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Summary
Background Long non-coding RNAs (lncRNAs) have recently emerged as essential biomarkers of cancer progres-
sion. However, studies are limited regarding lncRNAs correlated with recurrence and fluorouracil-based adjuvant
chemotherapy (ACT) in stage II/III colorectal cancer (CRC).

Methods 1640 stage II/III CRC patients were enrolled from 15 independent datasets and a clinical in-house cohort. 10
prevalent machine learning algorithms were collected and then combined into 76 combinations. 109 published tran-
scriptome signatures were also retrieved. qRT-PCR assay was performed to verify our model.

FindingsWe comprehensively identified 27 stably recurrence-related lncRNAs from multi-center cohorts. According
to these lncRNAs, a consensus machine learning-derived lncRNA signature (CMDLncS) that exhibited best power
for predicting recurrence risk was determined from 76 kinds of algorithm combinations. A high CMDLncS indi-
cated unfavorable recurrence and mortality rates. CMDLncS not only could work independently of common clinical
traits (e.g., AJCC stage) and molecular features (e.g., microsatellite state, KRAS mutation), but also presented dra-
matically better performance than these variables. qRT-PCR results from 173 patients further verified our in-silico
findings and assessed its feasible in different centers. Comparisons of CMDLncS with 109 published transcriptome
signatures further demonstrated its predictive superiority. Additionally, patients with high CMDLncS benefited
more from fluorouracil-based ACT and were characterized by activation of stromal and epithelial-mesenchymal tran-
sition, while patients with low CMDLncS suggested the sensitivity to bevacizumab and displayed enhanced immune
activation.

Interpretation CMDLncS provides an attractive platform for identifying patient at high risk of recurrence and could
optimize precision treatment to improve the clinical outcomes in stage II/III CRC.
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Research in context

Evidence before this study

Long non-coding RNAs (lncRNAs) have recently
emerged as essential biomarkers of cancer progression.
However, studies are limited regarding lncRNAs corre-
lated with recurrence and fluorouracil-based adjuvant
chemotherapy (ACT) in stage II/III colorectal cancer
(CRC).

Added value of this study

Our study enrolled 1640 stage II/III CRC patients from 15
datasets and an in-house cohort. In total, 27 stably
recurrence-related lncRNAs were identified from multi-
center cohorts. Subsequently, a consensus machine
learning-derived lncRNA signature (CMDLncS) that
exhibited best power for predicting recurrence risk was
determined from 76 algorithm combinations. CMDLncS
not only could work independently of common clinical
and molecular factors, but also presented better perfor-
mance. Comparisons of CMDLncS with 109 published
transcriptome signatures further demonstrated its pre-
dictive superiority. A high CMDLncS indicated unfavor-
able recurrence and mortality rates, sensitivity to
fluorouracil-based ACT, resistance to bevacizumab,
stronger stromal activation and epithelial-mesenchymal
transition, and inferior immune activation. Overall,
CMDLncS provides an attractive platform for optimizing
decision-making of stage II/III CRC.

Implications of all the available evidence

CMDLncS provides an attractive platform for identifying
patient at high risk of recurrence and could optimize
precision treatment to improve the clinical outcomes in
stage II/III CRC.
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Introduction
Colorectal cancer (CRC) represents one of the most
prevalent tumors and the second leading cause of global
cancer death according to the GLOBOCAN 2020 statis-
tics.1 Approximately 70% of CRC patients are diagnosed
with stage II/III tumors. Currently, the therapeutic
management of CRC mainly relies on the tumor-node-
metastasis (TNM) staging system. After curative sur-
gery, fluorouracil-based adjuvant chemotherapy (ACT)
remains the standard of care treatment for stage III
CRC and some stage II CRC with high-risk clinical fea-
tures (e.g., T4, high grade), leading to prolonged overall
survival (OS) and decreased recurrence risk for these
patients.2 Nevertheless, the selection of patients is cur-
rently suboptimal, which further gives rise to either
over- or undertreatment.3 A previous study has reported
that only 20% of stage III CRC patients benefit from
ACT, while 80% of patients are exposed to unnecessary
toxicity.4 For patients with stage II CRC, the application
of ACT remains controversial because only a subset of
patients will yield considerable benefit. Although the
QUASAR clinical trial demonstrated that ACT could
improve the OS of stage II CRC, the absolute improve-
ment was quite limited (approximately 3.6%).5 Addi-
tionally, up to 30% of stage II patients will develop
recurrence after surgery and succumb to their disease.6

Thus, the current staging system is insufficient for clini-
cal management in stage II/III CRC, and it is impera-
tive to identify reliable biomarkers for detecting high-
risk patients who might benefit from ACT.

Recently, accumulated evidence has revealed that
genetic and epigenetic alterations are closely implicated
in the prognosis and treatment of CRC.2 Mutational bio-
markers such as TP53, KRAS, BRAF, microsatellite
instability (MSI), and tumor mutational burden (TMB)
are commonly applied in clinical settings.7 Our team
has reported a TTN/OBSCN “double-hit” tumor that is
significantly correlated with better prognosis and supe-
rior immune infiltration.8 However, the high cost, small
proportion, and moderate performance hinder the clini-
cal utilization of mutational biomarkers. The transcrip-
tomic-based consensus molecular subtype (CMS) and
CRC intrinsic subtype (CRIS) have been developed to
reveal the heterogeneity of molecular features and clini-
cal outcomes of CRC.9,10 These classification systems
are currently limited in clinical practice due to a lack of
standardization and the requirement of bioinformatics
resources.11 An immunohistochemistry-based scoring
approach used to assess the recurrence risk, termed
Immunoscore�, has been established and validated,
which measures the tumor core and invasive margin of
CD3+ and CD8+ T cells.12 Although Immunoscore�

exhibits stable power in assessing the recurrence risk of
early-stage CRC, its performance remains moderately
accurate according to the C-index evaluation in an inter-
national trial.12 Circulating tumor DNA (ctDNA)
released by tumors into the bloodstream also has poten-
tial for liquid biopsy in assessing prognosis and guiding
treatment but still needs further exploration and
validation.2

