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Abstract: Computed tomography (CT) scans are the gold standard to measure treatment success of
non-small cell lung cancer (NSCLC) therapies. Here, we investigated the very early tumor response
of patients receiving chemotherapy or targeted therapies using a panel of already established and
explorative liquid biomarkers. Blood samples from 50 patients were taken at baseline and at three
early time points after therapy initiation. DNA mutations, a panel of 17 microRNAs, glycodelin,
glutathione disulfide, glutathione, soluble caspase-cleaved cytokeratin 18 (M30 antigen), and soluble
cytokeratin 18 (M65 antigen) were measured in serum and plasma samples. Baseline and first
follow-up CT scans were evaluated and correlated with biomarker data. The detection rate of the
individual biomarkers was between 56% and 100%. While only keratin 18 correlated with the tumor
load at baseline, we found several individual markers correlating with the tumor response to treatment
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for each of the three time points of blood draws. A combination of the five best markers at each time
point resulted in highly significant marker panels indicating therapeutic response (R2 = 0.78, R2 = 0.71,
and R2 = 0.71). Our study demonstrates that an early measurement of biomarkers immediately after
therapy start can assess tumor response to treatment and might support an adaptation of treatment to
improve patients’ outcome.

Keywords: NSCLC; early response biomarkers; liquid biomarkers; targeted therapy; chemotherapy

1. Introduction

Lung cancer is the most common cause of cancer-related death worldwide with non-small cell lung
cancer (NSCLC) being the predominant entity with approximately 85% of cases [1]. Treatment options
have changed considerably within the past years, especially with the advent of tyrosine-kinase-inhibitors
(TKI) for epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK)
rearrangement positive NSCLC, which comprises about 15% and 2% of NSCLC cases, respectively [2,3].
TKI therapies result in substantial survival benefits for the patient [4–6]. However, most patients
eventually experience relapse as a result of acquired TKI resistance [7,8]. For patients without targetable
mutations, platinum-based chemotherapy (±pembrolizumab) is still the treatment of choice, except for
patients with programmed death ligand 1 (PDL1) expression >50%, who can receive immunotherapy
with pembrolizumab as a monotherapy.

Regardless of the type of therapy, the gold standard for clinical monitoring of therapy efficacy in
lung cancer patients is change in tumor size according to Response Evaluation Criteria in Solid Tumors,
version 1.1 (RECIST-1.1) criteria. However, these changes are often evident in CT and MRI imaging
with a delay of several weeks after initiation of systemic treatment and, therefore, unsuitable for
frequent therapy monitoring and early assessment of response. The analysis of circulating biomarkers
such as circulating tumor DNA (ctDNA), circulating microRNAs (miRNAs), and disease-associated
protein markers offers a minimal-invasive tool to overcome this limitation, permitting frequent sample
collection and timely assessment of the patient’s disease status. This would allow for early detection of
non-responders and avoid side effects and costs of ineffective treatment.

Preclinical and clinical studies have shown that apoptosis significantly increases 24 h after
chemotherapy administration [9–11]. These changes in tumor biology are expected to result in changes
in plasma/serum levels of (i) defined proteins relating to tumor cell death and regressions and (ii)
release of free DNA, RNA carrying mutations and/or gene fusions.

Previous studies have shown that EGFR mutations can be detected in the plasma of patients
with high prevalence, reflecting the landscape and heterogeneity of primary tumors and metastases in
NSCLC [12,13]. Serial evaluation of mutant DNA could provide a noninvasive assessment of therapy
response and tumor progression, including the detection of resistance mutations or an increase of
EGFR sensitizing mutations associated with clinical progression.

MicroRNAs are short noncoding RNA molecules known as important regulators of gene expression.
Deregulation of miRNAs is frequently observed in human cancers, including lung cancer, and is
considered one of the characteristics of malignant transformation [14]. With their high stability,
circulating miRNAs can be detected robustly in plasma and, therefore, represent promising biomarkers
in cancer patients [15,16].

