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Abstract: Due to their high strength, high toughness, and corrosion resistance, high-strength alu-
minum alloys have attracted great scientific and technological attention in the fields of aerospace,
navigation, high-speed railways, and automobiles. However, the fracture toughness and impact
toughness of high-strength aluminum alloys decrease when their strength increases. In order to
solve the above contradiction, there are currently three main control strategies: adjusting the alloying
elements, developing new heat treatment processes, and using different deformation methods. This
paper first analyzes the existing problems in the preparation of high-strength aluminum alloys,
summarizes the strengthening and toughening mechanisms in high-strength aluminum alloys, and
analyzes the feasibility of matching high-strength aluminum alloys in strength and toughness. Then,
this paper summarizes the research progress towards adjusting the technology of high-strength alu-
minum alloys based on theoretical analysis and experimental verification, including the adjustment
of process parameters and the resulting mechanical properties, as well as new ideas for research on
high-strength aluminum alloys. Finally, the main unsolved problems, challenges, and future research
directions for the strengthening and toughening of high-strength aluminum alloys are systematically
emphasized. It is expected that this work could provide feasible new ideas for the development of
high-strength and high-toughness aluminum alloys with high reliability and long service life.

Keywords: high-strength aluminum alloy; strengthening and toughening treatment; alloying element;
heat treatment; deformation methods

1. Introduction

In recent years, high-strength aluminum alloys (HSAA) have been used in aerospace
and other fields because of their high strength and toughness [1]. HSAA mainly include
traditional melt casting aluminum alloys, aluminum powder metallurgy, and super-plastic
aluminum alloys. However, in the process of development of these aluminum alloys, there
are also problems (e.g., low stress corrosion resistance, poor fracture toughness, and low
fatigue strength). Solving such problems has always been the subject of research in this field.
In addition, for practical production applications, there exists a relatively serious problem
for any high-strength aluminum alloy: the strength and toughness of the materials cannot
be well matched [2]; application has therefore been limited because of alloys’ sensitivity to
intergranular and stress corrosion. The best method to enhance the strength and toughness
of materials is to develop a sequence of new materials and processes [3]. Many scholars
have devoted themselves to improving the strength and toughness of HSAA, mainly by
highlighting regulating strategies such as optimizing the alloy composition, improving
the heat treatment process, and adopting special processing methods [4]. The influence
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of Sc and Zr on the microstructures of Al–Zn–Mg–Cu alloys was studied by Y. Shi [5]. T.
Gao investigated the effect of Ti on the microstructure and precipitation procedure of an
Al–Zn–Mg–Cu alloy; the introduction of Ti resulted in not only the refinement of α-Al
grains, but also an obvious improvement in tensile strength and elongation. The influence
of single-stage solution treatment on the strength of a 7050 Al alloy was examined by N.M.
Han [6]. J. Luo studied the effect of a pre-aging treatment on precipitation behaviors in
7075 aluminum alloys with ultrafine grain structures. The aluminum alloys were pre-aged
prior to a room temperature rolling process. The addition of equal channel angular pressing
(ECAP) to enhance the strength and impact toughness of ultrafine-grained HSAA was
investigated by L.W. Meyer [7]. R.Z. Valiev researched the production of bulk ultrafine-
grained materials via severe plastic deformation. Evidently, a large number of scholars
have extensively researched HSAA, but there are few comprehensive summaries of HSAA
treatments.

Firstly, this paper focuses on the applications of HSAA in industrial fields at home and
abroad, and summarizes the problems existing in these applications. Secondly, it reviews
the frontier research of domestic and foreign scholars on the strengthening mechanism,
toughness mechanism, and strengthening and toughening model of HSAA. Then, the latest
research progress regarding strengthening and toughening control strategies for HSAA is
summarized, including adjusting alloy elements, developing new heat treatment processes,
and adopting different deformation strategies. Finally, new ideas for strengthening and
toughening control strategies for HSAA are clarified. Future research directions for the
strengthening and toughening of HSAA are overviewed in order to lay a foundation for
better applications of HSAA in the industrial field.

2. Usage of High-Strength Aluminum Alloys in the Industrial Field

HSAA have the characteristics of high strength, fatigue resistance, good fracture tough-
ness, and low thermal expansion coefficients. They are ideal materials for manufacturing
automobiles, airplanes, satellites, aerospace vehicles, and other such industrial uses [8].
The typical uses of aluminum alloys in industrial fields are shown in Figure 1. In the
aviation industry, spacecraft and space stations have put forward higher requirements
for materials. The use of HSAA in aircraft is shown in Figure 2 [9,10]. In addition to
aviation, aluminum alloys are also used in vehicle and transportation engineering, and can
be used as the bearing parts of trains. In power and communication, when considering the
harsh working environment in the field, HSAA are lightweight, high-strength, corrosion-
resistant, and inexpensive to maintain, and therefore are an ideal option for the structural
materials of a power transmission tower or microwave tower [11,12] with harsh working
conditions. In the field of defense engineering, HSAA are used for self-propelled military
temporary bridges, shell launchers, mobile missile launching equipment, military trestles,
and other equipment. In the field of offshore engineering, HSAA are used in offshore
platforms, wind power towers, and other auxiliary facilities [13,14], and in the field of
civil structural engineering, HSAA are used for the main truss of pedestrian bridges. With
the rapid development of super-high-rise buildings, long-span structures, and other such
special structures, the demand for lightweight and high-strength materials is becoming
higher [15,16]. It is hard for ordinary HSAA to fulfill this demand; therefore, research on
high strength and high toughness brooks no delay.
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2.1. Classification of High-Strength Aluminum Alloys

HSAA generally refers to aluminum alloys with tensile strength exceeding 400 MPa,
with aluminum, zinc, magnesium, and copper as the main elements. HSAA mainly
include the 2XXX and 7XXX categories, which have developed rapidly in recent years.
Typical examples are the 2024 and 7075 aluminum alloys [17,18]. These were created by
American researchers in 1939 and 1943, respectively, and used in bombers, which brought
revolutionary changes to aircraft performance and energy saving, and built the foundation
for the usage of HSAA [19,20].

Due to intense domestic and international competition as well as continuous demand
for national defense construction, it has become urgent to enhance the fracture resistance
of HSAA under severe working conditions, as well as the ability to absorb energy during
deformation and fracture. For the past few years, research on aluminum alloys has focused
mostly on using several strengthening methods to maximize their performance potential.
The difference in performance mainly depends on the difference in the strengthening
phase; for example, the coarse primary phases dominate the fracture zones of alloys and the
dispersion phases produce a synergistic effect on the stress corrosion resistance of the alloys;
in addition, the strengthening of the alloy is dominated by precipitates of intercrystalline
aging and the local of the alloy is dominated by grain boundary aging precipitates [21,22].
The strengthening phases in HSAA are classified as shown in Figure 3.
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For the past few years, the soaring requirement for aluminum alloys in aerospace
has led to continuous development. Depending on the composition–process–structure–
performance characteristics of HSAA, the development of HSAA can be divided into five
generations: first-generation HSAA with high static strength, second-generation HSAA
with high strength and corrosion resistance, third-generation HSAA with high strength
and corrosion resistance, fourth-generation HSAA with high strength, corrosion resistance
and high damage resistance, and fifth-generation HSAA with high toughness and low
quenching sensitivity [23]. The characteristic properties, key fabrication techniques, and
characteristic microstructure of each HSAA generation, as well as corresponding examples
of typical alloys, are exhibited in Table 1.
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Table 1. Characteristic capacities, key fabrication technologies, and characteristic microstructure of
aluminum alloy [15].