As is well-known, CRC is a complex disease with
both inter- and intra-tumor heterogeneity. An ideal bio-
marker should maintain homogenous expression
within and between tumor tissues. Hence, a multigene
panel might be a promising approach to address this
issue.2 Long noncoding RNAs (lncRNAs) represent a
newly discovered class of noncoding RNAs with > 200
nucleotides that include the majority of human RNAs
(approximately 76%).13,14 Previous studies have incorpo-
rated lncRNAs into preclinical signatures to identify
multigene panels associated with tumor recurrence,
prognosis, and chemoresistance.15,16 However, due to
www.thelancet.com Vol xx Month xx, 2021



Articles
underutilized data, inapposite machine learning algo-
rithms, a lack of rigorous validation, and no clinical test-
ing, these multigene expression signatures are usually
hard for clinical interpretation.17�19

To tackle the abovementioned considerations, our
study tried to comprehensively explore the clinical sig-
nificance of lncRNAs in stage II/III CRC and systemati-
cally identify a consensus machine learning-derived
lncRNA signature (CMDLncS) from 76 kinds of algo-
rithm combinations. CMDLncS was tested in a total of
1640 stage II/III CRC patients from 16 independent
datasets to evaluate the recurrence risk, OS, and benefits
of fluorouracil-based ACT and bevacizumab. We com-
pared CMDLncS with common clinical traits, molecular
features, and 109 published signatures to further verify
its robustness and translation. We also revealed the
latent biological mechanisms underlying CMDLncS.
Overall, our study offers an attractive platform for
detecting patients at a high risk of recurrence and could
optimize precision treatment to improve the clinical
outcomes of stage II/III CRC.
Methods

Data collection
The overall design of this study is displayed in Figure 1.
Our study retrospectively enrolled 15 independent CRC
cohorts from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO). A total of 1467
patients were retained according to the following crite-
ria: (1) Primary CRC; (2) Possessed gene expression pro-
files and clinical annotations; (3) AJCC stage II/III; (4)
No preoperative chemotherapy or radiotherapy received.
The detailed baseline was summarized in Table S1.
Among these cohorts, eight cohorts (TCGA-CRC,
GSE143985, GSE161158, GSE17536, GSE29621,
GSE31595, GSE39582, and GSE92921) with complete
recurrence-free survival (RFS) information were utilized
to develop and validate the CMDLncS model. Four
cohorts, TCGA-CRC, GSE17536, GSE29621, and
GSE39582, also containing overall survival (OS), were
further applied to explore the predictive value of
CMDLncS for OS. Seven cohorts were treated with fluo-
rouracil-based ACT (FOLFOX or FOLFIRI) alone,
including TCGA-CRC, GSE19860, GSE28702,
GSE45404, GSE62080, GSE69657, and GSE72970,
while three cohorts were treated with fluorouracil-based
ACT in combination with bevacizumab, including
GSE19860, GSE19862, and GSE72970. These drug-
related cohorts were employed to evaluate the perfor-
mance of CMDLncS in predicting ACT and bevacizu-
mab benefits in stage II/III CRC.
Genome-wide lncRNA and mRNA expression
For TCGA-CRC, RNA-seq raw read count from the
TCGA portal was converted to transcripts per kilobase
www.thelancet.com Vol xx Month xx, 2021
million (TPM) and further log-2 transformed. Data
from the GEO database were all retrieved from the
Affymetrix� GPL570 platform (Human Genome
U133 Plus 2.0 Array). The raw data from Affymetrix�

were processed via the robust multiarray averaging
(RMA) algorithm implemented in the Affy package.
The ComBat algorithm implemented in the sva pack-
age was utilized to remove batch effects from nonbio-
logical technical biases. The principal component
analysis (PCA) before and after batch correction is
shown in Fig. S1a, b. The GENCODE database
(https://www.gencodegenes.org/) was applied to
lncRNA and mRNA annotations. Furthermore, the
intersection of two platforms (Illumina and GPL570)
was taken, and ultimately, 3390 lncRNAs and 17,046
mRNAs were retained for the subsequent analysis.
Signature generated from machine learning
integrative approaches
Prior to constructing a consensus machine learning-
derived signature (CMDLncS), we transformed lncRNA
expression into z-score in all cohorts, which enhanced
the comparability between different datasets. Eight
cohorts (TCGA-CRC, GSE143985, GSE161158,
GSE17536, GSE29621, GSE31595, GSE39582, and
GSE92921) with complete recurrence information were
utilized to develop the CMDLncS model according to
the following pipeline:

(1) Univariate Cox analysis was performed on all
lncRNAs in these eight cohorts. Given the strictness
of multiple testing correction and the small sample
problem of some cohorts that might filter out latent
lncRNAs associated with recurrence, lncRNAs pos-
sessing both an unadjusted P < 0.1 for more than
six cohorts and the same hazard ratio (HR) direction
for more than five cohorts were considered stable
recurrence-related lncRNAs (SRRLs).

