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Abstract: Medical imaging is widely used in medical diagnosis. The low-resolution image caused by
high hardware cost and poor imaging technology leads to the loss of relevant features and even fine
texture. Obtaining high-quality medical images plays an important role in disease diagnosis. A surge
of deep learning approaches has recently demonstrated high-quality reconstruction for medical image
super-resolution. In this work, we propose a light-weight wavelet frequency separation attention
network for medical image super-resolution (WFSAN). WFSAN is designed with separated-path for
wavelet sub-bands to predict the wavelet coefficients, considering that image data characteristics
are different in the wavelet domain and spatial domain. In addition, different activation functions
are selected to fit the coefficients. Inputs comprise approximate sub-bands and detail sub-bands of
low-resolution wavelet coefficients. In the separated-path network, detail sub-bands, which have
more sparsity, are trained to enhance high frequency information. An attention extension ghost
block is designed to generate the features more efficiently. All results obtained from fusing layers are
contracted to reconstruct the approximate and detail wavelet coefficients of the high-resolution image.
In the end, the super-resolution results are generated by inverse wavelet transform. Experimental
results show that WFSAN has competitive performance against state-of-the-art lightweight medical
imaging methods in terms of quality and quantitative metrics.

Keywords: medical imaging; stationary wavelet transform; ghost module; attention mechanism

1. Introduction

At present, medical images provide an important basis for disease diagnosis. Wavelet-
based medical imaging has attracted much attention [1,2]. Generally speaking, conven-
tional medical imaging systems typically include magnetic resonance imaging (MRI) [3],
computed tomography (CT) [4], and positron emission computed tomography (PET-CT) [5].
MRI is more suitable for the detection of the brain and soft tissue, whereas CT is more
often used for bone and chest. High resolution (HR) medical images provide richer details
and better visual quality; they play an important role in experts’ diagnosis. However,
due to the high cost of hardware equipment and the limitation of imaging technology in
a specific situation, obtaining high-resolution medical images by super-resolution has been
an important trend [6]. In addition, due to factors such as device configuration, limited
scanning time, and body motion, these images with noise and lack of structural information
often have low resolution (LR). In such scenarios, super-resolution is preferred by medical
professionals to enhance medical images.

Super-resolution is a classical ill-posed inverse problem given the multiple approaches
to reconstruct HR images. The medical image super-resolution is addressed by single image
super-resolution (SISR), which refers to recovery of information of the corresponding HR
image from a single LR input. The single image-based methods can be classified as: interpola-
tion based [7,8], edge directed [9,10], sparsity based [11–15], and deep learning based [16–19].
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Among these methods, sparse coding-based (SC) methods [11,12], as representative spar-
sity methods, are inspired by the research, where image patches can be represented as
a sparse linear combination of elements with an appropriate over-complete dictionary
selection. A sparse representation of each low-resolution patch, which is captured from
the input image, and the sparse coefficients are used to generate the high-resolution patch.
Finally, the high-resolution image is reconstructed by the output patches. Furthermore,
the literature [14,15] exploits the structure of sparse and nonlocal self-similarity priors for
recovering images. However, the sparse-based super resolution requires human experience
to set the relevant parameters, thereby resulting in the loss of image detail information and
overly smooth reconstruction findings [13].

Recently, deep learning approaches and neural network models have become more
popular since Dong et al. [16] proposed the super-resolution convolutional neural net-
work (SRCNN) model. Instead of learning the dictionaries directly, SRCNN learns an
end-to-end mapping between low- and high-resolution images. This model conceptually
consists of three parts, namely patch extraction and representation, nonlinear mapping,
and reconstruction. With its three-layer convolutional network structure, SRCNN recon-
structs its high-resolution image rapidly and maintains high quality at the same time.
Thus, many modified SRCNN models have been proposed. Loy et al. [17] proposed a fast
super-resolution convolutional neural network (FSRCNN) with improvements to accelerate
the SRCNN model. This method adopts a deconvolution layer to compose the sample,
while it utilizes the shrinking, mapping, and expanding layers to replace the nonlinear
mapping layers. The smaller filer sizes and the deeper network structure also reduce
the computational cost and improve the performance. Lim et al. [18] implemented an en-
hanced deep super-resolution network and a new multiscale deep super-resolution system,
where batch normalization layers are removed in the network. Ledig et al. [19] presented
a generative adversarial network for image super-resolution (SRGAN) with the generative
adversarial nets(GAN) [20]. Wang et al. [21] proposed an enhanced SRGAN (ESRGAN) by
introducing the residual-in-residual dense block without batch normalization to enhance
the visual quality. As we know, the usage of deep residual learning (ResNet) [22] in very
deep convolution networks (VDSR) increases the depth of the network to 20 layers to
obtain higher accuracy and visual improvements. Tong et al. [23] proposed SRDenseNet by
using dense connected convolutional networks [24]. It demonstrates that the combination
of features at different levels improves the performance. Woo et al. [25] proposed a con-
volutional block attention model(CBAM), which obtained satisfied result. Furthermore,
Hou et al. [26] adopts the alternative upscaled and downscaled layers in the generator with
relativistic disciminator to capture the high-resolution image from extreme low-resolution
image. Moreover, Zhang et al. [27] presented a fast medical super resolution (FMISR)
method, which contributes to the mini-network and uses the sub-pixel convolution layer.
Shi et al. [28] designed an efficient sub-pixel convolutional neural network model. These
deep learning-based methods can be address the image super resolution problem and have
achieved favorable results. However, most methods are aimed at conventional natural
images. In particular, the above methods might produce undesired artefacts in HR images
when performed on medical images.

