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Compounds extracted from plants can provide an alternative approach to new therapies. They present
characteristics such as high chemical diversity, lower cost of production and milder or inexistent side
effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped,
resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel
of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replica-
tion. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b
and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity.
Initial screening of compounds was performed using the maximum non-toxic concentration and 4 com-
pounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency)
were selected for extra analysis. The compounds APS (ECso = 2.3 pM), a natural alkaloid isolated from
Maytrenus ilicifolia, and the lignans 3*43 (ECs = 4.0 M), 3*20 (ECs0 = 8.2 uM) and 5*362 (ECso = 38.9 nM)
from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activ-
ity and HCV protein expression in both the subgenomic and infectious systems. We further show that
these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with
inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4
compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV
activity and further analyses are being performed in order to investigate the mode of action of those
compounds.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

(Alter, 2007; Chevaliez and Pawlotsky, 2007; Saito et al., 1990).
There is no effective vaccine for prevention of HCV infection; how-

Hepatitis C virus (HCV) infection is a worldwide public health
problem and it is estimated that the virus infects around 3% of
the world population (Shepard et al., 2005). Chronic infection can
progress to liver cirrhosis with risk of the development of hepato-
cellular carcinoma, and causes around 500,000 deaths per year
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ever a number of drugs are available for the treatment of infection.
Until recently, the standard therapy was based on pegylated inter-
feron (IFN) plus ribavirin (RBV), resulting in a sustained virological
response in approximately 50% of patients infected with HCV geno-
types 1a/1b and 80% of those infected with genotypes 2 or 3 (Fried
et al., 2002; Hadziyannis et al., 2004; Manns et al., 2001). The avail-
ability of new, direct-acting antivirals targeting the NS3 protease,
NS5B polymerase and NS5A protein have dramatically improved
therapeutic options (Pawlotsky, 2014). However, the high costs
and potential for development of resistance presented by existing
treatment demonstrate the need for the development of more effi-
cient new antivirals, or combination of therapies for HCV
treatment.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Traditional medicines have a long history and there is now a
great interest in discovering new molecules from natural sources
for the treatment of many human diseases. An extensive variety
of natural compounds has demonstrated antiviral action world-
wide, including anti-HCV activity (Calland et al., 2012). In this con-
text, compounds extracted from plants can provide an alternative
approach to new therapies. Natural compounds present character-
istics such as high chemical diversity, lower cost of production and
milder or non-existent side effects than conventional treatment
(Kitazato et al., 2007). Additionally, most of the drugs used today
in the clinic were first discovered from plants and microorganisms
(Mann, 2002). Therefore, they present a great opportunity to find
novel compounds that can act as antiviral drugs.

The Brazilian flora represents a vast, largely untapped, resource
of potential therapeutic compounds. The wide distribution of nat-
ural resources in Brazil and the natural diversity of chemical com-
ponents provide the country with potential bioactive materials
(Duarte et al., 2005). Here we investigate the antiviral effects of a
panel of Brazilian natural compounds consisting of extracts, frac-
tions and isolated compounds on HCV replication. These data are
the first description of Brazilian natural compounds possessing
anti-HCV activity.

2. Materials and methods
2.1. Natural compounds

Compounds were extracted from Maytrenus ilicifolia (APS, C, P
and M), Peperomia blanda (5-362, 3-20, 3-43, 48-3, F3 and F6)

and Piper fuligineum (F8-40). The root bark of M. ilicifolia was col-
lected in the city of Ribeirdo Preto (Sdo Paulo State, Brazil, at
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21°11'56.1"S; 47°46'42.2"W) in March 2006. The plant was identi-
fied by Rita Maria de Carvalho. A voucher specimen (HPM-BR
0059) has been deposited in the Herbarium of the University of
Campinas, Sdo Paulo, Brazil (Santos et al., 2012). The aerial parts
of P. blanda were collected at the Reserva da Ripasa, Ibaté - SP,
Brazil in January of 2005 and identified by Dr. Elsie Franklin
Guimardes. A voucher specimen (Kato-547) has been deposited
at the Herbarium of the Institute of Bioscience, Sdo Paulo
University, Sdo Paulo - SP, Brazil (Felippe et al., 2008). The Piper
fuligineum species was identified by Dr. Agnes Lamb of the Institute
of Botany (IBt of Sdo Paulo, SP, Brazil) and their voucher specimens
are deposited in the Herbarium of the Institute of Botany
(USP - SP) under the voucher Kato-0720.