Stage Capacities Key Technologies and
Characteristic Microstructure

Typical
Aluminum Alloy

1st generation
1930s~1950s Static intension Cr, Mn additions

Coherent/semi-coherent precipitates

2024-T4
7075-T6

2618
2nd generation

1950s~1960s
Stress corrosion cracking

resistance, damage tolerance
Over-aging

Grain-boundary precipitates 7075-T76/T74

3rd generation
1970s~1980s

High strength,
corrosion resistance

Purifying, Zr additions
Fine constituent particles

7050-T74
2090/2091

4th generation
1990s

High strength,
corrosion resistance, more

damage tolerance

Further purifying, three-step aging;
Discontinuous distribution of grain,
narrow precipitation-free zone (PFZ)

7150-T77
7055-T77

2095/2195
5th generation

2000s~now
High strength,

low quench sensitivity
Lowering solvus, high-density

metastable phases
2099/2199
2050/2060

2.2. Challenges for the Use of High-Strength Aluminum Alloys

With the extensive requirements for HSAA in various fields, higher demands are
also placed on the fatigue crack growth rate and resistance to stress corrosion so that
aluminum alloy materials can adapt to harsh environments such as higher pressure, higher
temperatures, and stronger corrosion [24], in addition to the requirements for strength and
toughness. The essential problems for HSAA are shown in Figure 4. There are four inherent
problems with the traditional HSAA fabrication process:

(1) During the production of HSAA, there is a mismatch between strength and fracture
toughness.

(2) HSAA with high specifications and high contents of alloying elements often show
uneven microstructure and performance. When the microstructure and performance
of some parts are uneven, the overall performance is affected.

(3) In the preparation of HSAA materials, the manufacturing process is sophisticated,
the materials consumption is large, and the performance loss is large. The overall
preparation of HSAA is usually a cumbersome process.

(4) For high-strength cast aluminum alloys, there always exist casting defects, such as
segregation, hot cracking, porosity, and shrinkage, which usually appear during the
casting procedure.

Consequently, it is essential to optimize strengthening and toughening strategies to
solve the above problems. The following strategies were formulated:

(1) Improve the heat treatment process. Satisfy the fracture toughness, corrosion resis-
tance, and fatigue performance requirements without sacrificing the strength of the
aluminum alloy.

(2) Optimize the content of the alloying components. Strictly control the added amounts
and addition methods of elements to make the structure of large-scale HSAA more
uniform.

(3) Develop effective deformation methods. Use short processes and simple processing
methods.

(4) Reduce the temperature range during the casting process and improve the alloy
solidification method so as to diminish the risk of processing defects resulting from
the casting process.
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To sum up, HSAA are widely used in high-tech fields, but there are still many prob-
lems in the development process. Due to the higher and higher performance requirements
for HSAA materials in different countries around the world, it is urgent to solve these
problems. Through alloy composition design, numerical simulation, and heat treatment
experiment verification, it is expected that these matters may be relieved on the basis of com-
prehensive analysis of the regulating strategies for strengthening and toughening HSAA.
In the following discussion, the primary control strategies for alleviating the above issues
are introduced and reviewed with respect to the corresponding concepts, technological
developments, and microstructural and mechanical properties.

3. Strengthening and Toughening Characteristics of High-Strength Aluminum Alloys

The strengthening and toughening properties of HSAA include three aspects: the
strengthening mechanisms for HSAA, the toughening mechanisms for HSAA, and the
strengthening and toughening models of HSAA, which will be discussed below.

3.1. Strengthening Mechanisms for HSAA

The theoretical research on the strengthening and toughening of HSAA have un-
dergone a long process [25,26]. The strengthening mechanisms for traditional HSAA
mainly include solid solution strengthening (SSS), dislocation strengthening (DS), fine
grain strengthening (FGS), and second phase strengthening (SPS) [27]. In recent years, to
utilize the above four strengthening mechanisms simultaneously, a combination of defor-
mation and phase transformation has been applied to enhance the strength and toughness
of HSAA and solve the inherent problems.
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3.1.1. Solid Solution Strengthening

Solid solution strengthening is the most commonly used method for strengthening and
toughening [28]. The dissolution of solvent atoms in the solute leads to lattice distortion,
resulting in a lattice stress field [29]. There are two reasons solid solution strengthening is
used for HSAA: one is to increase the content of the main component; the other is to add
some atoms with smaller radii. The strengthening and toughening effects produced by
solid solution strengthening can usually be calculated by Formula (1):

∆σs = M×
G× ε3/2

S × C1/2

700
(1)

The effect of copper on the fracture toughness of HSAA was researched by H.B. Jiao
et al. [30]. The results illustrated that higher copper content significantly lessens fracture
toughness. With increasing copper content, the fracture mode along the S–L direction was
observed to change from transgranular dimple fracture to intergranular fracture. It can
be seen that solid solution strengthening induced by increases in the main components
is related to solid solution saturation of the original solid solution to form a novel solid
solution. The effect of Cu/Mg ratio on the strengthening mechanism of 2024 aluminum
alloy was studied by J.L Garcia-Hereunder et al. [31]. Plastic deformation and the Cu/Mg
ratio mainly affected the hardness. Changes in Cu and Mg levels impacted the solid solution
of the Al2CuMg phase. Jiang et al. [32] used a different method and investigated the
microalloying effects on the precipitation behaviors of Al–Cu alloys with minor Sc addition.
Figure 5 shows the growth kinetics of and experimental statistical results regarding the
evolution of intragranular precipitates. Accordingly, in comparison with the alloy without
Sc, the yield strength of the Al–Cu alloy with Sc increased by approximately 150 MPa and
the tensile elongation increased by approximately 280% over time. Therefore, this method
is a great breakthrough in enhancing the strength and toughness of HSAA. In the future,
this strengthening mechanism can also be used for reference to enhance the comprehensive
mechanical properties of the alloy.
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ular θ′-Al2Cu precipitate dimensions (half length) over time (t1/2) aged at 398 K. (a) Sc-free alloys
and (b) Sc-containing alloys [32].

3.1.2. Dislocation Strengthening

Dislocation strengthening is for the most part achieved by forging, rolling, and other
methods. Pressure processing can improve the internal structure. After plastic deformation
of the alloy, many dislocations are generated inside the grains, resulting in dislocation
strengthening. There are many ways to increase the number of dislocations, such as
increasing the amount of rolling, causing dendrites to burst and grains to become deformed
and elongated along the rolling direction, which enhances the strength of the alloy.

Zhang et al. [33] researched the development of a post-form strength prediction model
for a high-strength aluminum alloy with pre-existing precipitates and residual dislocations.
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TEM bright field images of microstructures observed in the <100> Al zone axis orientation
after artificial aging with/without pre-strain are shown in Figure 6. In conclusion, the
presence of induced dislocations significantly influences the change in strength of the
material. The strain hardening and accelerating effects are beneficial, while a loss of peak
strength can also occur, depending on the pre-strain levels.
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3.1.3. Fine Grain Strengthening

FGS can also enhance the strength and toughness of alloys [34]. Cold-processed
aluminum alloys need to be annealed to refine the grains and adjust the structure for
subsequent processing [35]. Fine-grain strengthening can simultaneously improve the
strength and toughness of HSAA [36]. There are many ways to strengthen fine grains. In
addition to annealing, twins can also be used as a grain refinement structure.