The main purpose of our study is to design a lighter medical imaging super-resolution
model, which is named WFSAN model. The WFSAN model integrates the sparseness of
wavelet-based methods and the advantages of learning-based methods and provides an av-
enue to bridge the gap between wavelet-based and learning-based methods. Furthermore,
our model has few parameters, has competitive parameters and visual effect, and performs
favorably on LR images with different degradation settings, showing great potential for
practical applications such as CT or MRI imaging. In this work, we address the problem of
single medical image super resolution in wavelet domain. We anchor the focus on the data
feature in different sub-bands to take advantage of the feature of wavelet domain. On the
basis of the analyzed fact that the distribution of approximate frequency sub-band and
detail frequency sub-band is different, a wavelet frequency separation network is adopted
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to enhance learning the features of each sub-band, thereby accelerating the convergence
speed and improving the accuracy. The approximate frequency sub-bands represent aver-
age information, and detail frequency sub-bands include horizontal, vertical, and diagonal
information. Consequently, the network is designed to obtain the sparse representation of
these frequency sub-bands. The input tensor inside the high-frequency feature extraction
path is divided into horizontal, vertical, and diagonal sub-bands. An attention ghost
extension block with fewer parameters is designed to contain more information for each
path. The features of all sub-bands are fused to reconstruct the predicted wavelet coeffi-
cients. Suitable activate functions are selected in each path of the feature extraction net and
the reconstruction net.

The main contributions can be summarized as follows:

1. In the existing wavelet-based deep learning approaches, wavelet-based deep learning
approaches, the first approach analyzes and utilizes the numeric features for each
sub-bands in the wavelet domain and processes them separately; other methods
mainly consider the different characteristics between spatial and wavelet domain.

2. Instead of learning the features of all sub-bands together, we propose a wavelet fre-
quency separation network model to capture the features for each separated frequency
sub-band and enhance the high-frequency feature. Attention ghost extension block is
designed to obtain more information with fewer parameters.These features are fused
by a designed attention fusing block to form the high-resolution image.

3. In this end-to-end network of multiple input and output channels in the wavelet
domain, the sparsity and image structure information provided by low-frequency
and high-frequency sub-bands of discrete wavelet transform are utilized, respectively.

2. Related Work
2.1. Wavelet-Based Image Super Resolution

In recent years, in order to take advantage of the sparsity and multiresolution of
wavelet transform [29], a surge of approaches [30–35] with the wavelet technology have
been proposed on image super resolution. Among these algorithms, [30–33] adopt the com-
bination of the discrete wavelet transform and sparse representation instead of deep
learning to obtain the HR image. Guo et al. [34] proposed DWSR as the first approach to
predict high-resolution images in wavelet domain with a deep CNN network. The super-
resolution problems are transformed into the prediction problem of wavelet coefficients
with one-level discrete wavelet transform. The performance of the model is enhanced
owing to the sparsity brought by the wavelet coefficients. A residual net is built by learn-
ing the residual coefficients between low resolution image and high resolution image.
Huang et al. [35] implemented a wavelet-based CNN (Wavelet-SRNet) for multi-scale face
super resolution. The one-level discrete wavelet transform is replaced by the wavelet packet
decomposition. Skip connections exist in the embedding and wavelet predicting networks,
and the reconstruction network comprises deconvolution layers. Wavelet prediction loss,
texture loss, and full-image loss are used together to maintain training stability and prevent
the degradation of texture details. The discrete wavelet transform combined with recursive
Res-Net WTCCR [36] explored the possibilities of depicting images at different sub-bands.
It replaces the low-frequency sub-band by LR image to gain more details. For medical
imaging super resolution, Deeba et al. [37] proposed a wavelet-based enhanced medical
image super resolution (WMSR) method, which adopts the combination of the one-level
discrete stationary wavelet transform and a mini-gird network rather than the combina-
tion of the discrete wavelet transform and a convolution neural network. The structure,
which is designed to predict the wavelet coefficients of high resolution image, consists of
hidden layers and sub-pixel convolution layers. However, the wavelet method combines
all the sub-bands to learn the image features without considering the differences between
the sub-bands. For instance, the low-frequency sub-band reflects the main energy of the im-
age, whereas the high-frequency sub-band focuses on the detailed information of the image
in wavelet domain.
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2.2. Brief Introduction of Efficient Convolutional Neural Networks

A series of existing methods has been proposed in recent years to enhance the deep
neural network. Chollet presented the Xception [38], which mentions extreme incep-
tion and depthwise separable convolutions consisting of depthwise that convolute each
channel independently and pointwise transform the depth of channels. Subsequently,
ShufflNnet [39] utilizes channel shuffle to exchange the information of different channel
groups. Howard et al. [40] proposed the third version of MoblileNet to reduce the redun-
dant operations and parameters.In the first version, a framework was proposed based
on depthwise separable convolution, which replaces the standard convolutions to reduce
calculation. Subsequently, the second version noticed the linear bottlenecks and adopted
linear activation instead of ReLU in low dimensional space. In addition, inverted residual
blocks are used to enhance the generalization ability of the model. For the third version,
SE block and h-swish activation was used. Han et al. [41] designed a ghost block to gener-
ate feature maps efficiently, which obtains more image information with less parameters.
Ouahabi et al. [42] proposed an efficient network for medical image semantic segmenta-
tion. In their work, the dense connectivity, dilated convolutions, and factorized filters are
organized into a new layer, which can improve accuracy and efficiency.