(2) The initial signature discovery was performed in
GSE39582. Ten single machine learning algo-
rithms, including random survival forest (RSF),
elastic network (Enet), Lasso, Ridge, stepwise Cox,
CoxBoost, partial least squares regression for Cox
(plsRcox), supervised principal components
(SuperPC), generalized boosted regression model-
ing (GBM), and survival support vector machine
(survival-SVM), were applied. A few algorithms pos-
sessed the ability of feature selection, such as Lasso,
stepwise Cox, CoxBoost, and RSF. Thus, we com-
bined these algorithms to generate a consensus
model. In total, 76 algorithm combinations were
conducted on SRRLs to fit prediction models based
on 10-fold cross-validation. The parameter tuning
details are described in the Supplementary Mate-
rial.
3
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Figure 1. The overall flow of this study.
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(3) These 76 models were further tested in the other
seven cohorts. For each model, its C-indices across
all validation datasets were calculated, and the
model with the highest average C-index was consid-
ered as the optimal one.
Collection of published signatures
To compare the performance of CMDLncS with other
signatures, we comprehensively retrieved published sig-
natures. The miRNA signatures were excluded due to
the severe lack of miRNA information in the validation
datasets. Eventually, a total of 109 signatures (including
mRNA and lncRNA signatures) were collected (Table
S2). These signatures were fitted by diverse algorithms,
such as stepwise Cox, Lasso, RSF, and single sample
gene set enrichment analysis (ssGSEA). In addition,
these signatures were derived from various biological
processes, such as the tumor microenvironment,
autophagy, ferroptosis, stemness, epithelial-mesenchy-
mal transition (EMT), Toll-like receptor signaling, hyp-
oxia, metastasis, glycolysis, lipogenesis, vitamin D,
epigenetics, N6-methyladenosine, aging, and drug sen-
sitivity. For each signature, we performed univariate
Cox regression and calculated the C-index in all cohorts.
Ethics
The human cancer tissues used in this study were
approved by Ethnics Committee of The First Affiliated
Hospital of Zhengzhou University on December 19,
2019, and the TRN is 2019-KW-423.
Human tissue specimens
A total of 173 frozen surgically resected CRC tissues
were enrolled from The First Affiliated Hospital of
Zhengzhou University. All patients gave written
informed consent, and none of the patients received any
preoperative chemotherapy or radiotherapy. After radi-
cal surgery, patients received available standard sys-
temic therapies, such as FOLFOX (n = 35), FOLFIRI
(n = 37), and bevacizumab (n = 48). Drug responses
were evaluated based on the Response Evaluation Crite-
ria in Solid Tumors (RECIST, version 1.1). Responders
and nonresponders were defined as having a complete
response (CR)/partial response (PR) and stable disease
(SD)/progressive disease (PD), respectively. The
detailed baseline characteristics of the patients are dis-
played in Table S1.
Quantitative real-time PCR (qRT-PCR)
Total RNA was isolated with the RNAisoPlus reagent
(Takara, Dalian, China) as described previously.20 RNA
quality was evaluated using a NanoDrop One C (Wal-
tham, MA, USA), and RNA integrity was assessed by
agarose gel electrophoresis. An aliquot of 1 mg of total
www.thelancet.com Vol xx Month xx, 2021
RNA was reverse-transcribed into complementary DNA
(cDNA) using a High-capacity cDNA Reverse Transcrip-
tion kit (TaKaRa Bio, Japan), according to the manufac-
turer's protocol. The primer sequences are shown in
Table S3. See the Supplementary Material for more
details.
Cell line and cell transfection
Human CRC cell lines HCT-116 (RRID: CVCL_0291)
and SW480 (RRID: CVCL_0546) were obtained from
the Chinese Academy of Science (Shanghai, China).
Cell lines were authenticated by short tandem repeat
polymerase chain reaction (STR-PCR). Mycoplasma
infection status was tested by 40, 6-diamidino-2-phenyl-
indole (DAPI) staining in the laboratory. All cells were
cultured in DMEM (high glucose) (HyClone, Logan,
Australia) supplemented with 10% fetal bovine serum
(Gibco; Thermo Fisher Scientific, Inc.), 100 U/ml peni-
cillin, and 100 mg/ml streptomycin in a humidified
incubator at 37¯C with 5% CO2. Silencer select small
interfering RNAs (siRNAs) specific for
ENSG00000232995 (lnc-RGS5�1), ENSG00000249035
(CLMAT3), and inhibitor control were generated from
RiboBio (Guangzhou, China). To silence lncRNAs in
cancer cells, lnc-RGS5�1 specific siRNA (si-lnc-
RGS5�1, target sequence: GACATGGCCCAGAAAA-
GAA), CLMAT3 specific siRNA (si-CLMAT3, target
sequence: GGATGTTAGTGAGATCTA) and control
siRNA were transfected into HCT-116 and SW480 cells.
Lipofectamine 3000 (Invitrogen; Thermo Fisher Scien-
tific, L3000�015) was utilized as a transfection carrier.
The transfected cells were harvested after 60 h. The
transfection efficiency was confirmed via qRT-PCR anal-
ysis.
Cell proliferation assay
In Cell Counting Kit-8 (CCK-8) assay, all cells were
plated at 1.5 £ 103 cells per well in 96-well plates and
incubated overnight in DMEM (high glucose)
(HyClone, Logan, Australia) supplemented with 10%
FBS. The cell proliferation index was measured using a
CCK-8 (Dojin Laboratories, Tokyo, Japan) at 0, 24, 48,
72, and 96 h post-transfection according to the man-
ufacturer’s instruction. Then, 10 ml of CCK-8 solution
was added to the culture medium and incubated for 2 h
at 37¯C. Absorbance was measured at a wavelength of
450 nm with a reference wavelength of 570 nm. Each
experiment was repeated � 3 times.
Transwell assay
The migration and invasive abilities of CRC cells were
determined via transwell assays after transfection with
siRNAs. Transwell chambers (Corning, NY, USA) were
prepared with or without Matrigel. Then, blood serum
medium (10% FBS) was added to the lower chamber.
5
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After transfection with si-lnc-RGS5�1, si-CLMAT3 and
inhibitor control, HCT-116 and SW480 cells were
digested to prepare a cell suspension, and this suspen-
sion was added to the upper chamber and incubated for
24 h. At the end of this incubation, the residual cells in
the upper chamber were gently wiped with cotton
swabs. The cells were fixed with 4% paraformaldehyde
and stained with 1% crystal violet for 30 min. After
washing three times with PBS, the cells were imaged
and counted with an OLYMPUS FV1000 confocal
microscope. Every experiment was performed three
times for statistical analysis.
Gene set enrichment analysis (GSEA)
A total of 21,338 gene sets were generated from the
MSigDB resource (version 7.4, h.all.v7.4.symbols.gmt,
c2.all.v7.4.entrez.gmt, and c5.all.v7.4.entrez.gmt). The
correlation coefficients between the CMDLncS score
and all mRNAs were calculated. Subsequently, all
mRNAs were sorted in descending order via their corre-
lations with the CMDLncS score. The ranked gene list
was further subjected to the clusterProfiler package to
perform GSEA. Gene sets with a false discovery rate
(FDR) < 0.001 were considered to be significantly
enriched.
EMT pathway activity
Gene set variation analysis (GSVA) is an unsupervised
and nonparametric algorithm that quantifies activity
variation, which is broadly utilized in bioinformatics
analysis.21 Based on the GSVA approach, the epithelial
mesenchymal transition (version 7.4, Hallmark) gene
set retrieved from the MSigDB resource was utilized to
assess the EMT activity of each sample.
Tumor microenvironment
According to the gene expression profiles, the ESTI-
MATE package was utilized to infer the fraction of stro-
mal and immune fractions in the tumor
microenvironment.22
T-cell inflammatory signature (TIS)
TIS is composed of 18 inflammatory genes associated
with antigen presentation, chemokine expression, cyto-
toxic activity, and adaptive immune resistance, which
was used to quantify the T cell-inflamed microenviron-
ment via ssGSEA and predict the putative response to
pembrolizumab.23
Cell infiltration
The ssGSEA algorithm implemented in the GSVA pack-
age was employed to measure the relative infiltration of
28 immune cells in CRC.24
Statistical analysis
All data processing, statistical analysis, and plotting
were conducted in the R 4.0.5 software. Correlations
between two continuous variables were evaluated via
Pearson’s correlation coefficients. The Wilcoxon rank-
sum test or T test was applied to compare the difference
between two groups. The survminer package was used to
determine the optimal cutoff value. Cox regression and
Kaplan-Meier analysis were performed via the survival
package. The time-dependent area under the ROC curve
(AUC) for survival variables was determined by the time-
ROC package. The ROC curve used to predict binary cat-
egorical variables was implemented via the pROC
package. The consensus molecular subtypes were
inferred via the CMSclassifier package.9 All statistical
tests were two-sided. P < 0.05 was regarded as statisti-
cally significant. Error bars span 95% confidence inter-
vals.
Role of funders
The funding agencies had no further role in study
design, in the collection, analysis and interpretation of
data, in the writing of the report and in the decision to
submit the paper for publication.
Results