J.R Zuo et al. [37] studied the grain refinement and plastic enhancement mechanisms
in thermo-mechanical treatment of 7055 aluminum alloy. The results showed that pinning
of the deformation-induced precipitates (DIPs) mainly resulted in grain refinement through
dislocation rearrangement and low-angle grain boundary transition; pre-deformation could
speed up formation and prevent grain boundary migration, causing globalization and
refinement of the precipitates and thereby increasing the drag force on the boundaries and
dislocations. The schematic diagram of dislocation pile-up groups and crack initiation of
large particles is shown in Figure 7. The plasticity of micropores decreased the transgranular
point fracture caused by fine matrix sediment and coarse-grained sediment, and these micro-
mechanisms were controlled by the microstructure. W.T Huo et al. [38] researched the
effect of enhanced thermo-mechanical processing on the grain refinement mechanism of
7050 HSAA and proposed a heat treatment process (N-ITMT) to produce high strength
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hardened aluminum alloys. It indicated that cold deformation could obtain a large amount
of MgZn2 particles with a diameter of approximately 0.2 µm, which could be used as
nucleation sites for recrystallized grains in the solution treatment. The region of complete
dislocation caused by cold deformation is exhibited in Figure 8.

Materials 2022, 15, x FOR PEER REVIEW 9 of 31 
 

of the deformation-induced precipitates (DIPs) mainly resulted in grain refinement 
through dislocation rearrangement and low-angle grain boundary transition; pre-defor-
mation could speed up formation and prevent grain boundary migration, causing global-
ization and refinement of the precipitates and thereby increasing the drag force on the 
boundaries and dislocations. The schematic diagram of dislocation pile-up groups and 
crack initiation of large particles is shown in Figure 7. The plasticity of micropores de-
creased the transgranular point fracture caused by fine matrix sediment and coarse-
grained sediment, and these micro-mechanisms were controlled by the microstructure. 
W.T Huo et al. [38] researched the effect of enhanced thermo-mechanical processing on 
the grain refinement mechanism of 7050 HSAA and proposed a heat treatment process 
(N-ITMT) to produce high strength hardened aluminum alloys. It indicated that cold de-
formation could obtain a large amount of MgZn2 particles with a diameter of approxi-
mately 0.2 μm, which could be used as nucleation sites for recrystallized grains in the 
solution treatment. The region of complete dislocation caused by cold deformation is ex-
hibited in Figure 8. 

 
Figure 7. Schematic diagram of dislocation pile-up groups and crack initiation of large particles 
[37]. (a) dislocation pile-up groups (b) crack initiation. 
Figure 7. Schematic diagram of dislocation pile-up groups and crack initiation of large particles [37].
(a) dislocation pile-up groups (b) crack initiation.Materials 2022, 15, x FOR PEER REVIEW 10 of 31 

 

 
Figure 8. TEM micrographs of 7050 during N-ITMT: (a) W + 50% FR; (b) W + 50% FR + OA; (c) final 
rolled sheet (the inset in Figure 8c is the distribution of η obtained by SEM); (d) bright field micro-
graph of partially recrystallized 7050 Al (the inset in Figure 8d is dark field micrograph of η). The 
arrows in all figures correspond to η; white spots in b, c and d are also η phases etched away during 
electropolishing [38]. 

3.1.4. Second Phase Strengthening 
The majority of HSAA are two-phase or multi-phase aluminum alloys. The presence 

of the second phase in HSAA will have different effects on the matrix. Due to differences 
in annealing time, different grain sizes and secondary phases can be obtained after 
thermo-mechanical treatment [39]. When the grain size is not very different, the larger the 
volume fraction of the primary hexagonal close-packed (HCP) phase, the better the 
strength and toughness of the alloy. The strengthening mechanisms involved in the aging 
of precipitates and HSAA matrixes mainly include coherent strengthening and Orowan 
strengthening. Orowan strengthening is also called dispersion strengthening or strength-
ening of dislocation-bypassed precipitates [40]. 

T.F. Morgeneyer et al. [41] carried out experimental and numerical analysis of the 
toughness anisotropy of 2139 aluminum alloy sheets, and interpreted the coalescence and 
nucleation of the second-phase particles through nucleation under different critical strains 
in different directions related to the anisotropy of the shape and distribution of the second 
phase. P. Shaterani et al. [42] examined the second-phase particles of 2124 aluminum alloy 
after accumulative back extrusion. The properties of second-phase particles were investi-
gated via scanning electron microscopy (SEM). The results showed that the average size 
of second-phase particles could be continuously decreased via accumulative back extru-
sion (ABE) passes at 100 °C, as shown in Figure 9. It was proved that differences in the 
morphology of the second phase directly affect the mechanical properties of the alloy. 

Figure 8. TEM micrographs of 7050 during N-ITMT: (a) W + 50% FR; (b) W + 50% FR + OA;
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3.1.4. Second Phase Strengthening

The majority of HSAA are two-phase or multi-phase aluminum alloys. The presence
of the second phase in HSAA will have different effects on the matrix. Due to differ-
ences in annealing time, different grain sizes and secondary phases can be obtained after
thermo-mechanical treatment [39]. When the grain size is not very different, the larger
the volume fraction of the primary hexagonal close-packed (HCP) phase, the better the
strength and toughness of the alloy. The strengthening mechanisms involved in the aging
of precipitates and HSAA matrixes mainly include coherent strengthening and Orowan
strengthening. Orowan strengthening is also called dispersion strengthening or strengthen-
ing of dislocation-bypassed precipitates [40].

T.F. Morgeneyer et al. [41] carried out experimental and numerical analysis of the
toughness anisotropy of 2139 aluminum alloy sheets, and interpreted the coalescence and
nucleation of the second-phase particles through nucleation under different critical strains
in different directions related to the anisotropy of the shape and distribution of the second
phase. P. Shaterani et al. [42] examined the second-phase particles of 2124 aluminum
alloy after accumulative back extrusion. The properties of second-phase particles were
investigated via scanning electron microscopy (SEM). The results showed that the average
size of second-phase particles could be continuously decreased via accumulative back
extrusion (ABE) passes at 100 ◦C, as shown in Figure 9. It was proved that differences in
the morphology of the second phase directly affect the mechanical properties of the alloy.
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It can be seen that the strengthening and toughening of HSAA are usually obtained
through the stimulation of a variety of strengthening mechanisms [43]. Strengthening
is mainly attributed to two aspects: aging strengthening and dislocation strengthening.
Aging strengthening includes SSS, DS, FGS, and SPS. These strengthening mechanisms
are not completely separated, and the main strengthening mechanisms are different at
various stages of aging [44]. Dislocation strengthening is mainly divided into different
stages depending on the interaction between aging precipitates and dislocation. In the early
stage, the size of the precipitates is small and consistent with the matrix, the precipitates
are deformable, and the dislocations can be cleaved by the precipitated phase. A GP zone
with a large volume fraction causes an increase in yield strength. However, when the
precipitated phase grows, moving dislocations can individually bypass it, and the work
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hardening is relatively small, which is related to the transformation of dislocation from
cutting the precipitate to bypassing the precipitate; with increased aging time, the strength
also increases.