3. Proposed Approach
3.1. 2D Discrete Stationary Wavelet Transform

WFSAN is based on discrete stationary wavelet transform with haar function, which
also named Db1 wavelet. The mother wavelet(wavelet function) of haar wavelet is ψ(x),and
the father wavelet(scaling function) is φ(x), as shown by the following equation:

ψ(x) =


1 0 ≤ x ≤ 1/2
−1 1/2 ≤ x ≤ 1

0 otherwise
, φ(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

(1)

The 2D discrete stationary wavelet transform can be regarded as performing 1D
discrete wavelet transform in rows and columns. The decomposition and reconstruction
of 1D-SWT can be described by discrete filters and sampling filters. In the decomposition,
the high-pass filter is H, and the low-pass filter is L. i = 1, 2, 3, . . . , N represents the level of
wavelet decomposition.

Compared with discrete wavelet transform, SWT does not need the downsampling
operator. The four sub-band coefficients, A, H, V, and D, represent the average, horizontal,
vertical, and diagonal sub-band image, respectively. The subscript i represents the decom-
position levels. For instance, D1 represents the diagonal sub-band coefficients of one-level
wavelet decomposition. Corresponding, the sub-band coefficients of level i + 1 can be
generated from coefficients of level i as follows:

Ai+1 = L(L(Ai)),

Hi+1 = H(L(Ai)),

Vi+1 = L(H(Ai)),

Di+1 = H(H(Ai)).

(2)

Figure 1 shows the 2D discrete stationary wavelet decomposition of i level. In one-
level 2D-SWT, 2D signals are considered 1D signals among the rows. Thus, the coefficients
are captured by performing 1D-SWT in rows and then in columns.
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Figure 1. The diagram of two-dimension discrete stationary wavelet transform.

Figure 2 a–d show four example pixels located in a 2× 2 grid at the upper left corner
of the original image. A11, A12, A21, and A22 can be seen as the linear combination of a,
b, c, and d in Equation (3). It is similar in other sub-bands. We can obtain the sub-band
coefficients of input image with 1-level 2D-DWT and predict the corresponding sub-band
coefficients of the high resolution image.

Figure 2. 2D-SWT of a X-ray image using one-level.

With haar kernel in the 2D discrete stationary wavelet decomposition, the relationship
between the pixel values and coefficients can be computed as follows:

A =

A11 A12

A21 A22

 =

 1
2 (a + b + c + d) 1

2 (a + b + c + d)

1
2 (a + b + c + d) 1

2 (a + b + c + d)


H =

H11 H12

H21 H22

 =

 1
2 (a + b− c− d) 1

2 (a + b + c + d)

1
2 (−a− b + c + d) 1

2 (−a− b + c + d)


V =

V11 V12

V21 V22

 =

 1
2 (a− b + c− d) 1

2 (−a + b− c + d)

1
2 (a− b + c− d) 1

2 (−a + b− c + d)


D =

D11 D12

D21 D22

 =

 1
2 (a− b− c + d) 1

2 (−a + b + c− d)

1
2 (−a + b + c− d) 1

2 (a− b− c + d)



(3)

The pixel values of the image and coefficients of the sub-bands from the corresponding
image are represented by a, b, c and d and A, H, V and D. As shown in Figure 3b, a sample
image is analyzed to indicate the range of coefficients,where A belongs to [0, 510], H belongs
to [−255, 255], V belongs to [−255, 255] and D belongs to [−131, 133]. As displayed in
MATLAB or the library matplotlib of the Python language, the grayscale image of wavelet
domain data (a) is normalized to [0, 255]; it is easy to observe, but not at its authentic value.
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The range of pixel values in the original image is [0, 255]; thus, it can be computed by
Equation (3), where the range of sub-band A is [0, 510] and that of H, V and D is [−255,
255]. Figure 4 shows that the approximate sub-band data are distributed in the interval
of [0, 510], and the other sub-band data are almost approximately 0. The mean value for
each sub-band is calculated to analyze the data characteristics. Concretely, according to
Equation (3), it is clear that the sum of all elements in the D Matrix is 0; thus, its mean is 0.
Similarly, the mean values of H and V are both 0. The experiment indicates that the mean
value of A is 319.93, and the mean values of H, V and D are 0. Besides this, the standard
deviations of A, H, V and D are 149.43, 12.55, 7.77, and 4.14, respectively. These features in
stationary wavelet transform domain are considered in network design.

(a) Grayscale image of wavelet domain data (b) Heat map of wavelet domain data

Figure 3. Grayscale image and heat map of the same transformed image in wavelet domain.

Figure 4. The statistic disturbutio of a two-dimensional discrete stationary wavelet transformed image.

3.2. Network Architecture

We present a novel framework for medical imaging super-resolution, which considers
the data features of wavelet domain. As illustrated in Figure 5, the WFSAN model can be
decomposed into feature extraction, representation net, and reconstruction net. The part
of extraction and representation is further divided into approximate and detail frequency
sub-band extraction and representation. Different attention ghost extension blocks are
designed to capture the features of each separated wavelet frequency sub-band individu-
ally. Subsequently, these features are used for reconstructing with sub-pixel convolution.
The output of each sub-band is fused to generate the final image.
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Figure 5. The network structure of WFSAN. The inputs are separated into approximate and detail
sub-band coefficients of low-resolution image. The network output is the combination of approximate
and detail sub-band coefficients of the predicting image.

We represent the input image as ILR. Approximate sub-band coefficients and detail
sub-band coefficients of input low resolution image are LCA and LCD , whereas HCA and
HCD represent approximate sub-band coefficients and detail sub-band coefficients of the
output high-resolution image IHR. Moreover, LCD consists of three sub-bands, namely LcV ,
LcH , and LcD, corresponding to vertical, horizontal, and diagonal information, respectively.
fs indicates separating function, and fc is a combination function. fswt and fiswt indicate
the discrete stationary wavelet transform and its inverse transform. In feature extraction,
two block types are designed to extract the features from different sub-bands.