The full details of compound extraction and purification was
described previously (Costa et al., 2008; Dos Santos et al., 2013;
Felippe et al., 2008, 2012; Gullo et al., 2012; Santos et al., 2012)
and the structures of isolated compounds are shown in Fig. 1.
The compounds were dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich) as stock solutions stored at —20 °C. Dilutions of
the compounds in complete medium were made immediately prior
to the experiments to reach a maximum final concentration of 0.5%
DMSO. For all the assays performed, control cells were treated with
medium added with DMSO at the final concentration of 0.5%.
Cyclosporin A (CsA, Sigma-Aldrich) was used as a positive control
for inhibition of replication.

2.2. Cell culture
Huh?7.5 cells were cultured in Dulbecco’s modified Eagle’s med-

ium (DMEM; Sigma-Aldrich) supplemented with 10% fetal calf
serum, 100 IU penicillin ml~!, 100 pg streptomycin ml~! and 1%

F8*40

Fig. 1. Chemical structure of Brazilian natural compounds. Compounds isolated from Maytrenus ilicifolia (A), Peperomia blanda (B) and Piper fuligineum (C).
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non-essential amino acids at 37 °C in a humidified 5% CO, incuba-
tor. Subgenomic replicon (SGR) harboring cell lines (genotype 2a
SGR-Feo-JFH-1 (Wyles et al., 2009), genotype 1b SGR-Feo-BM4-5
(Wyles et al., 2007) and (genotype 3a - Genbank GU814264
(Saeed et al., 2012)) were maintained in DMEM with 300 pg/mL
G418.

2.3. Cytotoxicity assay

Cell viability was measured by the MTT [3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyl tetrazolium bromide] (Sigma-Aldrich)
method. Huh7.5 cells or SGR-harboring cell lines were cultured
in DMEM medium in a 96-multi-well plate and incubated at
37 °Cin a humidified 5% CO, incubator overnight. Drug-containing
medium at different concentrations was added to the cell culture
being replaced every 24 h. After 48 h incubation at 37 °C, DMEM
containing MTT at the final concentration of 1 mg/mL was added
to each well, incubated for 1 h and replaced with 100 pl of DMSO
to solubilize the formazan crystals. Surviving cells were measured
by optical density (OD) of each well at 570 nm, using a spectropho-
tometer. Cells viability was calculated according to the equation (T/
C) x 100%, where T and C represent the mean optical density of the
treated group and control group, respectively. All experiments
were performed in triplicates and repeated at least three times.
Further assays were performed considering 80% viability of treated
cells.

2.4. Luciferase-based replication assay

T7 transcripts were generated from linearized DNA templates of
SGR-luc-JFH-1, SGR-luc JFH-1 containing the NS5A Y93H Daclatas-
vir (DCV) resistance mutation or SGR-luc-JFH-1/GND luciferase
subgenomic replicons (SGR) (Targett-Adams and McLauchlan,
2005). 4 x 10° Huh7.5 cells were washed and resuspended in
diethylpyrocarbonate (DEPC)-treated PBS, and electroporated with
SGR RNA (2-5 pg) in 0.4 cm cuvettes at 950 pF, 270 V. Cells were
seeded into 96-well plates at a density of 8 x 10> per well and
compounds were added at 2-4 h post-electroporation. Cells were
harvested by lysis with Passive Lysis Buffer (Promega) at 4, 16,
24 and 48 h post-electroporation and HCV RNA replication was
quantified by measuring luciferase activity using the Luciferase
Assay System (Promega). The same assays were performed with
SGR-harboring cell lines (genotype 2a SGR-Feo-JFH-1) for compar-
ison. The effective concentration 50% (ECso) was calculated using
Prism (GraphPad) and cytotoxicity assays were carried out in par-
allel to determine the cytotoxic concentration 50% (CCsp) using a
MTT-based system as described below. The values of CCsy and
ECso were used to calculate the selectivity index (SI = CCso/ECsp),
which suggests the potential antiviral activity of the compounds.
SI with value of four or higher suggests that a compound have a
promising antiviral activity that merit further studies.