3.2. Toughness Mechanisms of High Strength Aluminum Alloys

For the sake of improving the safety of materials during use, toughness should be
considered in addition to ensuring the strength and corrosion resistance of the materials.
Fracture toughness is the ability to resist crack instability and propagation, that is, brittle
fracture. Impact toughness is the ability of a material to absorb plastic deformation energy
under impact load and impact resistance.

3.2.1. Fracture Toughness

Hamideh Khanbareh et al. [45] studied the fractal dimensions of AA7050 aluminum
alloy grain boundaries and their relationship with fracture toughness and established
the effect of the grain boundary fractal dimension in the extension direction on fracture
toughness. The results showed that fractal dimension increased slightly due to the high
proportion of transgranular fracture. For highly irregular grain boundaries, the fracture
mode was mainly transgranular; therefore, the fractal dimension had little effect on it. The
grain size effect in the fracture direction is a secondary factor.

Yali Liu researched the effect of composition on the tensile properties of A7N01S-
T5 aluminum alloy welded joints. The results suggested that the tensile strength and
elongation of residual aluminum, which were 302.35 MPa and 3.74%, respectively, were
the best. A good correspondence of strength to toughness mainly depends on the volume
fraction of chemical elements. A fine grain size and an appropriate chemical element
composition play important roles in obtaining high fracture toughness aluminum alloys.
The results showed that grain refinement had the greatest influence on increasing the tensile
and yield strength. The smaller the grain size, the larger the grain boundary area, and
the higher the fracture toughness; there were abnormal growth grains. C. Qin et al. [46]
researched the effect of composition on the tensile properties and fracture toughness
of an Al–Zn–Mg alloy (A7N01S-T5) used in high-speed trains. Figure 10 shows four
sample patterns (#1, #2, #3 and #4) via backscattered electron diffraction (EBSD). The
results indicate that the discontinuous distribution of η(MgZn2) phase, narrow precipitate-
free zones (PFZs), and fine grain size played important roles in obtaining high fracture
toughness. The four types of alloys were named #1, #2, #3 and #4. Table 2 shows the
elemental compositions (weight%) of the tested A7N01S-T5 alloys. In the process of crack
propagation, the energy of plastic deformation was the key factor. A smaller grain size
resulted in larger grain boundary areas and therefore a higher fracture toughness. Alloy #2
had a much smaller grain size than #1, #3, or #4 with 56% of the grains being smaller than
30 µm. Therefore, alloy #2 was the best.

Table 2. Elemental composition of tested A7N01S-T5 alloys (wt.%) [46].

Sample
No. Si Fe Cu Factor A Factor B Factor C Al

Zn Mg Mn Cr Zr Ti

#1 0.11 0.15 0.08 4.34 1.43 0.27 0.13 0.12 0.07 Bal.
#2 0.09 0.15 0.08 4.33 1.47 0.36 0.24 0.16 0.03 Bal.
#3 0.08 0.16 0.08 4.69 1.63 0.22 0.14 0.17 0.03 Bal.
#4 0.09 0.16 0.07 4.54 1.59 0.34 0.24 0.13 0.09 Bal.
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3.2.2. Impact Toughness

C. M. Cepeda-Jiménez [47] and others improved the impact toughness of HSAA
through hot rolling. By alternately forming 19 layers of the composite plate with 7075
(82 vol%) and 1050 (18 vol%), a coarse rolling texture was obtained, and the impact tough-
ness of the composite was 18 times higher than that of the matrix.

M. Refat combined friction stir technology, nano-dispersion, and conventional T6 heat
treatment to explore methods for optimizing the impact toughness of 7075 aluminum alloy.
The effects of nano-alumina dispersion and friction stir treatment on the impact toughness
of 7075 over different aging times were studied. After friction stir welding with a rotation
speed of 500 rpm, a movement speed of 40 mm/min, and an inclination angle of 3◦, the
surfaces of the base metal and the friction stir welding material with nanoparticles added
were observed via backscattered electron diffraction (EBSD) before heat treatment. There
were many fine grains in the nugget area with nanoparticles added. Heat treatment was
carried out with an aging treatment temperature of 120 ◦C and aging times of 12, 24, 36,
48 h, and 60 h. The results showed that after aging at 120 ◦C for 48 h, the impact toughness
of the materials with nano-dispersion was significantly improved compared to the 7075-T6
alloy. Mohammad Tajally [48] conducted comparative analysis of the tensile and impact
toughness behavior of cold-worked and annealed 7075 aluminum alloy. Figure 11 shows
the effects of cold rolling and anisotropy on impact energy of the Al alloy. Cold rolling was
found to impart a significant effect.

The strength, toughness, corrosion resistance, and fatigue strength are the four main
assessment indexes for HSAA. Only when these four indexes are met can the material have
good comprehensive properties. The internal factors affecting alloy toughness include alloy
composition, grain structure, coarseness of the second phase, grain boundary precipitates,
and size of intragranular precipitates. The external factors are the ambient temperature
of the alloy and the thickness of the material. At present, the exact relationship among
toughness, strength, and Young’s modulus remains to be studied.
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3.3. Strengthening and Toughening Models for High-Strength Aluminum Alloys

The basic theories of the heat treatment, the fracture mechanism [49], the corrosion
mechanism, and the generation mechanism of material anisotropy [50] have also been stud-
ied by domestic and foreign scholars [51]. To quantitatively analyze the factors affecting the
strength and toughness of HSAA, scholars explored some models to describe strengthening
and toughening in HSAA.

N. Kamp et al. [52] researched the connection between the strength and toughness of
7085 aluminum alloy, and found that over-aging reduced the strength and increased the
toughness; toughness was calculated as a ratio of the square root of yield strength. See
Formula (2) for the relationship between strength and toughness:

KIC =
[
C1K0.85

A

√
2kEεc

] 1
σ0.35 (2)

where KIC is fracture toughness, C1, K0.85
A ,k and εc are constants, E is Young’s modulus, εc

is fracture strain, depending on the microstructure, and σ0.35
y is yield strength. The lower

the value of σ0.35
y , the higher the value of KIC.
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Starink et al. [53] researched the strength of Al–Zn–Mg–Cu alloys and proposed a
strength model for aluminum alloys that can expressed by Formula (3):

σy = ∆σgb + M
⌊

τ0 + ∆τss +
(

∆τ2
dis + ∆τ2

ppt

)1/2
⌋

(3)

where σy is the strength of the alloy, ∆σgb is the contribution of grain boundary strengthen-
ing to yield stress, M is the Taylor constant, τ0 is the shear strength, ∆τSS is the contribution
of solid solution strengthening to yield stress, ∆τdis is the contribution of dislocation
strengthening to yield stress, and ∆τppt is the contribution of the precipitated phase to yield
stress.

The contribution models of SSS, DS, FGS, and SPS to yield stress are as follows.
For solid solution strengthening, the model can be expressed by Formula (4) [54]:

∆τSS = ΣHi × Cn
i (4)

where ∆τSS is the contribution of solid solution strengthening, H is the atomic coefficient
of each solute, i is the surface composition and C is the atomic concentration.

In the process of plastic deformation, the dislocation density increases continuously,
and the contribution of DS to the strength of the alloy can be expressed by Formula (5) [55]:

∆τdis = αGbρ1/2 (5)

where ∆τdis is the contribution of DS, C is a constant, generally 0.33, G is the cut strength,
and b is the Berger vector.