LCA, LcH , LcV , LcD = fs( fswt(LLR));

LCD = fc(LcH , LcV , LcD);

FA = fA(LCA), FD = fD(LCD),

(4)

where fA(·) and fD(·) represent the low-frequency (approximate) and high-frequency
(detail) feature extraction network, respectively, consisting of attention ghost extension
blocks and standard convolutions. As the outputs of extraction operation, FA and FD are
input into the reconstruction net to predict the coefficients, where U denotes the upsampling
operation that consists of the sub-pixel convolution layer. The reconstruction net is designed
to transform the fused features to residual wavelet coefficients. Ultimately, the predicted
high-resolution image is generated by the following:

I
′
HR = fiswt(U(FA), U(FD)) (5)

The loss based on most common loss l2 is adopted to predict the approximate and
detail coefficients, which can be defined as follows:

Loss =
1

2N

N

∑
n=1

(‖ HCA,−U( fA(LCA)) ‖2 + ‖ HCD −U( fD(LCD)) ‖2). (6)

Fundamentally, we aim to learn the differences between the sub-band coefficients of
low-resolution image and high-resolution images. Under the sub-pixel layers, we combine
these sub-bands to generate the final high-resolution image with inverse discrete stationary
wavelet transform.
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3.3. Wavelet Frequency Separation Feature Extraction

The wavelet frequency separation feature extraction networks for approximate and
detail frequency are designed given the different characteristics of each sub-band. A com-
ponent of the approximate frequency sub-band is trained to obtain abundant low-frequency
information, and detail frequency sub-bands are learnt to enhance their ability in reserving
the edge information. Most parts of the structure are similar to each other, as shown in
Figure 5.

The approximate coefficient feature extraction block has five blocks, including two
low-attention ghost extension block layers and three standard convolution layers. The input
initially passes a 3× 3× 32 convolution layer with ReLU activation function. All activation
functions in this block adopt ReLU to promote the convergence of the model, because all
approximate coefficients are positive numbers. Then, it is fed to a low-attention ghost
extension block to capture features individually. We utilize a convolutional layer with 1×
1× 32 filters to adjust the channel, considering that concatenation leads to computational
burden and redundant information. More blocks are adopted in this sub-band than in
the others, because most information is in the approximate frequency sub-band. The last
convolution kernel is 3× 3× 32, followed by the sub-pixel layer with 3× 3× 1 filters.

For the detail coefficient feature extraction block, the input initially passes a convo-
lutional layer with Tanh activation function. The kernel is 3× 3× 32. Then, it is fed to
the attention ghost extension block to capture features independently. The channels are
reduced by a convolutional layer with a 1× 1× 32 filter. Furthermore, few filters are
used in this path due to its sparsity. Moreover, the sub-pixel layer with 3× 3× 3 filters is
adopted to reconstruct three coefficient feature maps in the detail sub-band. Tanh activation
function is selected, because not all detail coefficients are positive. Finally, these sub-bands
are merged together to generate the high-resolution image prediction through the inverse
wavelet transform.

3.4. Attention Ghost Extension Block

Inspired by the ghost model [41] and convolutional block attention module [25],
the attention ghost extension block is designed to generate feature maps efficiently. First,
the ghost extension block is designed, as shown in Figure 6. The 3× 3× 32 kernel is used
to form half the final feature maps F. Additionally, ϕ [41] represents a linear operation
in the following Equation (7). In this block, 3× 3 depthwise convolution replaces the orig-
inal convolution to reduce the parameters further. Lastly, these features are contacted
together with a descriptor Fc. In summary, the ghost extension produced can be formulated
as follows:

F
′
= Fc(F, ϕ(F)) (7)

Figure 6. The ghost extension block .

Furthermore, to enhance the detail feature maps, the spatial attention mechanism
is introduced in the attention ghost extension block, as shown in Figure 7. The same as
the ghost extension block, half feature maps are generated with 3× 3× 32 convolution ker-
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nel. The final extension features are obtained from the ghost extension features, which are
cascaded with spatial attention module. To capture more spatial features, the max-pooled
features with salient information and average-pooled features with global information are
exploited through channel max-pooling MaxPool(·) and average-pooling AvgPool(·). f
represents the 3× 3× 1 convolution operation, which is used to merge Mavg and Mmax.
The spatial attention feature map is normalized from the merged feature map with hard-
sigmoid activation function σ. Eventually, the attention ghost extension feature maps are
computed by element-wise multiplication ⊗ between the spatial attention feature map and
ghost extension feature maps. Finally, two parts are contacted together. The overall process
can be summarized as follows:

F
′′
= Fc(F, ϕ(F)⊗ σ( f (AvgPool(ϕ(F)), MaxPool(ϕ(F)))))

= Fc(F, ϕ(F)⊗ σ( f (Mavg, Mmax)))
(8)

Figure 7. The attention ghost extension block with attention mechanisms in space .

In Table 1, N represents the number of the channel, and H ×W is the size of the input
feature maps; k is the convolution kernel size, and C is the sum of filters; and M is the sum
of the channels of input feature maps.

Table 1. Comparison of mini grid network, ghost extension block, and attention ghost extension block.