Huh?7.5 cells stably harboring the SGR-Feo-BM4-5 (Wyles et al.,
2007) (genotype 1b) or SGR-Feo-S52 (genotype 3a) culture adapted
mutants All (T1056A, T14291 and S2204I) or SHI (P1220S, D1430H
and S2204I) (Saeed et al., 2012) were seeded in a 96 well plates at
the same cell density. Cells were treated at 4 h post seeding for
48 h with the previously determined concentration of compounds
or DCV, harvested and luciferase measured.

2.5. Virus assays

For virus replication assays, 8 x 10° Huh7.5 cells were electro-
porated with 10 pg of Rluc-J6/JFH1 (mFL-]J6/JFH-5'C19RIuc2AUDbi)
(Tscherne et al., 2006). Compounds were added at 2-4 h post-elec-
troporation. Samples were harvested in Renilla lysis buffer (Pro-
mega) at 48 h post-electroporation and virus replication was

quantified by measuring luciferase activity using the Renilla Lucif-
erase Assay System (Promega).

For infection assays, Huh7.5 cells were seeded the day before
the assay was carried out. Compounds were diluted to the stated
final concentrations in DMEM media. Two types of experiments
were carried out; Cells were infected with Rluc-J6/JFH1 virus and
compounds were added. After 48 h samples were harvested and
luminescence was measured. Alternatively, cells were infected
with JFH1 virus (Wakita et al., 2005) for 4 h, washed extensively
to remove virus and treated with the compounds. After 48 h extra
cellular virus was titrated. The titer plate was fixed with 4% PFA
after 48 hpi and stained for NS5A using sheep anti-NS5A
(Macdonald et al., 2003) and Alexa Fluor anti-sheep 594 secondary
antibody.

2.6. Western blot analysis

Cells were lysed in Glasgow lysis buffer [GLB; 10 mM Pipes-
KOH (pH7.2), 120 mM KCl, 30 mM NaCl, 5 mM MgCl?, 1% Triton
X-100 (Sigma), 10% glycerol] (Ross-Thriepland and Harris, 2014)
plus protease and phosphatase inhibitors (2 mM Na3VO4 5 mM
NaF, 5 mM Na4P,0-). Fifty micrograms of protein were resolved
by SDS/PAGE and transferred to a PVDF membrane using a semidry
transfer apparatus. Membranes were blocked in 10% (w/v) dried
skimmed milk powder in Tris-buffered saline with 0.1% Tween-
20 (TBS-T). Membranes were probed with anti-NS5A (Macdonald
et al., 2003) or mouse anti-GAPDH (AbCam) in 5% (w/v) dried
skimmed milk in TBS-T. The antibodies were detected with the rel-
evant secondary horseradish peroxidase-conjugated antibody and
in-house enhanced chemiluminescent reagent.

2.7. Statistical analysis

Individual experiments were performed in triplicate and all
assays were performed a minimum of three times in order to con-
firm the reproducibility of the results. Differences between means
of readings were compared using analysis of variance (one-way or
two-way ANOVA) and Student ¢ test. P values of less than 0.05
(indicated by asterisks) were considered to be statistically
significant.