Integrative construction of a consensus signature
Univariate Cox regression analysis was performed in
eight cohorts with complete recurrence information,
revealing a total of 27 SRRLs that were stably associated
with recurrence in stage II/III CRC (Fig. S2). Subse-
quently, the expression profiles of these 27 SRRLs were
subjected to the machine learning integrative procedure
to develop a consensus signature. In the GSE39582
cohort, our study fitted 76 kinds of prediction models
via the 10-fold cross-validation framework. The C-index
was utilized to evaluate the predictive performance of
the 76 models. A few algorithms displayed extreme
accuracy in the training cohort, such as RSF, with its C-
index even reaching 0.95�0.99 in the training cohort,
which was likely due to overfitting. In addition, evaluat-
ing a model mainly depends on whether it still main-
tains robust performance in different validation cohorts,
which is known as the generalization ability of the
model. Therefore, we only calculated the C-indices of
each model in the other seven validation cohorts
(Figure 2a), and the model with the highest average C-
index was considered the optimal one. Notably, the opti-
mal model was a combination of Lasso and stepwise
Cox with the highest average C-index (0.777), which
was also the only model with a C-index above 0.7 in all
validation cohorts (Figure 2a).

In the Lasso regression, based on the 10-fold cross-
validation, the regression partial likelihood deviance
reached the minimum value when lambda = 0.012
www.thelancet.com Vol xx Month xx, 2021



Figure 2. Integrative construction of a consensus signature. a. C-indices of 76 kinds of prediction models in seven validation cohorts.
b. Determination of the optimal lambda was obtained when the partial likelihood deviance reached the minimum value, and further
generated the key lncRNAs with nonzero coefficients. c. LASSO coefficient profiles of the candidate lncRNAs for CMDLncS construc-
tion. d. Coefficients of 12 lncRNAs finally obtained in stepwise Cox regression.
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(Figure 2b). Twenty-one SRRLs with nonzero Lasso
coefficients were defined as the key factors of recur-
rence in stage II/III CRC (Figure 2c). Subsequently,
these SRRLs were further subjected to stepwise Cox
proportional hazards regression based on the Akaike
information criterion (AIC), which identified a final
set of 12 SRRLs, including ENSG00000232995,
E N S G 0 0 0 0 0 2 4 9 0 3 5 , E N S G 0 0 0 0 0 2 6 1 0 3 9 ,
E N SG 0 0 0 0 0 2 0 6 5 6 7 , E N SG 0 0 0 0 0 2 4 9 7 8 1 ,
E N S G 0 0 0 0 0 2 0 3 8 7 6 , E N SG 0 0 0 0 0 2 1 8 8 3 9 ,
E N SG 0 0 0 0 0 2 6 9 9 4 0 , E N SG 0 0 0 0 0 2 6 0 2 3 9 ,
ENSG00000267934 , ENSG0000023 1 1 77 , and
ENSG00000246379 (Figure 2d). Therefore, a risk
score for each patient was calculated using the
expression of 12 SRRLs weighted by their regression
coefficients (Figure 2d). Furthermore, we selected
two lncRNAs, ENSG00000232995 (lnc-RGS5�1) and
ENSG00000249035 (CLMAT3), to further explore
their roles in CRC cells. HCT-116 and SW480 cells
were transfected with si-lnc-RGS5�1, si-CLMAT3 and
inhibitor control. The knockdown efficiency was con-
firmed via qRT-PCT analysis (Fig. S3). CCK-8 and
transwell assays suggested that lnc-RGS5�1 and
CLMAT3 could promote the proliferation, migration,
and invasion of CRC cells (Fig. S4).
Independent prognostic value of CMDLncS
Our study dichotomized all patients into high- and low-risk
groups based on the optimal cutoff value determined by
the survminer package. Kaplan-Meier survival analysis
showed that the rate of recurrence in the high-risk group
was dramatically higher than the low-risk group in the
training cohort GSE39582 (n = 465, log-rank test:
P < 0.0001), and similar results were also observed in
the validation cohorts TCGA-CRC (n = 169, log-rank
test: P < 0.0001), GSE143985 (n = 91, log-rank test:
P < 0.0001), GSE161158 (n = 141, log-rank test:
P < 0.0001), GSE17536 (n = 111, log-rank
test: P < 0.0001), GSE29621 (n = 40, log-rank test:
P< 0.0001), GSE31595 (n = 37, log-rank test: P< 0.0001),
GSE92921 (n = 59, log-rank test: P < 0.0001), and meta-
cohort (n = 1113, log-rank test: P < 0.0001) (Figure 3a�i).
Likewise, comparisons of OS demonstrated that the mor-
tality rate in the high-risk group was significantly higher
than that in the low-risk group in GSE39582 (n = 465, log-
rank test: P< 0.0001), TCGA-CRC (n = 169, log-rank test:
P = 0.0029), GSE17536 (n = 111, log-rank test: P = 0.0039),
GSE29621 (n = 40, log-rank test: P = 0.033), and meta-
cohort (n = 785, log-rank test: P< 0.0001) (Figure 3j�n).