Another sign of tumor cells undergoing apoptosis is the increase of caspase-cleaved cytokeratin
18 fragments (M30 antigen). In the circulation, CK-18 occurs as a full-length protein (M65 antigen)
as well as the 21-kDa caspase-cleaved fragment if epithelial cells undergo apoptosis [17]. Previous
studies have demonstrated that serum levels of CK-18 proteins can be useful as an independent factor
in predicting response to chemotherapy in patients with NSCLC [18].
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Glutathione (GSH) is a tripeptide of glutamate, cysteine, and glycine, a potent antioxidant
found at high concentration in all tissues. Under normal conditions, the majority of GSH exists in
reduced form (0.5 to 10 mM). However, when GSH interacts with free radicals or acts as a cofactor
for antioxidant enzymes, such as GSH peroxidases, oxidized glutathione (oxGSH) is generated [19].
Increased glutathione levels and glutathione-S-transferase activity have been implicated in platinum
neutralization and resistance. The correlation between increased glutathione levels and drug resistance
has been documented in a variety of tumors [20].

A further target used in this study was the glycoprotein glycodelin, which has been well
characterized in females [21]. It is secreted by the inner layers of the endometrium and highly
expressed during the first trimester of pregnancy. Glycodelin has been shown to regulate the invasion
of the trophoblast into the endometrium and the immunotolerance of the maternal immune system [22].
However, several studies have demonstrated the expression and of glycodelin in hormone-regulated
cancers, i.e., ovarian cancer [23] and breast cancer [24], as well as in non-hormone-regulated cancers
such as melanoma [25] and lung cancer [26].

This study aimed to define predictive marker panels indicating a successful or failing tumor
therapy at very early time points after therapy initiation. Therefore, each of the described biomarkers
was evaluated separately and in combination for their potential as predictive therapy markers at very
early time points (day +1, day +7, day +14) in patients with advanced NSCLC.

2. Results

2.1. Biomarker Detection

For this study, we collected serum and plasma from 50 NSCLC patients. Patients were divided into
two groups depending on disease treatment. Group A (n = 25) received conventional chemotherapy
since no targetable molecular alteration was detected during routine diagnostics. Group B (n = 25)
consisted of patients with a driver mutation or gene fusion targetable with a tyrosine kinase inhibitor
(see patients’ characteristics, Table 1). First blood sample was collected within 24 h prior to therapy
start (day −1, Figure 1). Due to different therapy concepts, blood samples were collected at different
time points after therapy start. For the chemotherapy group (group A), one post-treatment sample was
collected at day +1, while two blood samples were assembled at day +7 and +14 for the TKI group
(group B). In the first approach, patients’ tumor response to therapy was assessed (Figure 2A). The TKI
patients (group B) showed better therapy response compared to patients treated with chemotherapy.
Using RECIST-1.1 criteria, 21 of the 50 patients revealed a response to therapy with a partial remission.
For two patients, progress of the disease was diagnosed at the time of follow-up.
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Table 1. Patient characteristics.

Parameter n (%)

median age in years (range) 62 (40–84)

gender 50 100
male 24 48
female 26 52

ECOG 50 100
0 25 50
1 21 42

no data 4 8

Smoking status 50 100
current smoker 17 34
ex-smoker <6 months 4 8
ex-smoker >6 months 17 34
non-smoker 10 20
no data 2 4

histology 50 100
non-small cell lung cancer 50 100

adenocarcinoma 46 92
squamous cell carcinoma 1 2
large cell carcinoma 1 2
NOS 2 4