3. Results

3.1. Screening of compounds isolated from Brazilian plants for effects
on HCV replication

To evaluate whether a panel of Brazilian natural compounds
(Fig. 1) could inhibit HCV replication, we performed a screening
assay using a firefly luciferase SGR construct (SGR-luc-JFH1). Ini-
tially, Huh7.5 cells were treated with 100, 10, 1 or 0.1 uM of each
compound and incubated for 48 h to assess the cytotoxicity of the
compounds (Fig. S1). Then, Huh7.5 cells were electroporated with
SGR-luc-JFH1 and compounds were added to the cells at 4 h post-
electroporation. Replication levels were assessed 48 h later by
luciferase assay. The initial data showed that the purified com-
pounds APS, 3*43, 3*20, 5*362, F3 and F8*40 (Fig. 1) significantly
inhibited HCV SGR replication (p < 0.05) (Fig. 2A). Expression of
NS5A was also significantly reduced in the presence of APS, 3*43,
3*20, 5*362, F3 and F8"40 as shown in Fig. 2B. This analysis also
revealed that the compounds had no significant effect on the phos-
phorylation profile of NS5A, as both basal and hyper phosphory-
lated forms could be seen. Intriguingly, treatment of cells with
compound C appeared to significantly enhance replication
(p<0.05) with a concomitant increase in protein expression
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Fig. 2. Screening of plant-derived compounds for activity against HCV replication.
Huh7.5 cells were electroporated with SGR-luc-JFH1, and 4h later, specific
concentrations of compounds were added. Replication efficiency was measured
48 h post-electroporation using luciferase (A) and western blotting assays (B).
DMSO and cyclosporine A were used as negative and positive controls respectively.
Mean values of three independent experiments each measured in triplicate
including the standard deviation are shown. P < 0.05 was considered significant.

(Fig. 2B). These results demonstrated that most of the selected Bra-
zilian natural compounds are able to inhibit HCV replication.

3.2. Inhibitory effect of Brazilian natural compounds on HCV
replication

For further analysis we selected four compounds, APS, 343,
3*20 and 5*362, as these showed significant inhibition of HCV gen-
ome replication at non-cytotoxic concentrations. An Huh7.5 cell
line stably harboring the SGR-Feo-JFH-1 replicon was treated with
increasing doses of compounds and replication efficiency and cell
viability were measured 48 h after compound addition. The results
indicated that all four compounds APS, 3%43, 3*20 and 5362
decreased HCV replication in a dose-dependent manner with
ECso of 2.3, 4.0, 8.2 and 38.9 uM, respectively (Table 1; Figs. 3
and S2). We also assayed the compounds F3 and F8*40 however
we were not able to establish EC5q9 for those compounds. They
reduced replication only when cytotoxic concentrations were used
(data not shown) and were therefore excluded from further analy-
sis. Subsequent studies focused on compounds APS, 3*43, 3*20 and
5*362.

3.3. Effect of the compounds on HCV IRES driven translation

We next assessed the impact of natural compounds on HCV-
RNA translation, also considering compounds which did not pres-
ent effects on replication in the previous assays. To this end, we
transfected Huh7.5 cells with in vitro transcribed RNA of SGR-
luc-JFH1 or the SGR-luc-JFH1 (GND) polymerase-defective con-
struct (containing a mutation of the conserved GDD motif to
GND) and compounds were added immediately. Luciferase values
of both WT and GND constructs are shown at 4 h, which was rep-
resentative of input translation. The results demonstrated that the
treatment with most of the compounds did not affect HCV IRES dri-
ven translation (Fig. 4). As an exception, the compound F8"40
showed a modest yet significant reduction of luciferase levels to
80.6% (p < 0.05), suggesting that this compound can have a slight
effect on IRES-directed translation. These data corroborate with a
reduction in protein levels observed in the presence of F8*40
(Fig. 2B).

3.4. Compounds APS, 3*43, 3*20 and 5*362 prevent replication
complex formation

We wished to investigate whether compounds APS, 3*43, 3*20
and 5*362 acted either on pre-existing replication complexes
(RC), or by inhibiting their formation. Huh7.5 cells were electropo-
rated with SGR-luc-JFH-1 RNA and compounds were added to the
cells at 2 h post-electroporation at the defined concentrations. RNA
replication was monitored for 48 h by luciferase assay in order to
detect the ability of compounds to prevent RC formation. In paral-
lel, Huh7.5 cells stably expressing SGR-Feo-JFH-1 replicons were
treated with compounds and harvested at the same time points
to evaluate the activity on pre-existing RCs. No significant reduc-
tion of replication levels was observed in either assay at 4 h. For
both transient and stable replicons, replication decreased signifi-
cantly compared to DMSO control from 16 h post-electroporation
but there was no difference between the two assays (Fig. 5). In con-
trast, at 24 h there was marked difference between the levels of
inhibition observed in the transient and stable assay formats. Spe-
cifically, the compounds were more effective on the transient rep-
licons. At a later time point (48 h) again no difference was
observed. These data are consistent with the hypothesis that these
compounds block formation of RCs and have a lesser effect on pre-
existing RCs. In the transient assay the luciferase levels at 4 h
reflect translation from input RNA whereas luciferase activity at
24 h is a measure of RNA produced by newly formed RCs. After this
time point, replication was gradually reduced over time up to 48 h,
showing that the compounds were preventing replication.