To assess whether the prognostic significance of the
CMDLncS model was independent of common clinical
traits and molecular features, multivariate Cox regres-
sion analysis was conducted on age, gender, T, N, AJCC
stage, vascular invasion (VI), ACT, TMB, neoantigen
load (NAL), microsatellite state, TP53, KRAS, or BRAF
mutations, and our CMDLncS model. The results
showed that CMDLncS remained statistically significant
for RFS and OS in all cohorts when adjusted for these
clinical and molecular variables, indicating that it could
serve as an independent risk factor in stage II/III CRC
(Tables S4, S5).
Robust performance of CMDLncS
As illustrated in Figure 4a, our CMDLncS model dem-
onstrated powerful performance in the training cohort
GSE39582, and the time dependent AUCs were 0.755/
0.770/0.739 at 1/3/5 years. Similar results were also
observed in the validation cohorts TCGA-CRC (0.749/
0.753/0.867), GSE143985 (0.767/0.788/0.784),
GSE161158 (0.749/0.798/0.782), GSE17536 (0.811/
0.799/0.806), GSE29621 (0.802/0.885/0.848),
GSE31595 (0.736/0.763/0.715), GSE92921 (0.805/
0.875/0.871), and meta-cohort (0.756/0.778/0.760)
(Figure 4a). The C-indices [95% confidence interval]
were 0.729 [0.698�0.760], 0.752 [0.656�0.849],
0.776 [0.679�0.873], 0.739 [0.689�0.790], 0.746
[0.692�0.800], 0.846 [0.728�0.965], 0.712
[0.533�0.892], 0.866 [0.754�0.979], and 0.740
[0.718�0.762] in nine cohorts, respectively (Figure 4b).
Hence, the above results suggested that our CMDLncS
model possessed the stable and robust performance in
multiple independent cohorts.

In clinical settings, clinicians usually apply the clini-
cal traits (e.g., AJCC stage, VI) and molecular features
(e.g., microsatellite state, KRAS mutation) for prognos-
tic evaluation and management.7 Thus, we compared
the predictive superiority of CMDLncS with common
clinical traits and molecular features for predicting the
recurrence risk of stage II/III CRC after radical surgery.
In eight cohorts, CMDLncS presented significantly
superior accuracy than these variables, such as age, gen-
der, T, N, AJCC stage, VI, TMB, NAL, microsatellite
state, ACT, and TP53, KRAS, or BRAF mutations
(Figure 4c�j). This indicated that our CMDLncS model
could be a promising surrogate for predicting the recur-
rence risk of stage II/III CRC in clinical practice.
Comparisons of gene expression signatures
Recently, with advancements in high-throughput
sequencing techniques and computational biology,
numerous predictive gene expression signatures have
been proposed according to various machine learning
approaches.25 To compare the performance of
CMDLncS with other signatures, we systematically
enrolled a total of 109 signatures, mainly encompassing
lncRNA and mRNA signatures (Table S2). These signa-
tures were developed via multiple algorithms, such as
stepwise Cox, Lasso, RSF, and ssGSEA. Univariate Cox
regression analysis was performed on each signature,
and notably, only our CMDLncS model maintained
complete significance across all datasets (Figure 5a),
which suggested the stability of CMDLncS for assessing
www.thelancet.com Vol xx Month xx, 2021



Figure 3. Kaplan-Meier survival analysis of CMDLncS. a�i. Kaplan-Meier curves of RFS according to the CMDLncS in GSE39582
(a), TCGA-CRC (b), GSE143985 (c), GSE161158 (d), GSE17536 (e), GSE29621 (f), GSE31595 (g), GSE92921(h), and meta-cohort
(i). j�n. Kaplan-Meier curves of OS according to the CMDLncS in GSE39582 (j), TCGA-CRC (k), GSE17536 (l), GSE29621 (m)
and meta-cohort (n).
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Figure 4. Robust performance of CMDLncS. a. Time-dependent ROC analysis for predicting RFS at 1, 3, and 5 years. b. C-indices of
CMDLncS across all datasets. c�j. The performance of CMDLncS was compared with common clinical and molecular variables in pre-
dicting prognosis across all training and validation cohorts. Z-score test: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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the recurrence risk of stage II/III CRC. For each signa-
ture, we further calculated the C-indices of all cohorts.
As illustrated in Figure 5b, our CMDLncS model ranked
first in predictive power among GSE39582, GSE143985,
GSE161158, GSE17536, GSE 29,621, GSE92921, and
meta-cohort. Meanwhile, CMDLncS ranked second in
TCGA-CRC, weaker than ColoFinder, and fourth in
GSE31593, following Chu, Ge, Liu-FIMB-1 (Figure 5b).
Our CMDLncS model demonstrated the better
performance in each cohort than almost all models (z-
score test: P < 0.05, Figure 5b). Of note, the perfor-
mance of most signatures was powerful in their own
training cohort but weak in some external cohorts. For
example, the C-index of ColoFinder was 0.979
[0.970�0.987] in its own training cohort TCGA-CRC,
which suggested extremely accurate performance, but
the C-indices in other cohorts were all less than 0.6
(Figure 5b). Similarly, Chu performed best in
www.thelancet.com Vol xx Month xx, 2021