clinical stage (8th edition) 50 100
stage IVA 21 42
stage IVB 29 58

therapy 50 100
chemotherapy * 25 50
targeted therapy 25 50

EGFR ** 20 40
EML4-ALK *** 4 8
BRAF 1 2

ECOG: Eastern Cooperative Oncology Group Performance Status Scale, NOS: non other specified, EGFR: Epidermal
Growth Factor Receptor, EML4-ALK: echinoderm microtubule associated protein-like 4-anaplastic lymphoma
kinase: BRAF: Serine/threonine-protein kinase B-raf (rapidly accelerated fibrosarcoma).* 20 patients received
Carboplatin/Pemetrexed, 3 patients Cisplatin/Pemetrexed, 1 patient Carboplatin/nab-Paclitaxel, 1 patient received
Cisplatin/Alimta/Avastin. ** 12 patients received afatinib, 6 patients erlotinib, 1 patient gefitinib, 1 patient
received nazartinib/capmatinib. *** 2 patients received alectinib, 2 patients received crizotinib. The BRAF patient
received trametinib.
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Figure 1. Description of the study concept. Blood from 50 patients with non-small cell lung cancer
(NSCLC) was collected at baseline one day prior to therapy start (day −1) and after therapy initiation
(day +1 for group A, day +7 and +14 for group B). Routine computer tomography (CT) at baseline
and at time point of first clinical restaging was evaluated for tumor load change. Restaging CT was
assessed in median at day 50. TKI: tyrosine kinase inhibitor.
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Figure 2. Patient response and detection rates of biomarkers. (A) Waterfall plot of tumor response to
therapy. Tumor load was evaluated by an experienced radiologist using Response Evaluation Criteria
in Solid Tumors, version 1.1 (RECIST-1.1) criteria. Dotted lines indicate thresholds for definition of
progressive disease (PD), stable disease (SD), or partial remission (PR). Group A included patients
treated with platinum-based chemotherapy, group B consists of patients receiving targeted therapy.
(B) Detection efficiency of the biomarkers measured in both groups. CTx: Platinum-based chemotherapy,
TKI: Tyrosine kinase inhibitor, EGFR: Epidermal Growth Factor Receptor, EML4-ALK: echinoderm
microtubule associated protein-like 4-anaplastic lymphoma kinase, BRAF: Serine/threonine-protein
kinase B-raf (rapidly accelerated fibrosarcoma), M65: Intact and caspase-cleaved Cytokeratin 18, M30:
caspase-cleaved Cytokeratin 18, GSH: Glutathione, oxGSH: Oxidized glutathione.

Fifteen patients had a slightly lower tumor load, six patients exhibited a stable tumor load, and
four patients exhibited a slight progression of the tumor diagnosed as stable disease. The investigated
biomarkers (Table 2 and Appendix A Table A1) were detected in 100% of the patient groups, except
glycodelin (60%) and the driver mutation of the TKI group (56%) (Figure 2B). Quality control for
mutation detection and RNA measurements revealed that the investigated plasma samples had no or
only a low risk to be affected by hemolysis (Table A2). For two patients from group A, no CT data were
available, and for another patient from group B, miRNA analyses and mutation detection failed due to
low amount of blood sample. These three patients were excluded from the subsequent analyses.

Table 2. Biomarkers. Overview of investigated biomarkers.

Biomarker Application in Liquid Biopsy References Group

Glycodelin Glycodelin is secreted by non-small cell lung cancer (NSCLC) cells
and has predictive value when measured in the serum of patients. [26,27] A/B

Cytokeratin-18
Full length (M65) and caspase-cleaved (M30) forms of

cytokeratin-18 are increased in lung cancer patients and correlate
with apoptosis.

[17,28,29] A/B

Glutathione (GSH) and oxidized glutathione (oxGSH) protect
cancer cells against cytotoxic compounds and are overexpressed

in NSCLC cell lines.
[30,31] A/B

microRNA

Deregulation of miRNA is associated with various diseases
including cancer. Circulating miRNAs show variable abundances

in lung cancer patients and healthy individuals, which may be
useful for diagnosis, prognosis, and therapy monitoring.

An overview of the miRNAs selected for this study is provided in
Table A1.