For FGS, Hall and Page obtained the connection between grain size and yield strength
based on a large number of experiments, shown in Formula (6) [56]:

∆σgb = kd−1/2 (6)

where ∆σgb is the contribution of FGS, k is a constant, and d is the average grain size.
Dispersion strengthening and precipitation strengthening in the second phase are spe-

cial cases. The strengthening model for the dislocation bypasses non-deformable particles,
also known as Orowan strengthening, and can be expressed as Formula (7) [57]:

∆τOrwan =
0.13Gmb

Lp
ln

r
b

(7)

where ∆τorwan is the strength increase caused by the contribution of Orowan strengthening,
Gm is the shear modulus, b is the Berger vector, usually taken as 0.25563 nm, Lp is the
spacing of dispersed undissolved particles, and r is the radius of enhanced particles.

D. M. Liu et al. [58] conducted a study of nanoscale precipitation in HSAA with
different chemical elements. The volume fraction of precipitates induced by aging is
calculated using the following Formula (8) to determine the strength Q0 of the aluminum
alloy:

Q0 =
∫ ∞

0
I(q) q2dq = 2π2(∆ρ)2 fv(1− fv) (8)

where fv is the volume points and ∆ρ is the difference in electron intensity between the
precipitate and the matrix.

J. Lan et al. [59] investigated cold deformation strengthening mechanisms during
artificial aging of aluminum alloys, and found that when the aging time was less than 0.5 h,
DS and SSS accounted for 90% of strengthening; when the aging time was 1 h, precipitation
strengthening overtook dislocation strengthening. During the over-aging period (t > 16 h),
precipitation strengthening decreased slightly, but still accounted for more than 60% of
the strengthening. The sequence of relative strengthening contributions for different aging
stages can be summarized as follows: at the initial stage of aging, the contribution order
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of the different strengthening methods was DS > SSS > SPS, while after 60 min of aging,
the contribution order of the different strengthening methods was SPS > DS > SSS. The
strengthening expression is shown in Formula (9):

∆τuns = 0.13G
b

(4rh)
1
2

[
fv

1
2 + 0.75

( r
h

) 1
2 fv + 0.14

( r
h

)
fv

3
2

]
ln

0.158r
r0

(9)

where r is half of the diameter of the precipitated phase and h is the depth of the precipitated
phase.

M.J. Starink et al. [60] investigated prediction of the quenching sensitivity of HSAA
using cooling and strengthening models. A prediction model was used to predict the
strength under artificial aging. Based on the good relationship between the strength and
the hardness of HSAA, the strength–hardness was converted using the conversion formula
shown in Formula (10).

K =

(
0.35Gm

(
fr

√
b

drg
+ (1− fr)

√
b

dsg

)
+ 0.25Gm

√
b f ns,1

2rns,1
+

b f ns,2

2rns,2

)
(10)

where fr is the recrystallization fraction of the material, drg is the grain size of the recrystal-
lization zone, dsg is the sub-particle size, fns,i is the volume component of non-exfoliated
particles, rns,i is the radius of the non-exfoliated grains, and Gm is the shear modulus.

D. Trimble et al. [61] performed texture modeling of the high-temperature flow character-
istics of HSAA, using the model for 7075 HSAA at 250~450 ◦C with a strain rate of 10−3~102s−1.
The constants could be determined by multiplying each side of Formulas (11)–(16), as follows:

σ = Aεnexp((Bε + C)T∗) (11)

A(
•
ε) = A1ln(

•
ε)3 + A2ln(

•
ε)2 + A3(

•
ε) + A4 (12)

B(
•
ε) = B1ln(

•
ε)3 + B2ln(

•
ε)2 + B3(

•
ε) + B4 (13)

C(
•
ε) = C1ln(

•
ε)3 + C2ln(

•
ε)2 + C3(

•
ε) + C4 (14)

n(
•
ε) = n1ln(

•
ε)3 + n2ln(

•
ε)2 + n3(

•
ε) + n4 (15)

T∗ = T − Tre f (16)

where A(
•
ε), B(

•
ε), C(

•
ε) and n(

•
ε) are the model correlation coefficients, representing the

polynomial functions of the strain rate. (A1, A2, A3, A4), (B1, B2, B3, B4), (C1,C2, C3, C4)
and (n1, n2, n3, n4) are polynomial coefficients.

It can be seen that, on the one hand, some conditions that affect strengthening mecha-
nisms could not be considered in strength formulas. For example, when the temperature
changes greatly, the prediction accuracy is low, and the prediction of behavior outside the
scope of the test conditions lacks credibility. On the other hand, when considering the
influences of temperature and strain, characterizing the strengthening mechanism based
on the microscopic aspects of dislocation, structural evolution, and grain growth is a more
reliable quantitative analysis method [62].

In summary, due to the pressure of the development cycle and the pursuit of rapid
achievement, some difficult basic theories with a long research cycle have been increasingly
ignored by domestic and foreign scholars, mainly including the basic theory of heat treat-
ment and the strengthening mechanisms [63], plastic deformation mechanisms [64], and
fracture mechanisms of HSAA [65].
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4. Regulating Strategies for the Strengthening and Toughening of High-Strength
Aluminum Alloys

There are many ways to strengthen and toughen HSAA, which function by changing
the internal microstructure. The internal mechanisms were described in the previous
section, which was divided into four main categories: SSS, DS, FGS, and SPS. The main
methods to enhance the strength and toughness of HSAA include adjusting alloy elements
and minor alloying, developing new heat treatment processes, and adopting different
deformation methods.

4.1. Alloying Treatments

The strategies for adjusting alloy elements mainly include optimizing the content of
the main alloy elements and decreasing the amount of impurity elements. Adjustments to
the ratio of main alloy element contents particularly include increasing the w(Zn)/w(Mg)
ratio, and sufficiently improving the content of Cu [66]. Z. Chen et al. [67] investigated the
effects of element composition on the properties of HSAA, and the results showed that the
strength of the alloy enlarged when Zn content increased from 9 wt% to 10 wt%; when the
amount of Zn enlarged from 10 wt% to 11 wt%, the strength of the alloy did not increase;
when the content of Zn increased from 9 wt% to 10 wt%, the stress corrosion cracking
resistance reduced; when the content of Zn increased from 10 wt% to 11 wt%, the stress
corrosion cracking resistance did not change significantly; with any increases in Zn content,
the elongation and toughness of the alloy decreased. The main reason for the above results
is that with increasing Zn content, matrix precipitates and coarse T phase content increased;
a coarse T phase is difficult to dissolve into the matrix, resulting in cracks. The influence of
Mg content on the quenching sensitivity of HSAA was studied by Y.L Deng et al. [68]. The
study showed that the depth of the age-hardened layer gradually declined with increasing
magnesium content, and the main determinant was the number of MgZn2 particles. The
initial precipitation temperature was predicted to be linearly related to the Mg content.
Optical microscope images at different temperatures are exhibited in Figure 12.
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The quenching sensitivities of new HSAA with different Cu contents were investigated
by J.S Chen et al. [69]. The results suggested that hardness declined with increasing Cu
content. The size of the precipitates in grains with higher Cu content was bigger than that
in the two other alloys at the same position. In the new alloys with the same contents of
Mg, Zn, and other trace elements, the greater the copper content, the greater the quenching
sensitivity. H.S. Yoo et al. investigated the influence of Mn and Ca supplementation on
the microstructure of an Al–Cu–Fe–Si–Zn alloy, and the results showed that the volume
component of intermetallic compounds increased with increasing Ca and Mn, and Mn
mainly played a key role in enhancing the strength. X. He et al. [70] studied the effects of
minor Sr addition on the microstructure and mechanical properties of an as-cast Mg–4.5Zn–
4.5Sn–2Al-based alloy system. Minor Sr addition could effectively refine grains, dendrites
and grain boundary compounds and this effect was more obvious with higher Sr addition.
The as-cast alloy with 0.2% Sr addition showed the best combined mechanical properties
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at ambient temperature with an ultimate tensile strength and elongation of 238 MPa and
12.1%. Excessive Sr addition resulted in a decline in strength and plasticity. Figure 13 shows
the XRD patterns of Mg–4.5Zn–4.5Sn–2Al alloys with different Sr additions.
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At present, the effects of impurity elements on HSAA are relatively sophisticated.
L. Lin et al. [71] studied the influence of Ge and Ag on the quenching sensitivity and
mechanical properties of HSAA, and the results suggested that a small increase in Ge
significantly reduced the quenching sensitivity and ductility of HSAA. The main reasons
were that, on the one hand, some large Mg2Ge particles appeared at the grain boundaries,
while Mg2Ge was very steady and would not dissolve even after solution heat treatment
and aging treatment, which led to a decrease in the alloy’s ductility; on the other hand, the
loss of some Mg atoms led to a reduction in the strength of the alloy. A combination of low
quenching sensitivity and improved ductility could be obtained by adding Ag. The main
reason for this analysis is that Ag promoted a more uniform decomposition of the saturated
solid solution in the aging process, resulting in increased precipitation density near the
grain boundaries and within the grain. SEM images and elemental maps of aluminum
alloys with Ge alone or both Ge and Ag added after air cooling at 120 ◦C for 25 h are shown
in Figure 14.