Figure 5. Comparisons of gene expression signatures. a. Univariate Cox regression analysis of CMDLncS and 109 published signa-
tures. b. C-indices of CMDLncS and 109 published signatures in GSE39582, TCGA-CRC, GSE143985, GSE161158, GSE17536,
GSE29621, GSE31595, GSE92921, and meta-cohort. Z-score test: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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GSE31595, superior to CMDLncS, but its performance
in other cohorts was quite poor, and the C-indices of
some cohorts were even less than 0.5 (Figure 5b). The
weak generalization ability may arise from model over-
fitting, though our signature was dimensionally reduced
by two machine learning algorithms and thus had a bet-
ter extrapolation possibility.
www.thelancet.com Vol xx Month xx, 2021
Verification of CMDLncS via qRT-PCR
To further validate the robustness and reproducibility of
our CMDLncS model as a clinically translatable tool, we
next quantified the expression of these 12 SRRLs in a
clinical in-house cohort of 173 patients with stage II/III
CRC via qRT-PCR assay. In line with our prior results,
Kaplan-Meier survival analysis revealed that patients
11



Figure 6. Verification of CMDLncS via qRT-PCR. a, b. Kaplan-Meier curves of RFS (a) and OS (b) according to CMDLncS. c, d. Multivari-
able Cox regression analysis of RFS (c) and OS (d). e. Time-dependent ROC analysis for predicting RFS at 1, 3, and 5 years. f. The per-
formance of CMDLncS was compared with common clinical and molecular variables in predicting prognosis. Z-score test:
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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with high CMDLncS possessed significantly dismal RFS
and OS (log-rank test: P < 0.0001) (Figure 6a, b). After
adjusting for confounding variables, our CMDLncS
model remained statistically significant for RFS and OS
(Wald test: P < 0.001) (Figure 6c, d). The time-depen-
dent ROC analysis showed that the AUCs were 0.823,
0.720, and 0.908 at 1, 3 and 5 years of recurrence,
respectively (Figure 6e). The C-index of CMDLncS was
0.745 [0.697�0.793], which was pronouncedly superior
to common variables of clinical settings, including age,
gender, T, N, AJCC stage, VI, microsatellite state, and
ACT (Figure 6f). Overall, the results from the clinical
in-house cohort supported our in-silico findings, which
further verified that our CMDLncS model was quite fea-
sible and reproducible for stage II/III CRC patients after
radical surgery.
Predictive value of fluorouracil-based ACT and
bevacizumab benefits
Elegant studies have revealed that lncRNAs are inti-
mately associated with the sensitivity and resistance of
fluorouracil-based ACT and bevacizumab.15,26�28

Therefore, we further explored the predictive value of
CMDLncS for assessing the benefits of fluorouracil-
based ACT and bevacizumab in stage II/III CRC. Seven
www.thelancet.com Vol xx Month xx, 2021
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cohorts treated with fluorouracil-based ACT were
retrieved, which contained 187 nonresponders and 191
responders. Among these seven cohorts and the com-
bined meta-cohort, responders displayed higher
CMDLncS than nonresponders (Figure 7a), suggesting
that patients with a high CMDLncS might benefit more
from fluorouracil-based ACT. Notably, the CMDLncS
difference between the two groups in GSE62080 was
not statistically significant (T-test: P = 0.087, Figure 7a),
which might be due to the small sample size (n = 21).
ROC analysis displayed that CMDLncS had a robust
classification performance for assessing the benefit of
fluorouracil-based ACT, with relatively high AUC, sensi-
tivities, and specificities in seven therapy cohorts and
the combined meta-cohort (Figure 7b). Moreover, com-
pared with the four published signatures, our
CMDLncS model showed more stable and better perfor-
mance (Fig. S5a).

In addition, three cohorts (GSE19860, GSE19862,
and GSE72970) treated with bevacizumab, including
30 nonresponders and 24 responders, were also
enrolled. Compared to fluorouracil-based ACT alone,
the CMDLncS level of patients sensitive to bevacizu-
mab exhibited a trend of lower CMDLncS levels com-
pared with those patients resistant to bevacizumab in
GSE19860 (T-test: P = 0.150), GSE19862 (T-test:
P = 0.130), GSE72970 (T-test: P = 0.074), and the
combined meta-cohort (T-test: P < 0.0001)
(Figure 7c). This indicated that patients with a low
CMDLncS might be sensitive to bevacizumab. In
parallel, our CMDLncS model also demonstrated
high AUCs, sensitivities, and specificities in predict-
ing the benefit of bevacizumab across these three
cohorts and the combined meta-cohort (Figure 7d).
Likewise, compared with the three published signa-
tures, we observed the similar results (Fig. S5b). Of
note, the AUC of CMDLncS was slightly lower than
that of Abajo-BJC (0.703 vs. 0.750), but the AUCs of
CMDLncS were the highest in the GSE19860,
GSE19862, and meta-cohort (Fig. S5b). Overall, our
CMDLncS model still had an obvious advantage in
predicting fluorouracil-based ACT and bevacizumab
benefits.