The luciferase levels detected at 4 h in the stable replicon cells
reflects replication by pre-existing active RCs and did not respond
to treatment with the compounds. Values at 16 and 24 h reflect
both pre-existing and newly formed RCs and are not affected as
efficiently as the corresponding values in the transient assay, con-

Table 1
Inhibitory effect of Brazilian natural compounds on HCV replication.
SGR-luc-JFH1 SGR-JFH1 FEO  SGR-BM4-  SGR-Feo-S52 All -  J6/JFH1 HCVcc JFH1 virus
RC assay RC assay 5 assay SHI assay infection assay infection assay
Compound  ECsg SI (CCs0/ Concentration % Inhibition
(uM)  ECsp) assays (LM)
APS 2.3 58.8 50 100 94 88 78-87 99 96
3*43 4.0 4.7 12.5 92 88 75 96-98 92 100
3*20 8.2 4.0 25 87 82 32 80-86 95 100
5*362 38.9 1.9 50 68 52 62 88-88 83 38
CsA NT NT 1 pg/uL 93 95 94 100-100 100 100

ECso, effective concentration 50%; CCsq, cytotoxic concentration 50%; SI, selective index; RC, Replication Complex; HCV, hepatitic C virus; NT, not tested; CsA, Cyclosporin A.



A.C.G. Jardim et al./Antiviral Research 115 (2015) 39-47 43

APS
150+ - 150
I
g 5
© 100 L100 O
© ]
c <
£ >
g E=
£ 50- 50 &
[0} >
® T
(@]
0 T rrrTor T T :":"‘I T 0
0.1 1 10 100
log uM
3*43
200 - 200
I3
& 150 I ECsp = 4.0 uM F150 &
o o
s s
S 100+ L100 &
3 2
ke 3
8 50 L 50 %
° O
O TorrrTThg T T TN 0
0.1 1 10 100

log uM

3*20
150 - 150
s
s ECso =8.2 uM s
2 1001 ° ”* -100 O
© o
c c\°
S <
5 z
= 50+ - 50 ﬁ
[0) >
['q =
Q
(@]
o+———rr——rr——— 8.
0.1 1 10 100
log uM
5*362
150 - 150
I3
g g
o) o
® S
c 2
5 S
® Z
S £
a o
Q >
o =
[
o
0 ——rrr—————rrrr————# 0
1 10 100
log uM

Fig. 3. Determination of ECso for compounds APS, 3*20, 3*43 and 5*362. Huh7.5 stably harboring SGR-Feo-JFH-1 were incubated with compounds at concentrations over a 3-
log range for 48 h. Replication efficiency was measured by luciferase assay (indicated by @) and cellular viability measured using an MTT assay (indicated by B). Mean values
of three independent experiments each measured in triplicate including the standard deviation are represented.

sistent with the hypothesis that the compounds are predominantly
inhibiting RC formation. However, we acknowledge that interpre-
tation of these experiments is challenging and we therefore cannot
rule out the possibility that these compounds inhibit both RC for-
mation and activity.

4h post treatment

150+ mm  SGR-luc-JFH1
== SGR-luc-JFH1/GND

Translation (%)

Fig. 4. Effects of compounds APS, 3*20, 3"43 and 5*362 on HCV IRES-mediated
translation. Huh7.5 cells were transfected with in vitro transcripts of the SGR-luc-
JFH1 or the SGR-luc-JFH-1 (GND) and compounds were added immediately.
Translation levels of WT and mutant constructs are shown at 4 h post-electropor-
ation. Mean values of three independent experiments each measured in triplicate
including the standard deviation are shown. P < 0.05 was considered significant.