In addition to the above studies, the design of alloy composition and microalloying
can be carried out for the purpose of reducing defects existing in the manufacturing
process by adjusting the alloying elements, including Hume-Rothery rules [72] considering
electronegativity, relative valence electrons, and other factors, as well as a design method
for a “cluster and connected atom” structure model based on local atomic clusters [73]. B. B.
Jiang et al. [74] developed a cluster composition design method based on a local short-range
sequence of solid solution structures. A model was established to predict the occurrence
of defects, and the rules governing the distribution and causes of defects were simulated
based on the formation mechanism.
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In summary, on the one hand, high strength and toughness can be obtained by strictly
controlling the contents of Zn, Mg, and Cu in the alloy. On the other hand, the contents of
impurity elements should be sufficiently reduced to avoid the formation of brittle fractures,
which also ensures that the alloy has high strength and toughness. However, control of the
main alloy elements in industrial aluminum alloys has over time been standardized, and
the addition of minor transition group elements is more and more practical [75]. Therefore,
it is very difficult to enhance the comprehensive properties of aluminum alloys by changing
the alloy elements.

4.2. Novel Heat Treatment Processes

Many studies have focused on the influence of heat treatment on the strength and
toughness of HSAA [76]. The solid solution and aging temperatures are the dominant
factors controlling the associated alloy elements precipitated at grain boundaries [77]
and solution temperature is the main factor affecting grain boundary segregation. The
precipitate at the grain boundaries consists of a mass of Mg, Si, and Al together with
small amounts of Zn and Cu. On the one hand, precipitates with high interfacial energy
show a tendency to precipitate at the grain boundaries, leading to embrittlement [78]; on
the other hand, precipitates with low interfacial energies are more likely to form nuclei,
leading to a uniform distribution of precipitation and increased coarsening resistance at
high temperatures. Increased HSAA strength can be obtained by T6 peak aging treatment;
however, it results in a loss of fracture toughness to some extent [79]. Over-aging treatment
can reinforce fracture toughness, which reduces strength by approximately 10~15% [80].

To obtain better mechanical properties, aluminum alloys can be treated with different
heat treatments [81]. As an example, N. M. Han [6] reported the influence of solution
treatment on HSAA strength. TEM micrographs of sub-grains of HSAA under different heat
treatment conditions are exhibited in Figure 15. The results suggested that with increasing
solution temperature, the volume component and total grain size of recrystallized grains
also increased. In addition, the strength of the high-temperature pre-precipitated samples
was lower, which was mainly due to a large amount of HSAA phases in the matrix.
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W.L. He [82] designed a type of thermo-mechanical treatment including 50% thermal
deformation at 440 ◦C, and 10% cold pre-deformation at 25 ◦C. Figure 16 shows optical
microscope (OM) and scanning electronic microscope (SEM) images of tensile fracture
surfaces of 2219 aluminum alloys under two different processes. The result showed that the
mechanical properties of the material were enhanced and higher yield stress (by 43.2 MPa)
and tensile stress (by 34.3 MPa) were obtained.
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W.T. Huo [83] developed a thermo-mechanical treatment (TMT) to improve grain
refinement and ductility in HSAA. Figure 17 presents the preferred nucleation positions for
crystallization at large MgZn2 grains; the black arrows indicate well-developed sub-grains.
In the TMT, 10% cold deformation was applied to the deformed region around the entrance
of the large particles, which was the preferred nucleation site for crystallization, resulting
in grain refinement. The grain sizes of the HSAA were approximately 8.9 µm.
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Overall, it is essential to study the influence of solution treatment to improve the
strength and toughness of HSAA [84]. The abovementioned HT processes can be divided
into two categories: (1) Processes including only solution treatment, in which the quench-
ing temperature is sufficiently increased and sufficient time is ensured to maximize the
amount of solid solution in the matrix, in order to obtain uniformly dispersed coherent and
semi-coherent precipitations. This is advantageous to the toughness of the alloys. (2) Pro-
cesses combining deformation and heat treatment, such as so-called thermo-mechanical
treatment (TMT). When deformation occurs between solution treatments, it gives rise to an
improvement in the dislocation density of the material, which in turn leads to enhancement
in the precipitation driving force during the aging process, leading to dislocation and
precipitation strengthening [85]. Following the simple heat treatment process, coarse grains
are produced, after which cold/warm deformation is carried out. Finally, during recrys-
tallization, the grains are refined and the texture is weakened to enhance the mechanical
properties of the material [86].

4.3. Different Deformation Strategies

It is well known that grain refinement in HSAA can be achieved through various
technologies such as spray forming (SF) [87], severe plastic deformation (SPD) [88], cryo-
rolling (CY) [89], friction stir welding (FSW) [90], and other controlled thermo-mechanical
treatment (TMT). At present, these processes have become quite mature, and innovative
processes are improved based on these developments. Through these types of processing,
the microscopic grain size of the material is greatly refined, and the strength of the material
is enhanced.