To further verify the clinical significance of
CMDLncS for assessing the benefits of fluorouracil-
based ACT and bevacizumab in our clinical in-house
cohort. We collected 39 nonresponders and 33 res-
ponders to fluorouracil-based ACT as well as 29 non-
responders and 19 responders to bevacizumab (Table
S1). In line with our in-silico findings, patients with
a high CMDLncS tended to benefit from fluoroura-
cil-based ACT and were resistant to bevacizumab
(Figure 7e). ROC analysis further demonstrated the
accurate performance of our CMDLncS model
(Figure 7f).
www.thelancet.com Vol xx Month xx, 2021
Biological mechanisms underlying CMDLncS
To decipher the biological mechanisms underlying
CMDLncS, we performed GSEA on 21,338 gene sets
from the MSigDB resource. Based on the normalized
enrichment score (NES), we identified the top 20 path-
ways that were positively and negatively correlated with
CMDLncS. As displayed in Figure 8a, patients with a
high CMDLncS enriched numerous pathways related to
stroma and EMT activation, such as epithelial mesen-
chymal transition, extracellular matrix structural con-
stituent, and collagen containing extracellular matrix,
while patients with a low CMDLncS were mainly associ-
ated with immune activation, such as inflammatory
response, myeloid leukocyte migration, and cytokine
binding. We next measured EMT, stromal, immune,
and TIS scores via multiple bioinformatic algorithms
(including GSVA, ESTIMATE, and ssGSEA). Consis-
tently, CMDLncS was significantly positively associated
with EMT and stromal scores, and negatively asscoaited
with immune and TIS scores (Figure 8b�e), which fur-
ther verified the prior results. In addition, we investi-
gated the associations between CMDLncS and
consensus molecular subtypes (CMS1�4). As illustrated
in Fig. S6a, CMS4 subtype displayed higher CMDLncS
score relative to the other subtypes. As is well known,
CMS4 was associates with a mesenchymal phenotype
and poor prognosis, in line with the indications of high
CMDLncS. Furthermore, we plotted ROC curves to fur-
ther evaluate the accuracy of CMDLncS in the identifica-
tion of CMS4 CRC patients, and the AUC for CMDLncS
was remarkably high: 0.962 (Fig. S6b).

To gain more detailed insights into the tumor
microenvironment, our study further quantified the
infiltration abundance of 28 immune cell popula-
tions. With the increase in CMDLncS, the overall
immune infiltration level was weakened (Figure 9a).
At both ends of CMDLncS, we distinctly observed
small subsets of immune-hot and immune-cold phe-
notypes (Figure 9a). Indeed, most immune cells dem-
onstrated significantly inverse correlations with
CMDLncS and possessed superior infiltration in the
low-risk group (Figure 9b, c). Overall, patients with a
low CMDLncS displayed a stronger immune infiltra-
tion, which might explain their better prognosis. Fur-
thermore, we extended our analysis to encompass 27
immune checkpoint members, including the B7-
CD28 family, TNF superfamily, and several other
molecules, and the results are displayed in Fig. S7a.
Patients with a low CMDLncS presented significantly
higher CD27, CD40, CD70, ENTPD1, HAVCR2, PD-
L1, PD-L2, and TNFRSF4 expression levels, while
patients with a low CMDLncS displayed a higher
HHLA2 expression level (Fig. S7b, c). These findings
might provide references for the development and
management of immunotherapy.
13



Figure 7. Predictive value of fluorouracil-based ACT and bevacizumab benefits. a. Distributions of CMDLncS between responders
and nonresponders of fluorouracil-based ACT. b. ROC curves of CMDLncS to predict the benefits of fluorouracil-based ACT. c. Distri-
butions of CMDLncS between responders and nonresponders of bevacizumab. d. ROC curves of CMDLncS to predict the benefits of
bevacizumab. e. Distribution of CMDLncS between responders and nonresponders regarding fluorouracil-based ACT and bevacizu-
mab in our in-house cohort, respectively. f. ROC curves regarding fluorouracil-based ACT and bevacizumab in our in-house cohort,
respectively. T-test: nsP > 0.05, *P < 0.05, ***P < 0.001, ****P < 0.0001.
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Discussion
The limitations of the current TNM staging system ham-
per the capacity to offer optimal clinical care to patients,
as the clinical management of stage II/III CRC is primar-
ily determined by clinicopathological staging, without
regard to molecular biological characteristics.29
LncRNAs, as a novel class of noncoding RNA, have pro-
found impacts on tumorigenesis, progression, recur-
rence, metastasis, and drug sensitivity in tumors
[15,26�28,30]. Our study systematically established links
between lncRNA profiles and recurrence, prognosis, and
benefits from fluorouracil-based ACT and bevacizumab
www.thelancet.com Vol xx Month xx, 2021



Figure 8. Biological mechanisms underlying CMDLncS. a. Top 20 pathways that were positively and negatively correlated with
CMDLncS. b�e. Correlations of CMDLncS with EMT (b), stromal (c), immune (d), and TIS scores (e).
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Figure 9. Immune landscape of CMDLncS. a. Heatmap of 28 immune cells infiltration. b. Relationship between CMDLncS and
immune cell infiltrations. c. Distributions of 28 immune cells infiltration between high- and low-risk groups. T-test: nsP > 0.05,
*P < 0.05, ***P < 0.001, ****P < 0.0001.
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in stage II/III CRC, providing an attractive platform for
detecting high-risk patients and further improving the
clinical outcomes in stage II/III CRC.

In this study, a total of 27 SRRLs that were stably
associated with recurrence were identified in stage II/
III CRC using eight independent cohorts, which offered
a resource for developing biomarkers. With advance-
ments in high-throughput sequencing techniques and
computational biology, numerous predictive gene
expression signatures have been proposed according to
various machine learning approaches.25 However, two
questions worth considering are why a particular algo-
rithm should be used and which solution is the optimal
one. The selection of algorithms by researchers may
rely largely on their own preferences and bias. Thus, to
generate a consensus signature, we collected 10 preva-
lent algorithms and then combined them into 76 com-
binations. The algorithm combinations can also further
reduce the dimension of variables, making the signa-
ture more simplified and feasible. Ultimately, the opti-
mal model (CMDLncS) was determined by a
combination of Lasso and stepwise Cox with the highest
www.thelancet.com Vol xx Month xx, 2021
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average C-index (0.777), which was also the only model
with a C-index above 0.7 in seven independent valida-
tion cohorts. Our CMDLncS model was proven to be an
independent risk factor and maintained robust perfor-
mance in all cohorts. However, the power of CMDLncS
in clinical practice is not yet known. To test the clinical
interpretation of CMDLncS, another validation based
on qRT-PCR results from 173 frozen CRC tissues, fur-
ther verified our prior findings and assessed its feasibil-
ity in different centers. Therefore, our CMDLncS model
has great potential for clinical application in patients
with stage II/III CRC.

