we first define local lipid director vectors t ⃗ in

the following manner26 (see Figures S2 and S3 in the
Supporting Information): for PC lipids in the all-atom
representation, t ⃗ is the vector that connects the midpoint
between the phosphate and backbone C2 atoms to the
geometric center-of-mass of the three terminal carbons on
the two lipid chains; in CG Martini simulations, t ⃗ for lipids is
defined as the vector connecting the geometric center-of-mass
of PO4, GL1, and GL2 beads with the geometric center-of-
mass of the terminal carbon beads on the two lipid tails. For
cholesterol, in the all-atom representation the director vector
joins C3 and C17 atoms, and in the CG description, t ⃗ connects
R1 and R5 ring beads. We note that taking somewhat different
definitions of t ⃗ vectors (as described for example in ref 26) kept
the bending modulus values within the uncertainties reported
in Table 2 (see Figure S4 in the Supporting Information).
In the next step, we evaluate the probability distributions

P(α) of the angle α between different t ⃗ vectors, i.e., between all
possible lipid/lipid and lipid/cholesterol pairs. Since, according
to the Helfrich continuum theory,27−29 in the region of small θ
lipid tilt angles (θ being defined as the angle between the vector
t ⃗ and the bilayer normal), the free energy of lipid splay is
proportional to (∇·θ)2, the P(α) probability distributions
contain only those pairs for which at least one of the participant
molecules is tilted by no more than θ = 10° angle with respect
to the bilayer normal. Then, it is possible to obtain χ12 from
P(α) by performing a quadratic fit in the interval of small α
angles to the function PMF(α) = −kBT ln[P(α)/sin α], which

describes the two-molecule potential of mean force for splay.
Then, χ12’s correspond to the coefficients yielding the best fit.14

Figure 1 illustrates this procedure for the example of the Chol/
saturated lipid pair in DOPC/DPPC/Chol and DOPC/DSPC/
Chol mixtures simulated in Ld and Lo phases with CG force
fields (see Table 1 for system definitions).
Figure 2 shows calculated splay modulii for all six molecular

pairs in the Martini CG simulations of the studied mixtures

Table 2. Bilayer Bending Modulus (KC, in kBT Units) for Different Compositions Obtained from the MD Simulations and OS
Experiments

DOPC/DPPC/CHOL DOPC/DPPC/CHOL DOPC/DSPC/CHOL DOPC/DSPC/CHOL

Ld Lo Ld Lo

ALL-ATOM (AA)a 34 ± 3 97 ± 4 30 ± 2 105 ± 5
Martini Small (MS)a 26 ± 3 64 ± 4 24 ± 3 89 ± 4
Martini Large (ML)b 23 ± 7 39 ± 8 27 ± 7 44 ± 7
OS experimentsc 44(+40/−18) ≥100 34(+19/−10) ≥100

aThe bending constant values were determined from the approach based on fluctuations in the lipid splay. bThe bending constant values were
determined from the spectral analysis method (see also Figure S8 in the Supporting Information). cFor the estimation of the error bars from the OS
measurements, see Methods and Figure S1 in the Supporting Information.