[32,33] A/B

Driver mutation

Mutations detectable in circulating DNA can reflect the landscape
of primary tumors and metastases. Serial evaluation of mutant

DNA could provide a noninvasive assessment of
therapy response.

[34,35] B
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2.2. Correlation of Tumor Load and Biomarker Detection at Time Point of Therapy Start

First, we were interested in whether the serum/plasma levels of the selected biomarkers correlate
with tumor load at the time of diagnosis (Figure 3A). The tumor load was assessed by an experienced
radiologist and defined as the size of the tumor(s) at the time point of therapy start. Afterward,
the different biomarkers were determined and correlated to tumor load using Pearson correlation
coefficient. Interestingly, the plasma levels of biomarkers M30 and M65 (cleaved and full-length
cytokeratin 18) correlated significantly with the tumor load of the patients (r = 0.55, p < 0.001 and
r = 0.42, p = 0.002, Figure 3B). All other markers failed to correlate in our cohort at the time of diagnosis.
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2.3. Correlation Analyses of Single Biomarkers and Tumor Load Change

To investigate whether each of the biomarkers can individually indicate an early response to
therapy, we first correlated every single marker with the change of tumor load. To do so, we examined
the predictive value of the single markers in serum and plasma at the three time points using a linear
regression model comprising the variable “relative tumor load change from baseline to first CT after
therapy” (Figure 4). For group A, the microRNA hsa-miR-210-3p significantly correlated with the tumor
load change (r = 0.49, p = 0.017), while for group B (day +7) hsa-miR-134-5p showed the best correlation
with the tumor load change (r = −0.47, p = 0.020). hsa-miR-23a-3p and hsa-miR-134-5p also correlated
partly (r = −0.43, p = 0.036 and r = −0.41, p = 0.049). For group B, the mutation detected in cell-free
DNA (cfDNA) correlated best (r = 0.61, p = 0.020, Figure 4). Using Pearson correlation coefficient,
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heatmaps combining every single marker also revealed that there are highly correlated biomarkers at
every time point, for example, M65 and M30.
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2.4. Stepwise Regression Model

Many different markers have been described to be useful individually for diagnosis or prediction of
NSCLC therapies [36]. However, due to complex biological changes in tumor and patients’ metabolism,
no single biomarker has entered clinical routine. Hypothesizing that a marker panel might be superior to
single markers, we performed a five-step forward regression analysis (based on the Akaike Information
Criterion) to find a marker panel consisting of the 23 investigated biomarkers with the best predictive
performance for each time point (Figure 5). Using marker panels, the correlation of the tumor load
change and the marker abundance change increased to R2 = 0.78 (group A, time point +1), R2 = 0.71
(group B, time point +7), and R2 = 0.71 (group B, time point +14) (Figure 5A). Thereby, hsa-miR-20a-5p
was the only marker included in more than one panel. Interestingly, none of the individual biomarker
panels was predictive at the other investigated time points (Table A3). As an example, while the marker
panel for group B at day +7 correlated well with the tumor load change (R2 = 0.71), a low correlation
was observed for group A at day +1 (R2 = 0.06) and for group B at day +14 (R2 = 0.25). Visualization of
each panel showing the marker abundance change in relation to tumor load change confirmed the
strengths of the individual panels (Figure 5 B).
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Figure 5. Stepwise regression model and marker combination abundance change. (A) Five-step
forward regression analysis using the five best markers for each time point. (B) Biomarker combination
from (A) in relation to tumor load change. Every line represents one patient. green = patients with
tumor load reduction, red = patients with tumor growth, grey = patients without tumor load change at
first CT scan after therapy start.