The spray forming technique has obtained more consideration due to its unique char-
acteristics such as fine grain, increasing uniformity, expanding solid solubility, and high
cooling rate [91]. C. Si developed a low-pressure spray forming technique. The results
showed that finer equiaxed grains were obtained with sizes of approximately 10~50 µm.
Through this process, the yield strength, ultimate tensile strength, and percentage elonga-
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tion were 7.3%, 9.9%, and 48.1% higher, respectively, than those of 7055Al alloys cast under
the traditional process. B. Liu [92] studied the microstructure and mechanical properties
of high product of strength and elongation Al–Zn–Mg–Cu–Zr alloys fabricated by spray
deposition. The high product of strength–elongation alloys were obtained through spray
deposition, followed by hot extrusion and solution treatment. This resulted in a good
combination of strength and elongation. Figure 18 exhibits the mechanical properties of the
different processing methods.
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Severe plastic deformation (SPD) techniques include accumulative roll bonding (ARB),
high-pressure torsion (HPT), reverse extrusion (RE), and equal channel angular pressing
(ECAP). ECAP is the most helpful SPD technique [93]. Figure 19a shows the schematic
diagram of an ECAP die. It can obtain ultrafine-grained materials with a size range of
100–1000 nm and exceptional mechanical properties [94]. J. Li et al. investigated the
microstructure of HSAA after ECAP. The results showed that ECAP treatment resulted in
grain refinement. As the number of passes increased, the grains became finer, but as the
temperature increased, the formation of new grains increased in the third pass. This was
mainly due to the elimination of strain similarity between grains, the dynamic recovery
duration activity of grains at higher temperatures, and limited sliding of grains. M.H.
Shaeri [95] characterized the microstructure and deformation texture during ECAP of an
Al–Zn–Mg–Cu alloy. Figure 19b indicates that texture strengthening was observed after
the initial pass, but that there was evidence of texture weakening after four passes.
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Figure 19. (a) ECAP die geometry and coordinate system (1 1 1) and (b) (2 0 0) pole figures of Al
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Friction stir welding (FSW) involves a complex heat flow, material motion, and plastic
deformation [96], and is a solid-state processing technology for grain refinement and
microstructural modification [97]. The friction between the tool shoulder and the top
of the sheet generates heat, and the material moves via rotation of the pin pool [98].
At present, in-depth research has been carried out on FSW with respect to the welding
process and basic understanding of the welded joint structure, but the focus is mainly on
the mechanisms for increasing strength while avoiding deformation and fracture during
service [99]. Z. L. Hu et al. [100] characterized the microstructure and formability for
thermo-mechanical treatment of friction stir welded 2024-O alloys. FSW joints prepared
with high-speed heat input had a uniform particle size distribution and good thermal
stability at 450~495 ◦C. The tensile strength of the joint was similar to that of the base
metal because of increasing dislocation diffusion, refinement, and precipitation in the weld
due to plastic deformation. Figure 20a shows the tensile properties of the FSW joints and
Figure 20b shows TEM images of the FSW joints at 600 rpm and 800 rpm. Figure 20c
suggests that the fracture surface appearance of FSW T6-495 and T6-450 deformed the
joint. The same authors also investigated the microstructural stability and mechanical
properties of FSW Al–Cu alloys [101]. It was discovered that high heat input and low
solution temperature suppressed abnormal grain growth (AGG) during the FSW process
because of the difference in grain size. The microstructural inhomogeneity of the FSW joints
was enhanced because no AGG occurred. The conservation of fine grains and the increase
in the intensity of the precipitates led to the best mechanical properties. Increases in joint
strength and micro-hardness mainly depend on the plastic deformation before aging.

Materials 2022, 15, x FOR PEER REVIEW 23 of 31 
 

 
Figure 19. (a) ECAP die geometry and coordinate system (1 1 1) and (b) (2 0 0) pole figures of Al 
7075 alloy subjected to 4 passes of ECAP process by route BC on ED (z) plane [95]. 

Friction stir welding (FSW) involves a complex heat flow, material motion, and plas-
tic deformation [96], and is a solid-state processing technology for grain refinement and 
microstructural modification [97]. The friction between the tool shoulder and the top of 
the sheet generates heat, and the material moves via rotation of the pin pool [98]. At pre-
sent, in-depth research has been carried out on FSW with respect to the welding process 
and basic understanding of the welded joint structure, but the focus is mainly on the 
mechanisms for increasing strength while avoiding deformation and fracture during ser-
vice [99]. Z. L. Hu et al. [100] characterized the microstructure and formability for thermo-
mechanical treatment of friction stir welded 2024-O alloys. FSW joints prepared with high-
speed heat input had a uniform particle size distribution and good thermal stability at 
450~495 °C. The tensile strength of the joint was similar to that of the base metal because 
of increasing dislocation diffusion, refinement, and precipitation in the weld due to plastic 
deformation. Figure 20a shows the tensile properties of the FSW joints and Figure 20b 
shows TEM images of the FSW joints at 600 rpm and 800 rpm. Figure 20c suggests that 
the fracture surface appearance of FSW T6-495 and T6-450 deformed the joint. The same 
authors also investigated the microstructural stability and mechanical properties of FSW 
Al–Cu alloys [101]. It was discovered that high heat input and low solution temperature 
suppressed abnormal grain growth (AGG) during the FSW process because of the differ-
ence in grain size. The microstructural inhomogeneity of the FSW joints was enhanced 
because no AGG occurred. The conservation of fine grains and the increase in the intensity 
of the precipitates led to the best mechanical properties. Increases in joint strength and 
micro-hardness mainly depend on the plastic deformation before aging. 

 
Figure 20. (a) Tensile properties of FSW joints under different heat treatment processes (800 rpm, 
100 mm/min). (b) TEM images of the joints: (b1) FSW joints with 600 rpm and 100 mm/min, (b2) 
FSW joints with 800 rpm and 100 mm/min. (c) Appearances of fracture surfaces for FSW joints: (c1) 
T6-495 joint, (c2) T6-450 deformed joint [101]. 

Figure 20. (a) Tensile properties of FSW joints under different heat treatment processes (800 rpm,
100 mm/min). (b) TEM images of the joints: (b1) FSW joints with 600 rpm and 100 mm/min, (b2) FSW
joints with 800 rpm and 100 mm/min. (c) Appearances of fracture surfaces for FSW joints: (c1) T6-495
joint, (c2) T6-450 deformed joint [101].
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From the above description, it can be found that the temperature, deformation degree,
and deformation speed in the deformation processing strategy of aluminum alloys deter-
mine the microstructural characteristics, texture, and deformation energy storage of the
matrix structure, which are conducive to inhibiting recrystallization and promoting the dis-
solution of S phase, and thus improving the strength and toughness of HSAA. In addition
to the above special forming technologies, new technologies that are widely used or are
being developed include precision die forging, isothermal grinding forging, isothermal
extrusion, thick plate forging, and rolling.

In summary, the characteristics of alloy strengthening and toughening through alloy-
ing treatment are that the addition of trace elements is becoming more and more feasible,
the contents of Zn, Mg, and Cu elements are becoming higher and higher, and the contents
of impurity elements are becoming lower and lower, leading to HSAA obtaining stronger
fracture and corrosion resistance. The main development directions in heat treatment
are single-stage peak aging, double-stage aging, and returning to re-aging. In terms of
deformation methods, new processing methods are constantly developed [102]. To obtain
high strength aluminum alloys with high toughness, corrosion resistance, fatigue resistance,
high quenching, and high weldability, increases in alloying elements, appropriate heat
treatment, and deformation methods can be adopted to refine the second phase and im-
prove aging precipitation [103]. The optimization goal is that the distribution density of the
second phase is dispersed in the aluminum matrix with micron crystalline phases formed
by solidification, sub-micron or nano-dispersion phases precipitated at high temperatures,
and nano-metastable phases precipitated by aging, because:

(1) Coarse primary phases cause fractures in alloys;
(2) Dispersed phases inhibit matrix re-crystallization and control the matrix structure;
(3) Intracrystalline aging precipitates (of approximately 10 nm) strengthen and toughen

of alloys;
(4) Precipitates of grain boundary aging dominate local areas of alloy (stress) corrosion

and cracking.