3.5. Activity of compounds APS, 343, 3*20 and 5*362 against a DCV
resistant JFH-1 SGR and genotypes 1b/3a SGRs

Next, we investigated whether compounds APS, 343, 3*20 and
5*362 were able to block replication of an SGR that was resistant to
one of the DAAs in current use. The most potent of these is dacla-
tasvir (DCV) with an ECso against HCV replication of less than
100 pM (Gao et al, 2010) - however a single point mutation
(Y93H in NS5A) results in ~1000-fold loss of sensitivity to DCV.
Huh7.5 cells were therefore electroporated with SGR-luc-JFH1
WT or Y93H RNA and seeded in a 96 well plate. Cells were incu-
bated from 4 to 48 h post seeding in the presence of either APS,
3%43, 3*20, 5*362 or DCV (17.6 pM), prior to lysis and measure-
ment of luciferase activity. Reassuringly, all 4 compounds signifi-
cantly inhibited both WT and Y93H SGR replicon to similar levels
(p <0.05) (Fig. 6).

We also evaluated the ability of the compounds to inhibit the
replication of alternative genotypes of HCV. To do this we chose
genotype 3a as this is increasingly common and is inherently more
resistant to the new DAAs. As transient SGR for genotype 3a are not
available, we utilized Huh7.5 cells stably harboring the genotype
3a derived SGR-Feo-S52 containing either the AIl (T1056A,
T14291 and S2204I) or SHI (P1220S, D1430H and S2204]I) set of cul-
ture adaptive mutations (Saeed et al., 2012). These cells were incu-
bated with the 4 compounds or DCV (All: 5.2 nM and SHI 2.4 nM)
for 48 h and harvested. Both genotype 3a SGRs were effectively
inhibited by all 4 compounds (p < 0.05) (Fig. 6, Table 1). Addition-
ally, we assayed the 4 compounds against genotype 1b by using
Huh7.5 cells stably harboring the SGR-BM4-5 (Wyles et al,
2007). The 4 compounds were also able to significantly reduce
HCV genotype 1b replication (p < 0.05) (Table 1). No significant dif-
ferences were observed after treatment in replication with differ-
ent genotypes (Fig. 6).



44 A.C.G. Jardim et al./Antiviral Research 115 (2015) 39-47

SGR-luc-JFH1
4h
15
1.0
0.5
0.0
S & S S S &
2 Q%@ %\ffp »@r{p Q?fbg N
¥ {,;V [ 6"9
SGR-FEO-JFH1
4h
15

Fig. 5. Effects of compounds APS, 3*20, 3*43 and 5*362 on formation of HCV genome replication complexes. Huh7.5 cells were electroporated with SGR-luc-JFH1, and 2 h
later, specific concentrations of compounds were added. Replication efficiency was measured at 4, 16, 24 and 48 h post-electroporation using luciferase to assess the effect of
compounds in preventing the formation of RCs (upper panel). Huh7.5 harboring SGR-Feo-JFH-1 were treated with indicated concentrations of compounds for 48 h.
Replication efficiency was assessed to check the effect of compound on pre-existing RCs (lower panel). Mean values of three independent experiments each measured in
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Fig. 6. Activity of compounds APS, 343, 3*20 and 5*362 against a DCV resistant mutant and genotypes 1b/3a SGRs. Huh7.5 cells electroporated with SGR-luc-JFH-1 or a
corresponding NS5A Y93H DCV resistance mutation containing RNA, or Huh7.5 cells stably harboring the SGR-Feo genotype 3a All (T1056A, T14291 and S2204I) or SHI
(P1220S, D1430H and S2204I) (Saeed et al., 2012) culture adaptive mutations were treated 4 h post electroporation/seeding for 48 h with the previously determined
concentration of compounds or of DCV (JFH1: 17.6 pM; genotype 3a All: 5.2 nm and SHI 2.4 nm), harvested and luciferase measured. P < 0.05 was considered significant.

3.6. HCVcc infection is inhibited by Brazilian natural compounds by measuring Renilla luciferase levels at 48 h post-electroporation.