Method Parameters FLOPs

Mini Grid Network (N × k2 + 1)× C + (C× k2 + 1)×M 2k2 × C× H ×W × (N + M)
Ghost Extension Block (N × k2 + 1)× C + C× k2 2k2 × C× H ×W × (N + 1)

Attention Ghost Extension Block (N × k2 + 1)× C + C× k2 + 2k2 2k2 × C× H ×W × (N + 1) + 4k2 × H ×W

We compare the parameters and floating point operations(FLOPs) in each block. It
indicates that the parameters and FLOPs of ghost extension block and attention ghost ex-
tension block are closed, but they are relatively smaller than those of the mini grid network.

4. Experimental Results
4.1. Data Set for Training and Testing

During the training phase, half a public data set, Shenzhen Hospital X-ray Set [43],
with 662 X-ray images, and the Montgomery Set, with 138 images, were selected. During the
testing phase, the remaining images were adopted. We cropped the rest of the images and
resized them to 512× 512 size, considering that the chest is only part of the Montgomery
set image. Images were cropped to 48× 48 pixel sub-images with 48 pixels overlapping
for training. The batch size was set to 128. A total of 10% images were used for valid data
set, and the remaining images were used for a test data set, which include normal and
abnormal chest images of the two data sets. One channel information of these grayscale
images is used in training and testing.
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4.2. Quantitative Results

We compare the proposed WFSAN with three lightweight single image super reso-
lution methods on two commonly used image quality metrics, namely PSNR and SSIM,
as shown in Table 2. The best results are presented in red, and the second best results are
presented in blue. Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
are used to evaluate quantitative performance. Given two images, I and I

′
, which have

the same size m× n, PSNR is defined as follows:

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[I(i, j)− I
′
(i, j)]2;

MAXI = 255;

PSNR = 10 ∗ log10(
MAX2

I
MSE

),

(9)

where MAXI represents the maximum possible pixel value, which is 255 here, because I
and I

′
are 8 bit images. PSNR is the most common and widely used objective measurement

method to describe the image quality. The higher PSNR indicates better reconstruction
image. Meanwhile, the SSIM can be defined as follows:

SSIM =
(2µIµI′ + c1)(2σI I′ + c2)

(µ2
I + µ2

I′
+ c1)(σ

2
I + σ2

I′
+ c2)

, (10)

where µI and µI′ represent the mean of image blocks I and I
′
; σ2

I and σ2
I′

are their variances,
respectively; σI I′ is a covariance; and c1 and c2 are constants to maintain stability. The range
of SSIM is from 0 to 1. The value is 1 when the two images are exactly the same. Three
different methods are compared with our proposed method, and the bicubic algorithm is
used as baseline reference.

Table 2. Quantitative evaluation results of the different methods with PSNR(dB) and SSIM.

Data Set Scale
Bicubic SRCNN [16] FMISR [27] WMSR [37] Our Proposal

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ChinaSet-Normal
×2 32.83 0.8675 34.61 0.8905 35.05 0.8923 34.95 0.8949 35.43 0.8952
×3 31.92 0.8450 32.57 0.8626 33.71 0.8681 32.79 0.8697 33.08 0.8700
×4 29.91 0.8259 30.42 0.8327 31.39 0.8452 30.82 0.8451 31.12 0.8457

ChinaSet-Abnormal
×2 33.30 0.8445 34.02 0.8577 34.23 0.8584 34.26 0.8598 34.44 0.8608
×3 32.29 0.8118 32.65 0.8232 33.10 0.8275 32.93 0.8294 32.97 0.8286
×4 30.94 0.7869 31.22 0.7958 31.68 0.8020 31.46 0.8021 31.58 0.8018

MontgomerySet-Normal
×2 30.96 0.8974 32.83 0.9305 33.97 0.9354 34.66 0.9400 35.31 0.9383
×3 29.14 0.8842 30.03 0.9085 31.55 0.9162 31.91 0.9184 31.60 0.9179
×4 27.87 0.8724 28.44 0.8907 29.22 0.8967 29.32 0.8969 29.78 0.8990

MontgomerySet-Abnormal
×2 31.49 0.8940 33.13 0.9240 34.17 0.9284 34.76 0.9327 35.38 0.9323
×3 29.64 0.8785 30.45 0.9009 31.89 0.9077 32.21 0.9097 31.97 0.9091
×4 28.55 0.8656 29.04 0.8822 29.77 0.8894 29.93 0.8883 30.38 0.8906

The methods compared are SRCNN [16], FMISR [27], and WMSR [37], among which
FMISR and WMSR have achieved lightweight medical imaging with super resolution and
state-of-the-art performance in the last two years. To ensure the accuracy of empirical
results, we have calculated the average values of PSNR and SSIM for all images from
above image datasets in Table 2. Concretely, these results are obtained from 130 images
of ChinaSet-Normal Dataset, 134 images of ChinaSet-Abnormal Dataset, 32 images of
MontgomerySet-Normal Dataset, and 23 images of MontgomerySet-Normal Dataset, re-
spectively.

In Table 2, taking advantage of wavelet WMSR and WFSAN can achieve a higher
score in SSIM on all datasets. Our proposed method achieves competitive performance
but uses fewer parameters. In particular, the proposed WFSAN advances WMSR [37] with
the improvement margins of 0.48, 0.18, 0.65, and 0.62 dB on scale factor of ×2. In addition,
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our proposed approach obtains the top two results in SSIM only, except of abnormal
ChinaSet chest imaging. This finding indicates that our wavelet frequency separation
structure with attention ghost extension block not only reduces the parameters but also
slightly improves quality. In addition, FMISR performs better on the ChinaSet dataset,
and WMSR performs better on the Montgomery dataset. Our proposed method has
competitive results on all datasets, owing to the generalization ability of the model.