Clinical traits (e.g., AJCC stage) and emerging
molecular alterations (e.g., microsatellite state, KRAS
mutation) are still cornerstones for assessing prognosis
and determining treatment options for stage II/III
CRC.2,7 For example, mutations in KRAS and BRAF
tend to suggest a worse prognosis in stage II CRC, while
high microsatellite instability (MSI-H) is a protective
prognostic indicator and has predictive value for guid-
ing fluorouracil-based ACT in stage II/III CRC.2 Thus,
our study compared the predictive superiority of
CMDLncS with common clinical traits and molecular
features in predicting the recurrence risk of stage II/III
CRC after radical surgery. In eight public cohorts and
our clinical in-house cohort, CMDLncS was not only
able to work independently of these factors, such as age,
gender, T, N, AJCC stage, VI, TMB, NAL, microsatellite
state, ACT, and TP53, KRAS, or BRAF mutations, but
also presented dramatically superior performance in
evaluating the recurrence risk according to the C-index
assessment. This indicated that our CMDLncS model
could be a promising surrogate for evaluating the recur-
rence risk of stage II/III CRC in clinical practice.

Additionally, we enrolled 109 published signatures
composed of various functional gene combinations.
Among these signatures, very few have been translated
into clinical settings and even fewer have been rigor-
ously validated.2 For example, univariate Cox regression
analysis exhibited that except for CMDLncS, no signa-
ture maintained complete significance across all data-
sets. Compared with these signatures, our CMDLncS
model also possessed relatively superior performance in
each cohort. Most signatures were usually powerful
within their own training cohort but weak in some
external cohorts, such as ColoFinder and Chu.31,32 The
poor generalization ability may arise from model overfit-
ting, though our signature was dimensionally reduced
by two algorithms and fitted based on SRRLs that were
stably associated with recurrence, thus having a better
extrapolation possibility.

CMDLncS quantifies the recurrence risk at the indi-
vidual patient level and could stratify potential “high-
risk” or “low-risk” patients. Thus, reasonable interven-
tions of patients with different levels of CMDLncS are
currently essential. Indeed, our CMDLncS model also
has great implications in predicting drug benefits. A
www.thelancet.com Vol xx Month xx, 2021
high CMDLncS indicated sensitivity to fluorouracil-based
ACT alone and resistance to bevacizumab. ROC analysis
suggested that our CMDLncS model afforded greater
accuracy in predicting fluorouracil-based ACT and beva-
cizumab benefits. These findings have far-reaching
meaning for selecting treatment strategies in the era of
precision medicine. For example, current guidelines rec-
ommend that ACT is not required for a subset of stage II
patients without high-risk clinical traits,2 but when these
patients display a high CMDLncS, using additional ACT
could be essential, and bevacizumab may not be neces-
sary due to potential resistance. Thus, the CMDLncS sys-
tem could also serve as a powerful tool for optimizing
decision-making for stage II/III CRC patients.

Afterwards, our study also explored the latent biolog-
ical mechanisms underlying CMDLncS. Patients with a
high CMDLncS demonstrated stroma and EMT activa-
tion, which may explain their high rates of recurrence
and mortality as well as the sensitivity of fluorouracil-
based ACT.33,34 As previously reported, stromal cells
could promote progression and chemoresistance via
enhancing cell stemness and EMT in CRC.33 In con-
trast, patients with a low CMDLncS were mainly associ-
ated with immune activation, which paralleled their
prognostic outcomes. The superior immune infiltra-
tions also indicated that these patients might have stron-
ger potential for immunotherapy. As is well-known,
immune checkpoint inhibitors (ICIs) have emerged as a
revolutionary modality of cancer immunotherapy that
function by targeting immune checkpoints, such as PD-
1, PD-L1, and CD40.35 Our study showed that patients
with a low CMDLncS presented significantly higher
CD27, CD40, CD70, ENTPD1, HAVCR2, PD-L1, PD-L2,
and TNFRSF4 expression levels, which supported the
conclusion that these patients may benefit more from
current immunotherapy. Of note, patients with a low
CMDLncS displayed a higher HHLA2 expression level,
which is a newly discovered immune checkpoint mole-
cule that is positively associated with a high mortality
rate and negatively related to CD8+ T cell infiltration in
CRC patients.36 Recently, HHLA2 was reported to be
broadly expressed in patients with PD-1 negative human
tumors,37 indicating that HHLA2 might be a promising
therapeutic target for patients who do not respond to
PD-1/PD-L1 pathway inhibitors, similar to latent
patients with a high CMDLncS. Thus, targeting HHLA2
as an immune stimulator may become a valuable
approach to improve the clinical outcomes of patients
with a high CMDLncS.

Although the implications of CMDLncS in stage II/
III CRC are profound, some limitations should be
acknowledged. First, all the samples from this study
were retrospective, and future verification of CMDLncS
should be conducted in a prospective multi-center
study. Second, some clinical and molecular traits on
public datasets were quite inadequate, which thus had
concealed the potential associations between CMDLncS
17
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and some traits. Third, the functions of most lncRNAs
from CMDLncS in stage II/III CRC remain to be eluci-
dated, and further in vivo and in vitro experiments are
needed to reveal their roles. Finally, combining mRNA
and lncRNA expression, may provide a more powerful
signature, which is worth further exploration.

Taken together, our study comprehensively explored
the clinical significance of lncRNAs in stage II/III CRC
and systematically identified a consensus lncRNA signa-
ture (termed CMDLncS) that could independently pre-
dict the recurrence and prognosis of stage II/III CRC
patients. We compared CMDLncS with common clini-
cal traits, molecular features, and 109 published signa-
tures to further verify its robustness and translation.
Our CMDLncS model also had great implications in
predicting the benefits of fluorouracil-based ACT and
bevacizumab. Overall, CMDLncS could serve as a prom-
ising tool to optimize decision-making and surveillance
protocols for stage II/III CRC patients.
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