Tumor load change for each patient from baseline to follow-up was indicated in green (reduced
tumor load), grey (no tumor load change), and red (increased tumor load change). While all patients
with a lower marker panel value also had a reduced tumor load (green lines), only patients with no
(grey lines) or increased (red lines) tumor load change showed an increased marker panel abundance
change. Using the three best markers instead of the five markers panel resulted in a decrease of
predictive robustness (R2 = 0.62 for group A, time point +1; R2 = 0.61 for group B, time point +7, and
R2 = 0.54 for group B, time point +14).

3. Discussion

The field of biomarkers in NSCLC is very diverse with a variety of methods and biomarkers
investigated in the past. Besides classical tissue-based markers that have been used for decades [37],
modern methods analyzing proteomes, epigenomes, or metabolomes enlarged the generally available
biomarker resources [38]. Liquid biopsies have attracted increasing attention in recent years for disease
diagnosis, prognosis, and treatment, especially in late stages and with poor general condition of the
patients [39]. An early assessment of liquid biomarkers has demonstrated that changes in circulating
tumor DNA (ctDNA) or microRNA levels might indicate therapy response [40–42].
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The current study was conducted to investigate whether a very early assessment of different
blood-based biomarkers might indicate a tumor response to therapy. We selected 23 biomarkers that
have been shown to be relevant in liquid biopsy approaches, including prognosis or therapy response.
These markers were measured in two patient groups (group A, n = 25, chemotherapy cohort and group
B, n = 25, TKI cohort). Considerable hemolysis, which might influence the quality and composition of
the investigated microRNAs [43], was not observed in the plasma samples of our cohort. Glycodelin,
which has been described as a prognostic liquid biomarker in NSCLC, was detectable in only 60% of all
samples. This is in line with literature data where it was demonstrated that glycodelin is measurable
only in particular serum samples [27]. Similar observations were made for ctDNA. Here, the detection
rate in group B was only 56%. This might be explained by the fact that the ctDNA is markedly
diluted by circulating germline DNA. Similar rates have been published investigating EGFR resistance
mutations in liquid biopsies [35,44,45]. Interestingly, nearly all investigated markers failed to correlate
with the tumor load at baseline. Contrary to our expectations, although the copy number of mutations
and the glycodelin serum concentrations correlated within group B at time point +7, the biomarkers
glycodelin and the driver mutation abundance did not correlate with the tumor size. We expected a
correlation since both markers are exclusively expressed and released by malignant cells. Only the
apoptosis markers M65 and M30 (full-length and cleaved cytokeratin 18) correlated with tumor load
and might be useful markers for diagnosis, which confirms published data [46].

The analysis of biomarker abundance and change of tumor load revealed that for group A (day
+1) and group B (day +7) only one microRNA each (miR-210-3p and miR-134-5p) was significant.
This is in line with published data since miR-210-3p has been described to be a marker decreasing
after chemotherapy treatment of patients with NSCLC, while miR-134-5p is upregulated in gefitinib
resistance cell lines. For day +14 (group B), three out of the 23 biomarkers correlated significantly with
the tumor load change. Here, the mutational status was the best marker at this time point. In addition,
miR-23a-3p and miR-134-5p were also found to be significant predictors for tumor response to treatment
at day +14 after therapy initiation. Since our cohort size was limited and our goal was to define a
marker panel for valid evidence, we performed a stepwise forward regression model with the five
most promising biomarkers for each time point. Indeed, we reached a very high model fit for all three
measured groups (R2 = 0.78 (day +1), R2 = 0.71 (day +7 and +14)) considering the relatively small
cohort size. Due to this statistical method and the fact that glycodelin as well as the driver mutation
were not detectable in all patients, the number of patients included in the analyses dropped down
from 25 to n = 16 (day +1), n = 19 (day +7), and n = 15 (day +14) in the three groups. Using a panel
consisting of five markers in this relatively small cohort, therefore, might indicate an overfitted model.
However, a reduction to a three-marker based panel still reached high predictive values at the three
time points (R2 = 0.62 (day +1), R2 = 0.61 (day +7), and R2 = 0.54 (day +14)). We also observed that
the marker panels cannot be transferred to the other time points of blood sample collection. On the
one hand, this might result from different cellular processes since the time between the three blood
assessments was approximately one week each. The complex interaction of cellular therapy response,
as well as apoptotic processes, probably influenced the amounts of RNA, DNA, and proteins released
into the blood. On the other hand, the small cohort size for both groups might also be an explanation
for these observations. Therefore, our findings have to be validated in a larger cohort.