The visual comparisons of different methods are presented in Figures 8–11. From these
figures, it can be seen that the reconstructed image is evidently the closest to the original
image by using our WFSAN model. Particularly, the letters in Figures 9 and 11 are more
coherent and cleaner than the other methods.

Figure 8. Visual comparison of different models in ChinaSet normal chest dataset, (a) Original(HR)
image, (b) Bicubic, (c) SRCNN, (d) FMISR, (e) WMSR, (f) WFSAN.
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Figure 9. Visual comparison of different models in ChinaSet abnormal chest dataset, (a) Original(HR)
image, (b) Bicubic, (c) SRCNN, (d) FMISR, (e) WMSR, (f) WFSAN.

Figure 10. Visual comparison of different models in MontgomerySet normal chest dataset, (a)
Original(HR) image, (b) Bicubic, (c) SRCNN, (d) FMISR, (e) WMSR, (f) WFSAN.
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Figure 11. Visual comparison of different models in MontgomerySet normal chest dataset, (a)
Original(HR) image, (b) Bicubic, (c) SRCNN, (d) FMISR, (e) WMSR, (f) WFSAN.

Furthermore, we have tested the methods on the training machine. Table 3 presents
the execution time for each method on this computer. Our proposed approach has less
parameters than the other methods. The proposed method and WMSR are slower than
the FMISR, because the tensorflow framework does not support the wavelet transform
directly. In addition, the sub-pixel convolution layer has no optimization in tensorflow,
compared with the standard convolution layer. The number of sub-pixel convolution layers
is four times that of the FMISR and WMSR. This condition influences the time to apply
the high-resolution image. Ultimately, we can observe that the proposed approach is faster
than the SRCNN in the tensorflow framework.

Table 3. Computational time of different methods.

Execution Time for Different Method in Scale 4

Method SRCNN FMISR WMSR Our Proposal
SR-Time/s 0.7557 0.2278 0.4156 0.7275

Figure 12 indicates that SRCNN has the lowest PSNR with the least parameters.
Although the parameters of the proposed approach are few, we still obtained competitive
results. The WFSAN(G+S), which we adopt finally, has favorable performance in PSNR
with very slight increase in the parameters.
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Figure 12. PSNR(dB) versus number of parameters for different methods on MontgomerySet abnor-
mal data set.

4.3. Implementation Details

We use tensorflow framework to implement our proposed approach with Python3.7
interaction interface. The hardware devices include 32GB size of memory, NVIDIA GeForce
GTX 1080Ti GPU, and Intel(R) Core(TM) i7-6850K CPU@3.60GHz. Meanwhile, the ex-
perimental platform includes Matlab2018a, Anaconda3, CUDA Toolkit v10.0, and Tensor-
flow2.0.

We train our model in×2,×3, and×4, because our proposed method can only process
a single-scale factor. Meanwhile, we use the l2-based loss function Formula (6) instead
of the l2 loss. These several training techniques are used during the training process.
We learn the independent maps to reconstruct the separated wavelet frequency information
instead of learning the transform from a complete low-resolution image to restore the super-
resolution image directly. Detail sub-band learning is used to increase the sparsity and
reduce the complexity. The gradients are clipped to 0.001 by norm clipping option in
the training. We select the Adam optimizer to update Θ and b. The initial learning rate is
0.001 and decreases through a cosine decay method (Algorithm 1).

Algorithm 1 Cosine decay function

1: lr = initial_leaning_rate, α = 0.0001, decay_epoch = 30;
2: while epoch < max_epoch do
3: if Mod(epoch, decay_epoch) == 0 then
4: lr = lr ∗ 0.1;
5: else
6: lr = (1− α) ∗ (0.5 ∗ (1 + cos(π ∗ epoch/decay_epoch))) + α;
7: end if
8: end while

The decay_epoch is set to 100, and the α is set to 0.0001 in the training procedure.
The training procedure takes about 10 h with GPU. Our network is fully converged in
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100 epochs, and (Θ, b) is used for testing. We train the model in 100 epochs after the pretrain-
ing, because large-scale datasets are difficult to converge. For fair comparison, the entire
learning-based methods are trained and tested on the same proposed datasets.

Two combinations of ghost module extension (GBE) block and spatial attention ghost
module extension (SAGBE) are tested to decide the structure of attention ghost extension
block, as shown in Table 4. The first combination, called WFSAN(G+G), utilizes the GBE
in the approximate frequency sub-band and detail frequency sub-band. Meanwhile, WF-
SAN(G+S) utilizes the GBE in approximate frequency sub-band and SAGBE in detail
frequency sub-band. The result implies that WFSAN(G+S) performs better in PSNR (dB)
and SSIM in general. Therefore, we select the combination of WFSAN(G+S).

Table 4. Testing different combinations.

The Quantitative Results for Different Combinations

Combination WFSAN(G+G) WFSAN(G+S)
Dataset PSNR/SSIM PSNR/SSIM

ChinaSet-Normal 35.23/0.8951 35.43/0.8952
ChinaSet-Abnormal 34.38/0.8602 34.44/0.8608

MontgomerySet-Normal 35.34/0.9379 35.31/0.9383
MontgomerySet-Abnormal 35.42/0.9307 35.38/0.9323

4.4. Discussion

As mentioned above, it is clear that the wavelet-based super resolution methods [34,37]
can obtain high resolution images effectively. However, their methods tend to mix up
the approximate and the detail information in the process of prediction. This will not take
full advantages of the global and local information of the X-ray image. Therefore, to obtain
more information from the input images, we design a lightweight wavelet frequency
separation attention network in our work. Experimental results of the proposed work
demonstrate the effectiveness of our lightweight super resolution method. However, due to
the factor that the lightweight model does not have sufficient capacity, the scale of wavelet
decomposition is selected as one level. On the other hand, to extract more features, we
design a spatial attention mechanism in our work. Unlike GhostNet, the attention ghost
extension block with spatial attention mechanism can achieve more detail information
than a channel attention mechanism. This can be attributed to two factors. One is that
the scale of average-pooling based channel attention will be close to zero. The other is that
the spatial attention mechanism can pay attention to more local information.