Figure 1. (Top) Normalized probability densities P(α) of finding a
pair of cholesterol and saturated lipid (DPPC or DSPC in the
respective systems) at an angle α with respect to each other. The data
shown are obtained from Martini simulations of DOPC/DPPC/Chol
and DOPC/DSPC/Chol mixtures in the Ld and Lo phases (MS
simulation set in Table 1). To limit the analysis to near neighbors, for
these calculations, only molecules (pairs of Chol) within 10 Å of each
other were included, and consideration was given only to those pairs
for which at least one of the molecules was tilted by no more than θ =
10° angle with respect to bilayer normal (see text). (Bottom) Potential
of mean force profiles (solid curves) calculated from the P(α)
distributions (see text). Dashed lines represent the best quadratic fits,
from which the corresponding splay moduli χ12 were calculated (see
Figure 2). Fits for the Lo and Ld systems were performed in α ∈ [5;20]
and α ∈ [10;30] angular intervals, respectively, to limit the fit to a low
angle regime and yet include the best sampled regions in the P(α)
distribution profiles. For each fitting procedure, the quality of the fit
was assessed by the reduced chi-squared parameter, which typically
was found to be low (10−3 to 10−4), signifying the good quality of the
quadratic fit.
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(MS simulation set in Tables 1 and 2). Table 2 compares the
resulting KC values obtained from the MS and AA simulations
as well as those obtained from the osmotic stress (OS)
experiments on the same mixtures and under the same
composition−temperature conditions (see Supporting Meth-
ods for details of the OS experiments). Overall, KC values
determined from the simulations by using the molecular splay-
based methodology (AA and MS rows in Table 2) are in
quantitative agreement with the experimentally determined
bending rigidities (OS row in Table 2) both in Ld and in Lo
phases. The OS data indicate that the bending rigidities of
DOPC/DPPC/Chol and DOPC/DSPC/Chol mixtures vary
several fold between the Ld and Lo phases and in the liquid
ordered phase reach values as high as ∼100 kBT, consistent with
earlier experimental measurements on various binary lipid
mixtures in the liquid ordered phase.30,31 Strikingly, the
experimental measurements reveal that the addition of
relatively small amounts of saturated lipids (9% DSPC or
19% DPPC) to DOPC/Chol mixtures in the fluid phase
significantly stiffens these bilayers, as the KC values for the
ternary mixtures in the Ld phase are appreciably higher than the
bending rigidities (∼18 kBT) reported for fluid DOPC/Chol
mixtures in the 0−30% Chol concentration range.30 We note
that uncertainties in the experimental KC data are large due to
the reduction of bending fluctuations in the presence of
cholesterol. Therefore, for Lo phases that are enriched in
cholesterol and the saturated lipid, we were only able to
determine a lower limit of KC ≥ 100 kBT.
As revealed from Table 2, our computational methodology

not only faithfully captures the experimentally determined
trends, but also predicts KC in remarkable agreement with the
experimental values over the entire range of bending rigidities.
Only for the DOPC/DPPC/Chol mixture in the Lo phase
simulated with the Martini force field did our method yield
lower values (64 ± 4 kBT) than the experimentally measured

bending rigidity. The KC value determined for the same system
in the AA representation (97 ± 6 kBT) was within the
uncertainties of the OS data. This discrepancy, as well as the
general tendency for the Martini-based simulations to yield
somewhat smaller values for KC compared to the AA data (yet
still within experimental uncertainties) likely results from the
different representation of DPPC and longer-tailed DOPC and
DSPC lipids under AA and Martini force fields. (Note that in
the all-atom description, 16-carbon palmitoyl tails are shorter
by two methylene groups compared to 18-carbon stearoyl or
oleoyl chains, but in Martini the difference between 16- and 18-
carbon chains is magnified by the presence of an additional CG
bead in the 18-carbon tails that usually represents not two but
three to four heavy atoms.)
Importantly, in both AA and Martini simulations our method

reliably captures the experimentally measured dramatic (at least
3-fold) increase in KC between the Ld and Lo phases. To test
whether these trends in the bending rigidity are detectable
using the standard spectral analysis approach (described
above), we performed the undulation-based analysis for
trajectories of large (2048 lipid) membrane patches of the
same lipid composition simulated with the Martini CG force-
fields (ML simulations in Tables 1 and 2) and extracted the
corresponding elastic constants (see Supporting Methods). As
shown in Table 2 (ML row), this methodology predicted KC
values in quantitative agreement with the OS data in the Ld
phase but failed to do so for the Lo phase mixtures. Using the
spectral undulation analysis, the increase in the predicted
bending rigidity compared to the fluid phase was less
pronounced, and at most 1.6-fold higher. In addition, in
agreement with previously reported studies (see, for example,
ref 6), the bending rigidity values calculated with this analysis
could only be determined with relatively large uncertainties,
especially in the Lo phase.
The underestimation of the bilayer bending rigidity with the

spectral analysis method in the liquid ordered phases has been
reported before6,10 and can be explained by the fact that this
technique generally relies on extensive sampling of membrane
undulations. But such deformation modes are highly sup-
pressed in the Lo phase membranes due to cholesterol’s
stiffening effects (as also seen experimentally) and therefore
hardly assessed in the simulations, even for significantly large
bilayer patches subjected to very long simulation times, as is the
case here. On the other hand, the improved methodology we
have established takes advantage of the localized splay
deformation modes between pairs of molecules. In fact, the
lipid splay is the most significant microscopic mode of
deformations that drives global membrane response to
bending.15,26,27 Therefore, inherently local in nature, the
presented analysis based on the lipid splay should be universally
applicable to membranes of arbitrary lipid composition
irrespective of the thermodynamic phase (i.e., bending rigidity
regime).
Another unique aspect of our methodology is that it offers a