Consistent with the SGR data, these compounds effectively blocked

To determine the effect of the compounds APS, 343, 3*20 and
5*362 on genome replication in the context of full length virus,
we first used the Rluc-J6/JFH1 (FL-J6/JFH-5'C19RIuc2AUbi reporter)
- a genotype 2a J6/JFH1 chimeric virus with Renilla luciferase fused
to the HCV Core protein (Tscherne et al., 2006). Huh7.5 cells were
electroporated with in vitro transcribed Rluc-J6/JFH1 RNA prior to
incubation with the 4 compounds at 4 h. Replication was assessed

Rluc-J6/JFH1 replication (Fig. 7A). Protein expression levels were
also significantly reduced in the presence of the compounds
(Fig. 7B). APS was the most effective inhibitor of HCVcc replication,
reducing replication by 500 fold at a concentration of 50 uM. CsA
was included as a control for inhibition of genome replication.

To confirm that the compounds inhibited genome replication in
the context of virus infection (as compared to RNA electroporation)
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Fig. 7. Effects of compounds APS, 3*20, 3*43 and 5*362 on the HCV virus production. Huh7.5 cells were electroporated with Rluc-J6/JFH1 RNA, and 4 h later, specific
concentrations of compounds were added. Replication efficiency was measured 48 h post-electroporation by measuring Renilla levels (A) and western blotting assays (B).
Huh7.5 cells were infected with Rluc-J6/JFH1 virus and compounds were immediately added. Samples were harvested after 48 h and luminescence was measured (C). Cells
were infected with JFH1 virus for 4 h, washed extensively to remove virus and treated with the compounds. After 48 h samples were harvested, and extracellular virus
titrated (D). Mean values of three independent experiments each measured in triplicate including the standard deviation are shown. P < 0.05 was considered significant.

we infected Huh7.5 cells with Rluc-J6/JFH1 HCVcc virus in the
presence or absence of compounds for 48 h and again measured
Renilla luciferase. As expected, HCVcc infection was significantly
reduced in the presence of APS, 3*43, 3*20 and 5*362 (Fig. 7C,
Table 1).

We further confirmed the anti-HCV activity of the compounds
by quantifying extracellular levels of virus after incubation of
infected cells with the compounds. In this case Huh7.5 were
infected with JFH1 virus for 4 h and subsequently treated for
48 h. Levels of released virus were significantly reduced by all 4
compounds (Fig. 7D, Table 1), although in this context 5*362 had
a less dramatic effect.

4. Discussion

HCV infection is a serious health problem and the new thera-
peutic regimes for the treatment of patients are very expensive
and are associated with significant risk for the development of
resistance. Therefore, the search for alternative therapies against
HCV remains a valid aim, particularly in the context of low and
middle-income countries that will not be able to afford the new
drugs.

In this study, we screened a set of compounds extracted from
Brazilian plants and we identified four compounds with potent
inhibitory activity on HCV replication. These compounds are APS
(ECsp=2.3 uM), a natural alkaloid isolated from M. ilicifolia, the
tetrahydrofuran lignans 3*43 (ECsq=4.0 uM) and 320 (ECsq =
8.2 uM) and the secolignan 5*362 (ECsg = 38.9 uM) from P. blanda.
Our data demonstrated that HCV RNA and protein levels were

dramatically reduced when the inhibitory effects of these com-
pounds on HCV replication were analyzed using either subgenomic
reporter SGR-Feo-JFH1 and the full-length Rluc-J6/JFH1.