As a result, according to the comparison of Section 4.2, we can see that the proposed
spatial attention mechanism has better performance than works FMISR [27] and WMSR [37]
in terms of PSNR and SSIM. However, the reconstructed X-ray image is too smooth, to
some extent, in our experiments. To address this issue, we will combine the optimization
and deep learning methods in our next work.

5. Conclusions

We propose an effective wavelet frequency separation attention network single-image
super-resolution method WFSAN for medical imaging reconstruction, which utilizes fea-
tures in approximate frequency sub-band coefficients and enhances features in detail
frequency sub-band coefficients in the wavelet domain. The use of learning detail coeffi-
cients, which are sparse, independently promotes the convergence. Ghost extension block
and attention ghost extension block are designed to reduce the parameters and improve
the information for each sub-band. In addition, these sub-band coefficients are combined to
reconstruct all the coefficients. Eventually, we generate the high-resolution image through
the inverse stationary wavelet transform.

The proposed approach is advantageous in memory with competitive quality results
compared with other lightweight deep learning methods. In the future, we will analyze
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other wavelets of the wavelet family. Furthermore, statistical methods are considered to
analyze the numerical information of high-resolution image and low-resolution image in
the wavelet domain to provide a better normalization method. Detail sub-band coefficients
should be generated from low-resolution image directly. Moreover, we have attempted
to use the complex wavelet transform, which did not provide favorable results, because
we cannot train the data in the complex domain directly. Therefore, we will focus on
the super-resolution in the complex wavelet domain.

Author Contributions: Conceptualization, K.S., J.L. and Y.Y.; methodology, Y.Y.; software, Y.Y.;
validation, Y.Y. and J.L.; formal analysis, J.L.; investigation, Y.Y.; data curation, Y.Y.; writing—original
draft preparation, Y.Y.; writing—review and editing, J.L.; supervision, K.S.; project administration,
K.S.; funding acquisition, K.S. and J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by open project fund of Intelligent Terminal Key Laboratory of
Sichuan Province (2019–2020) SCITLAB-0002, SCITLAB-0003, a grant from Science and Technology
Department of Sichuan province (No. 2020YFG0300) and Natural Science Foundation of Jiangxi (No.
20192BAB207013).

Institutional Review Board Statement: The study was conducted according to the guidelines of
University of Electronic Science and Technology of China and Shangrao Normal University, and
approved by the Institutional Review Board.

Data Availability Statement: Some or all data used during the study are available online in accor-
dance with funder data retention polices (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC42562
33/#__sec2title).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ouahabi, A. A review of wavelet denoising in medical imaging. In Proceedings of the 8th International Workshop on Systems,

Signal Processing and Their Applications (IEEE/WoSSPA), Algiers, Algeria, 12–15 May 2013; pp. 19–26.
2. Ahmed, S.S.; Messali, Z.; Ouahabi, A.; Trepout, S.; Messaoudi, C.; Marco, S. Nonparametric denoising methods based on

contourlet transform with sharp frequency localization: Application to low exposure time electron microscopy images. Entropy
2015, 17, 3461–3478. [CrossRef]

3. Cherukuri, V.; Guo, T.; Schiff, S.J.; Monga, V. Deep MR brain image super-resolution using spatio-structural priors. IEEE Trans.
Image Process. 2020, 29, 1368–1383. [CrossRef]

4. You, C.; Cong, W.; Vannier, M.W.; Saha, P.K.; Hoffman, E.A.; Wang, G.; Li, G.; Zhang, Y.; Zhang, X.; Shan, H.; et al. CT
super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans. Med.
Imaging 2020, 39, 188–203. [CrossRef]

5. Kennedy, J.A.; Israel, O.; Frenkel, A.; Bar-shalom, R.; Azhari, H. Super-resolution in PET imaging. IEEE Trans. Med. Imaging 2006,
25, 137–147. [CrossRef]

6. Dou, Q.; Wei, S.; Yang, X.; Wu, W.; Liu, K. Medical image super-resolution via minimum error regression model selection using
random forest. Sustain. Cities Soc. 2018, 42, 1–12. [CrossRef]

7. Hou, H.S.; Andrews, H.C. Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. 1978, 26, 508–517.
8. Keys, R.G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. 1981, 29, 1153–1160. [CrossRef]
9. Sun, J.; Sun, J.; Xu, Z.; Shum, H.Y. Image super-resolution using gradient profile prior. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition(CVPR), Anchorage, AK, USA, 23–28 June 2008.
10. Sun, J.; Xu, Z.; Shum, H.Y. Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans.