quantitative view of how splaying of different pairs of molecules
in multicomponent lipid mixtures contribute to the overall
bending rigidity. As an illustration, in Figure 2 we show the
splay modulii, χ12, for all the molecular pairings in the simulated
mixtures (the data were collected from the MS simulation set).
The plot reveals that, in contrast to the Ld phase where various
pairs contribute to the bending rigidity equally (no detectable
difference in χ12 among different pairs), in the Lo phase several
molecular pairings clearly show a higher impact on overall

Figure 2. Splay modulii χ12 for all the possible molecular pairings
derived from Martini simulations of DOPC/DPPC/Chol and DOPC/
DSPC/Chol mixtures in the Ld and Lo phases (MS simulation set in
Table 1). The data for different pairs are shown in the following
colors: Chol/Chol in red, DOPC/DOPC in green, pairs of saturated
lipids (either DPPC or DSPC in the respective systems) in blue, Chol/
DOPC in purple, pairs of Chol and saturated lipid in cyan, and the
DOPC with saturated lipid pair in black. Error bars represent the
standard deviations obtained from fits (see Figure 1) performed in
different angular intervals and on different trajectory segments (see
Supporting Material for more details).
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rigidity. Indeed, pairs that involve cholesterol and saturated
lipid (Chol/Chol, Chol/Sat Lip, and Sat Lip/Sat Lip) are
characterized by relatively large χ12’s compared to the others,
indicating a higher free energy cost for splaying these pairs.
Interestingly, Unsat Lip/Unsat Lip and Chol/Unsat Lip pairs
are the “softest” for splay deformations, as their respective χ12’s
were the lowest. These trends are in line with the cholesterol
aligning field concept introduced recently (reviewed in ref 14),
which suggests that upon increasing Chol concentration, sterol
molecules transition from a “laying down” (in fluid
membranes) to “standing up” configuration (in relatively
ordered bilayers).13 This nematic-like arrangement of sterols
under Lo conditions produces a strong aligning field
quantifiable by the large tilt modulus of the membrane
components (see Figure S5 in the Supporting Information).
As we showed recently for binary PC/Chol mixtures14 and
illustrate here for the ternary systems, this sterol orientational
field has a strong effect on the alignment of saturated lipids
(high tilt modulii in Figure S5 for saturated lipids in Lo

mixtures). Taken together with the splay modulus data, our
results suggest that the strong orientational coupling between
cholesterol and saturated lipids in the liquid ordered phase
determines the high KC in Lo membranes.
The unique feature of our computational framework that

relies on local splaying interactions has yet another additional
advantage. This locality allows the method to be naturally
extended, for example, to lipid membranes decorated by a
concentration of partial or transmembrane (TM) insertions,
such as peptides or even multihelical TM proteins. For these
and similar systems, the standard spectral analysis technique is
hard to apply, since the long-range membrane undulations,
required as input for the method, will be confounded by the
presence of a concentration of proteins. To contrast, by
defining the lipid directors on possibly curved surfaces near
inserted proteins,29,32,33 our technique could potentially help to
overcome the specific challenge of calculating local (or
“effective”) bending moduli for protein-laden membranes
from local splay information and aid in providing answers
related to the ways different insertions alter the splay properties
of lipid membranes.
In conclusion, in this Letter we have established a versatile

computational approach to quantify the bending modulus for
lipid membranes from relatively small-scale molecular simu-
lations. The reliance of the method on local splay interactions
between different lipid pairs allows one to accurately evaluate
KC in multicomponent lipid membranes in different thermody-
namic phases, even where the standard spectral analysis
methods break down. Fully validated by experiments, the
approach affords several unique possibilities, including the
quantitative determination of how splaying of different
molecular pairings in multicomponent lipid mixtures contribute
to the overall bending rigidity, and the expected relative
computational ease of expandability to protein-decorated
membranes.
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