Currently, patients need to receive a tumor-specific therapy at least 4 to 6 weeks, before conventional
radiographic tumor assessments can reliably determine a tumor response. From a clinical perspective,
identification of non-responders using a marker or marker panel that is able to indicate success or
failure of a therapy at an early stage is highly warranted. The use of such marker panels might help
to adjust treatment earlier than currently done using radiographic tumor assessments and, thereby,
avoid or shorten side effects and adverse events of ineffective treatment. Consequently, early detection
of therapy success would lead to a better quality of life especially for patients in late stages of tumor
disease. Furthermore, an early adaption of therapy concept might impact the progression-free or
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overall survival of patients. To our knowledge, except for the detection of mutations, no studies have
used these very early time points for prediction of therapy response in NSCLC before.

4. Material and Methods

4.1. Study Design and Patient Biospecimen

The early response biomarker study was a part of the early response trial (ERT), a multicenter
study funded by the German Center for Lung Research (DZL). This biomarker study was conducted in
accordance with the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) [47].
Serum and plasma samples were provided by Lung Biobank Heidelberg, Hannover Unified Biobank
HUB, and UGMLC-Giessen Biobank, members of the Biobank platform of the German Center for
Lung Research (DZL). The use of biomaterial and data for this study was approved by the local ethics
committee of the Medical Faculty Heidelberg (S-445/2015). All patients included in the study signed
informed consent and the study performed according to the principles set out in the WMA Declaration
of Helsinki. We investigated blood from 50 stage IV patients with NSCLC (Table 1). Patients were
selected by clinicians requiring MRI and measurable tumor size of at least 2 cm. All patients suffered
from NSCLC and were selected by recommended therapy concept according to the current guidelines.
Group A (n = 25) received conventional chemotherapy since no targetable molecular alteration was
detected during routine diagnostics. Group B (n = 25) contained patients with a targetable driver
mutation or gene fusion (see patients’ characteristics, Table 1). First blood sample was collected
within 24 h prior to therapy start (day −1, Figure 1). Due to different therapy concepts, blood samples
were collected at different time points after therapy start. For chemotherapy group (group A), one
post-treatment sample was collected at day +1, while two blood samples were assembled at day +7
and +14 for the TKI group (group B, Figure 1). Time points were selected due to literature search and
own observations [35] that intravenous uptake of drugs can be faster compared to oral medication [48].
Routine computed tomography (CT) was performed at baseline and at time point of first clinical
restaging (in median after 50 days). Tumor load change (primary and metastasized sites) was assessed
by an experienced radiologist according to RECIST v 1.1 as size change of the tumor at time point of
therapy start and at restaging.

4.2. DNA Extraction and Analysis by Digital PCR

cfDNA was extracted from one mL aliquots of frozen plasma with the QIAamp circulating
nucleic acid kit (Qiagen, Hilden, Germany), following the manufacturer’s recommendations for the
purification of circulating nucleic acids. DNA quality was assessed with the Bioanalyzer 2100 using the
High Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA, USA). DNA was quantified using
the Qubit dsDNA HS Assay Kit with the Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). cfDNA was subjected to the measurement of known sensitizing EGFR mutations by
digital PCR (dPCR) and TaqMan liquid biopsy dPCR assays EGFR_6223, EGFR_6224 and EGFR_6225
(Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturer’s protocol. For echinoderm
microtubule associated protein-like 4 (EML4)-ALK fusion and Serine/threonine-protein kinase B-raf
(rapidly accelerated fibrosarcoma) (BRAF) mutation, no assay was available. Samples were measured
as technical triplicates using the QuantStudio 3D digital PCR instrument and subsequently analyzed
with the QuantStudio 3D AnalysisSuite Software (Thermo Fisher Scientific, Waltham, MA, USA).
Reported mutated copies per µL reaction volume were extrapolated to mutant copies/mL plasma.