The antiviral activity of alkaloids and lignans on HCV life cycle
was previously described. Honokiol, a lignan isolated from leaves
of Magnolia officinais, showed to have multiple effects on HCV
infection, inhibiting entry, translation and replication in Huh7.5
cells using HCVcc, HCVpp, and subgenomic replicons (Lan et al.,
2012). The reduction of protein and RNA levels was also shown
by the treatment of cells in a subgenomic replicon system with
3-hydroxy caruilignan C (3-HCI-C) isolated from Swietenia macro-
phylla stems, which also increased the replication suppression
when combined with IFN-o and protease or polymerase inhibitors
(Wu et al., 2012). The flavonolignan Silymarin extracted from Sily-
bum marianum (milk thistle) has shown recently to block virus
entry, RNA and protein expression, virus production and cell to cell
spread of virus (Wagoner et al., 2010). Additionally, this compound
demonstrated a hepatoprotective effect on treated cells (Polyak
et al.,, 2010). Myriberine A is an alkaloid isolated from Myrioneuron
faberi and demonstrated inhibition against the HCV life cycle
in vitro with a good therapeutic index (CCso/ECsp) of greater than
12.0 in vitro for non-cytotoxic concentration (Huang et al., 2013).
Oxymatrine and matrine are the two major alkaloid aqueous
extracts from the Sophora root. Oxymatrine is reported to have
antiviral activity against HCV in cell cultures and has shown hepa-
toprotective activity in an animal study (Chen et al., 2001; Liu et al.,
1994). In a clinical perspective, the components Oxymatrine and
matrine found in sophora roots have shown to reduce viral load
and inhibition of liver fibrosis (Hussein et al., 2000; Kitazato
et al., 2007). All these studies showed that natural lignans and
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alkaloids have potential for development as new bioactive mole-
cules against HCV. Moreover, the extra effects of those compounds
on HCV life cycle and clinical data demonstrated that further Bra-
zilian compounds can present extra mode of action which need to
be investigated.

Our results demonstrated that the compounds APS, 343, 320
and 5*362 decreased HCV replication in a dose-dependent manner
and acted to prevent RC formation. Using an Huh7.5 cell line stably
harboring a subgenomic reporter we were able to demonstrate that
treatment with compounds for 4 h did not inhibit RCs. In contrast,
replication levels were reduced from 16 h of treatment when new
RCs were formed, similar to transient assay performed with subge-
nomic reporter, suggesting that these compounds are acting on
new RCs. In a previous study, Lyn et al. demonstrated that the
treatment of Huh7.5 with lipid metabolism inhibitors disrupted
the replication complexes by changing density and distribution
of lipid droplets and consequently changing HCV RNA location
which inhibited HCV replication (Lyn et al., 2009). However, the
action of the compounds on pre-existing RCs was not clearly
addressed.

In this context, reduction of HCV RNA and protein levels
observed in our data could be consequence of the direct inhibition
of viral enzymes (Ahmed-Belkacem et al., 2010; Bachmetov et al.,
2012; Wagoner et al., 2010), the interference of these compounds
with cellular factors involved in virus replication, or by inducing
cellular antiviral effectors as has been shown previously
(Gonzalez et al., 2009; Polyak et al., 2007; Rinck et al., 2001; Yi
et al, 2011).

We were also able to show that the antiviral activity of Brazilian
naturally occurring compounds was independent of HCV genotype
and was not affected by variants described to confer resistance to
Daclatasvir, a highly potent direct-acting antiviral drug targeting
NS5A (Gao et al., 2010; Guedj et al., 2013; Lemm et al., 2010). Other
plant-derived compounds have showed to be active on HCV life
cycle independently of viral genotype or subtype (Choi et al,
2014; Haid et al., 2012), presenting an additional benefit to the cur-
rent interferon-based HCV therapies or to the directly target antiv-
irals which efficacy depend on viral genotypes. Haid et al. also
demonstrated that viral resistance did not compromise the antivi-
ral activity of a synthetic flavonoid-like compound against wild-
type and mutant virus (Haid et al., 2012).

Moreover, most of the compounds did not affect HCV IRES dri-
ven translation indicating that the major antiviral mechanism is to
directly inhibit virus genome replication. As an exception, the com-
pound F8*40, a natural kavalactone isolated from Piper fuligineum,
showed significant but not dramatic effect on IRES-directed trans-
lation and corroborated with protein levels reduction in the pres-
ence of this compound. This data can suggest that the mode of
action of this compound is related to the inhibition of IRES-medi-
ated translation. The effect in baseline IRES translation was earlier
showed by Gonzalez et al. by treating cells with the plant-derived
flavonoid Quercetin which also had a strong inhibitory effect at
50 uM on HCV production in cell culture (Gonzalez et al., 2009).

In summary, our data demonstrate that natural alkaloids and
lignans isolated from Brazilian plants dramatically inhibited HCV
replication in vitro. Further analyses are in progress to elucidate
other modes of action of those compounds. These data are the first
description of Brazilian natural compounds possessing anti-HCV
activity and as such may be useful in the development of future
antiviral interventions for HCV and possibly other viral infections.
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