As can be seen from the above analysis, there is still a lack of in-depth understanding
of the precipitation formation mechanisms for Mg, Zn, Mn, Zr, and other micro-alloying
elements. The microstructure of an aluminum alloy after deformation affects the final
properties of the product. If the deformation process is selected improperly, it is not con-
ducive to improvement in alloy properties, and defective products may even be produced.
Therefore, selection of the most suitable deformation process is an important guarantee
for obtaining deformed aluminum alloy products with good microstructure and excellent
comprehensive properties.

5. New Ideas for Strengthening and Toughening High-Strength Aluminum Alloys

Interest in the study of the strength and toughness of HSAA continues to grow at
home and abroad. To explore new ideas for the strengthening and toughening of HSAA,
the latest strengthening and toughening strategy of alloy can be discussed.

5.1. Pre-Aged Hardening Warm Forming (PHF) Process

L. Hua [104] proposed a new forming technique, called the pre-aged hardening warm
forming (PHF) process, for heat-treatable aluminum alloys. Figure 21 shows the PHF
process route and rationale. In this technology, the used alloy is heat-treated and pre-aged
as a billet, and then the pre-aged billet is heated to a lower temperature and soaked for a
short time, subsequently transferring the load to be heat treated [105,106]. The pre-aged
blanks are provided by sheet metal suppliers, and these pressing procedures can be finished
in minutes, resulting in short production cycles and low costs. The results suggested that
the elongation of the pre-aged alloy was 5% to 16% greater than that of the O-temper
of 200 ◦C [107]. The tensile strength results showed that the stamping parts reached
σ/σ 0.2 = 566 MPa, which exceeds the strength of the 7075 alloy. The influences of phase
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transformation and plastic deformation during the PHF process improved the impact
resistance of these parts [108,109].
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5.2. Composition Design for New Aluminum Alloy via SLM Process

Z. G. Zhu et al. [110] proposed a new aluminum alloy composition design suitable
for the SLM process: Al–Zn–Mg–Cu–Sc–Zr. The structure was regulated by the heat
treatment process, a microstructure with a multimodal grain heterostructure and a double
precipitated phase structure was obtained, and finally, the mechanical characteristics were
thoroughly optimized. The microstructures of the materials at various temperatures were
characterized using spherical differential SEM and in-situ electron microscopy. It was
found that in addition to the Al3(Sc, Zr) precipitated phase, which could be used for grain
refinement (generation of the multimodal grain heterostructure) and preventing crack
formation, a metastable quasicrystal phase rich in Mg, Zn and Cu could also precipitate
in large quantities at the grain boundaries. By adjusting the subsequent heat treatment
parameters, the quasicrystal phase dissolved in the matrix, and the enhanced second
phase precipitated after aging (η′). At the same time, secondary Al3(Sc, Zr) nanoparticles
were precipitated during heat treatment to form η′ and Al3(Sc, Zr) double precipitated
phase nanostructures. Through SLM technology and appropriate heat treatment processes,
the aluminum alloy could develop a grained multi-peak heterostructure and a double
precipitated phase nanostructure at the same time, optimizing the mechanical properties
(yield strength ~647 MPa and fracture toughness ~11.6%). The engineering stress–strain
curves of aluminum alloys prepared via SLM under different heat treatment processes were
compared with the properties of other types of aluminum alloys. Electron microscopic
analyses of the microstructures of the printed and annealed aluminum alloy materials are
shown in Figure 22.
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crostructures of printed and annealed aluminum alloys were analyzed via electron microscope [110].

5.3. Nanotwin Alloys Obtained via DC Magnetic Sputtering

X. H. Zhang et al. [111] obtained an Al–Fe alloy with high-density nanotwins and
9R phase using DC magnetic sputtering. The mechanical properties of the alloy were
examined via unidirectional compression and nanoindentation. At the same time, the
microstructural changes to the alloy before and after deformation were studied using
TEM, SEM, and molecular dynamics simulation. The hardness of the Al–5.9%Fe alloy was
approximately 5.5 GPa and the flow stress was approximately 1.5 GPa. It was found that
Fe atoms could improve the stability of nanotwins and the 9R phase. It was also found that
the 9R phase could obtain high strength and hardness. This study supplied a novel idea
for the development of ultra-HSAA. Y. F. Zhang [112] researched the microstructure and
mechanical behavior of nanotwinned Al–Ti alloys with the 9R phase. These nanotwinned
Al–Ti films had hardness values as high as 2 GPa. This study provided an alternative
approach to designing high-strength Al alloys via grain refinement, introducing high-
density twin boundaries and the 9R phase. Figure 23 shows TEM micrographs and the
insets show selected area diffraction (SAD) patterns of Al–Ti alloy films with various
compositions.
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(d–f) Statistics of grain size distributions show substantial grain refinement, from 1900 to 180 nm
with increasing Ti concentrations [112].
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In conclusion, super-strong and super-tough aluminum alloys can be obtained using
PHF and SLM processes, new aluminum alloy composition design, and nanotwins obtained
via DC magnetic sputtering, which also provide novel ideas for the strengthening and
toughening of HSAA. These studies employ a variety of reinforcement mechanisms to
achieve the effects of strengthening and toughening and ultimately to obtain HSAA by a
variety of means.

6. Conclusions and Prospects

At present, HSAA are developing towards higher strength, higher toughness, cor-
rosion resistance, and higher specifications. Research on improving the strength and
toughness of HSAA mainly focuses on adjusting the alloy composition (such as by adding
new alloy elements) and developing new processing and manufacturing technologies.
Although HSAA are used in various frontier fields, and researchers have achieved many
promising results, efforts still need to be made in the following aspects:

(1) In the HSAA matrix, there are grain boundary precipitates, micron-scale crystalliza-
tion precipitates, sub-micron high-temperature precipitates, and even nano-scale
intragranular aging precipitates. The mechanisms by which the morphology, size,
quantity, and distribution of these phases influence the mechanical properties and
corrosion resistance of HSAA need to be further studied.

(2) In terms of alloying elements, the influences of the ratio of Zn, Mg, and Cu, the
contents of trace elements, and the contents of rare earth elements on the optimization
of comprehensive mechanical properties of HSAA are still controversial. The coor-
dination of element content is an urgent problem to be relieved. Further reductions
in the content of Fe, Si and other impurities, improvement in the purity of alloys,
and improvements in the strength, fracture toughness, fatigue resistance and stress
corrosion cracking resistance of high-strength aluminum alloys are needed. When the
contents of Fe and Si are less than 0.1%, the above properties will be greatly improved.

(3) Heat treatment optimizes the mechanical properties by adjusting the size and number
of grains, along with the mechanism by which the size and distribution of the second
phase particles at the grain boundaries influence the corrosion resistance, which
are issues worthy of study. First, it is necessary to continue to optimize the aging
treatment process to obtain the best combination of strength, toughness and corrosion
resistance of alloys; second, optimized two-stage or multi-stage aging is still in the
primary application stage, and the application of existing achievements should be
accelerated.

(4) New deformation methods can significantly refine grains, inhibit segregation, make
precipitates evenly distributed and improve the supersaturation of various elements.
Therefore, the research and development of new deformation methods is also crucial
for future breakthroughs. It is necessary to adopt and study various advanced and
special processing methods, such as superplastic forming, precision die forging,
isothermal die forging, semi-solidification die forging, isothermal extrusion, and thick
plate forging and rolling, to improve the comprehensive and special properties of
alloys.
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