4.3. miRNA Extraction and Analysis by Quantitative Reverse-Transcription PCR

For this study, we selected 17 miRNAs that have been described in literature to be diagnostic
and/or prognostic/predictive indicators when measured from plasma/serum of patients (Table A1).
Circulating miRNAs were extracted from one milliliter aliquots of frozen plasma. Each plasma
sample was spiked with 4.8E+08 copies of cel-miR-54 to assess isolation efficiency. The isolation
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was performed using the QIAamp circulating nucleic acid kit (Qiagen, Hilden, Germany),
following the manufacturer´s recommendations for the purification of circulating miRNAs. Isolated
miRNAs were reverse transcribed (RT) with the TaqMan microRNA reverse transcription kit and
reverse-transcription primers of the TaqMan microRNA assay kits for miRNAs hsa-miR-21-5p,
hsa-miR-214-3p, hsa-miR-23a-3p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-134-5p, hsa-miR-126-3p,
hsa-miR-103-3p, let-7e-5p, hsa-miR342-3p, hsa-miR-1290, hsa-miR-223-3p, hsa-miR-20a-5p, hsa-miR-145-5p,
hsa-miR-628-3p, hsa-miR-29c-3p, hsa-miR-210-3p, has-miR191, and hsa-miR-451a (Thermo Fisher Scientific,
Waltham, MA, USA). The qPCR reaction was conducted as technical triplicates in 384-well plates
with the RT product, Premix Ex Taq master mix (Takara Bio, Kusatsu, Japan) and TaqMan probes for
each miRNA using the LightCycler480 instrument (Roche Diagnostics, Basel, Switzerland). Reverse
transcription and qPCR were performed following the manufacturer´s protocol. miRNA abundances
were normalized to the abundance of hsa-miR-191, which has been shown to be highly detectable in
plasma and recommended to be used as housekeeper miRNA [43,49], within each sample.

4.4. Measurement of Cytokeratin 18 (M30 and M65 Determination)

M30 and M65 levels in Ethylenediaminetetraacetic acid (EDTA)-Plasma were determined with
M30 Apoptosense and M65 ELISA kits (PEVIVA, Tecomedical, Buende, Germany) according to the
manufacturer’s protocol. The samples were undiluted or diluted by a factor 2. The assay range was
0–1000 U/L for M30 and 0–2000 U/L for M65. For M30, units were defined using a recombinant protein
standard. For M65, the units were defined using a synthetic peptide containing M6 and M5 epitope.
1 U/L = 1.24 pM.

4.5. Determination of GSH and oxGSH Concentrations

GSH and oxGSH were detected with the competitive EIA kits “All species Glutathione ELISA kit”
and “Human Oxidized Glutathione ELISA kit” from LSBio (Seattle, Washington, USA) according to
the manufacturer’s protocol. EDTA-plasma samples were diluted by a factor of 2 with sample diluent.
For analysis, the data were linearized by plotting them on logarithmic axes. The detection range was
1.23–100 µg/mL with a sensitivity of 0.45 µg/mL for GSH and 4.688–300 pg/mL with a sensitivity of
2.8 pg/mL for oxGSH.

4.6. Measurement of Glycodelin

Glycodelin levels in sera were detected using an enzyme-linked immunosorbent assay kit (ELISA
BS-30-20, Bioserv Diagnostics, Rostock, Germany) with 50 µL of each serum in two technical replicates.
The readout and standard curve were performed with ELISA Reader (Tecan Group Ltd., Crailsheim,
Germany). ELISA results were visualized with GraphPad Prism 5 (GraphPad Software, San Diego,
CA, USA).