Image Process 2011, 20, 1529–1542. [PubMed]
11. Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008.
12. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process 2010, 19,

2861–2873. [CrossRef] [PubMed]
13. Ahmed, A.; Kun, S.; Ahmed, R.; Junaid, M. Convolutional sparse coding using wavelets for single image super-resolution. IEEE

Access 2019, 7, 121350–121359. [CrossRef]
14. Zha, Z.; Yuan, X.; Zhou, J.; Zhu, C.; Wen, B. Image restoration via simultaneous nonlocal self-similarity priors. IEEE Trans. Image

Process. 2020, 29, 8561–8576. [CrossRef] [PubMed]
15. Zha, Z.; Wen, B.; Yuan, X.; Zhou, J.; Zhu, C.; Kot, A.C. A hybrid structural sparsification error model for image restoration. IEEE

Trans. Neural Netw. Learn. Syst. 2021, 2021, 1–15. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/#__sec2title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233/#__sec2title
http://doi.org/10.3390/e17053461
http://dx.doi.org/10.1109/TIP.2019.2942510
http://dx.doi.org/10.1109/TMI.2019.2922960
http://dx.doi.org/10.1109/TMI.2005.861705
http://dx.doi.org/10.1016/j.scs.2018.05.028
http://dx.doi.org/10.1109/TASSP.1981.1163711
http://www.ncbi.nlm.nih.gov/pubmed/21118774
http://dx.doi.org/10.1109/TIP.2010.2050625
http://www.ncbi.nlm.nih.gov/pubmed/20483687
http://dx.doi.org/10.1109/ACCESS.2019.2936455
http://dx.doi.org/10.1109/TIP.2020.3015545
http://www.ncbi.nlm.nih.gov/pubmed/32822296
http://dx.doi.org/10.1109/TNNLS.2021.3057439
http://www.ncbi.nlm.nih.gov/pubmed/33625989


Micromachines 2021, 12, 1418 17 of 18

16. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2016, 38, 295–307. [CrossRef]

17. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European
Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407.

18. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017.

19. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

20. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680.

21. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced super-resolution generative adversarial
networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 63–79.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

23. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

24. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

25. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

26. Hou, M.; Liu, S.; Zhou, J.; Zhang, Y.; Feng, Z. Extreme low-resolution activity recognition using a super-resolution-oriented
generative adversarial network. Micromachines 2021, 12, 670. [CrossRef] [PubMed]

27. Zhang, S.; Liang, G.; Pan, S.; Zheng, L. A fast medical image super resolution method based on deep learning network. IEEE
Access 2019, 7, 12319–12327. [CrossRef]

28. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

29. Ouahabi, A. Signal and Image Multiresolution Analysis; ISTE-Wiley: London, UK; Hoboken, NJ, USA, 2013.
30. Nazzal, M.; Ozkaramanli, H. Wavelet domain dictionary learning-based single image superresolution. Signal Image Video Process.

2015, 9, 1491–1501. [CrossRef]
31. Fanaee, F.; Yazdi, M.; Faghihi, M. Face image super-resolution via sparse representation and wavelet transform. Signal Image

Video Process. 2019, 13, 79–86. [CrossRef]
32. Ayas, S.; Ekinci, M. Single image super resolution based on sparse representation using discrete wavelet transform. Multimed.

Tools Appl. 2018, 77, 16685–16698. [CrossRef]
33. Ma, C.; Zhu, J.; Li, Y.; Li, J.; Jiang, Y.; Li, X. Single image super resolution via wavelet transform fusion and SRFeat network. J.

Ambient Intell. Humaniz. Comput. 2020, 2020, 1–9. [CrossRef]
34. Guo, T.; Mousavi, H.S.; Vu, T.H.; Monga, V. Deep wavelet prediction for image super-resolution. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Honolulu, HI, USA, 21–26 July 2017.
35. Huang, H.; He, R.; Sun, Z.; Tan, T. Wavelet-SRNet: A wavelet-based CNN for multi-scale face super resolution. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
36. Ma, W.; Pan, Z.; Guo, J.; Lei, B. Achieving super-resolution remote sensing images via the wavelet transform combined with

the recursive res-net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3512–3527. [CrossRef]
37. Deeba, F.; She, K.; Ali Dharejo, F.; Zhou, Y. Wavelet-based enhanced medical image super resolution. IEEE Access 2020, 8,

37035–37044. [CrossRef]
38. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.
39. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856.

40. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for
mobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October
2019; pp. 1314–1324.

41. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–18 June 2020; pp. 1577–1586.

http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.3390/mi12060670
http://www.ncbi.nlm.nih.gov/pubmed/34201195
http://dx.doi.org/10.1109/ACCESS.2018.2871626
http://dx.doi.org/10.1007/s11760-013-0602-7
http://dx.doi.org/10.1007/s11760-018-1330-9
http://dx.doi.org/10.1007/s11042-017-5233-5
http://dx.doi.org/10.1007/s12652-020-02065-0
http://dx.doi.org/10.1109/TGRS.2018.2885506
http://dx.doi.org/10.1109/ACCESS.2020.2974278


Micromachines 2021, 12, 1418 18 of 18

42. Ouahabi, A.; Taleb-Ahmed, A. Deep learning for real-time semantic segmentation: Application in ultrasound imaging. Pattern
Recognit. Lett. 2021, 144, 27–34. [CrossRef]

43. Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.-X.J.; Lu, P.-X.; Thoma, G. Two public chest X-ray datasets for computer-aided
screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475–477. [PubMed]

http://dx.doi.org/10.1016/j.patrec.2021.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25525580

	Introduction
	Related Work
	Wavelet-Based Image Super Resolution
	Brief Introduction of Efficient Convolutional Neural Networks

	Proposed Approach
	2D Discrete Stationary Wavelet Transform
	Network Architecture
	Wavelet Frequency Separation Feature Extraction
	Attention Ghost Extension Block

	Experimental Results
	Data Set for Training and Testing
	Quantitative Results
	Implementation Details
	Discussion

	Conclusions
	References