4.7. Statistical Analyses

The patient cohort was described using median and range for continuous variables and using
absolute and relative frequencies for categorical variables. Furthermore, tumor response for each
patient (in % RECIST) was descriptively illustrated by a waterfall plot. Afterward, correlations between
individual biomarkers and tumor load at baseline were assessed using Pearson correlation coefficient.
Examining the predictive value of single markers at the three time points, a univariate linear regression
model was build comprising the variable “relative tumor load change from baseline to first CT after
therapy” as a dependent variable for each biomarker and time point. Furthermore, for each time
point, correlations between the biomarker were assessed using Pearson correlation coefficient and were
illustrated by heatmaps. To create marker panels for the prognosis of relative tumor load change, a
five-step forward regression analysis (based on the Akaike Information Criterion, AIC) was performed
to find the marker panel consisting of biomarkers with the best predictive performance for each point
in time. Due to the exploratory character of the study, p-values have a descriptive meaning and are not
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adjusted for multiplicity. p-values <0.05 are defined as statistically significant. Furthermore, no missing
values were imputed. All analyses were performed using R version 3.5.1 (https://www.r-project.org)
and Graph Pad Prism Version 5 (GraphPad Software, San Diego, CA, USA).

5. Conclusions

For the first time, we investigated a panel of liquid biomarkers at three very early time points after
therapy initiation (day +1, day +7, and day +14) for their predictive value. We found three individual
marker panels including five biomarkers each at every time point with correlation rates R2 > 0.71 to
tumor load change. These marker panels highly implicate that the efficiency of a specific NSCLC
therapy can already be measured at very early time points after therapy start and might help to avoid
or shorten side effects and adverse events of ineffective treatment.
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Abbreviation List

BRAF Serine/threonine-protein kinase B-raf (rapidly accelerated fibrosarcoma)
cfDNA Cell-free DNA
CK-18 Cytokeratin 18
CT Computer tomography
ctDNA Circulating tumor DNA
CTx Platinum-based chemotherapy
ECOG Eastern Cooperative Oncology Performance Status Scale
EGFR Epidermal growth factor receptor
EML4-ALK Echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase
GSH Glutathione
M30 Caspase-cleaved cytokeratin 18
M65 Full-length cytokeratin 18
miRNA MicroRNA
MRI Magnetic resonance imaging
NOS Non other specified
NSCLC Non-small cell lung cancer
oxGSH Oxidized glutathione

https://www.r-project.org
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PD Progressive disease
PDL1 Programmed death ligand 1
PR Partial remission
RECIST-1.1 Response Evaluation Criteria in Solid Tumors, version 1.1
SD Stable disease
TKI Tyrosine-kinase-inhibitor

Appendix A Appendix

Table A1. microRNA overview and selection criteria; miRNAs were selected based on previous studies
describing their (i) application for serum/plasma-based differentiation of NSCLC patients from healthy
individuals and (ii) association to platinum-based and EGFR-TKI therapy studied in NSCLC cell lines
or serum/plasma samples.

miRNA Serum/Plasma Abundance in NSCLC
Compared to Healthy Individuals

Association to Therapy
ReferenceTherapy Type Effect Observed

miR-21-5p High Platinum-based
chemotherapy

High abundance in plasma is
predictive for therapy

resistance
[50]

miR-214-3p High EGFR-TKI therapy High abundance in plasma of
EGFR-TKI-resistant patients [51]

miR-23a-3p High - - [52]
miR-103-3p
miR-221-3p
miR-222-3p

High EGFR-TKI therapy High abundance in
gefitinib-resistant cell lines [53,54]

miR-134-5p - EGFR-TKI therapy High abundance in
gefitinib-resistant cell lines [55]

miR-126-3p Low EGFR-TKI therapy High abundance in
gefitinib-sensitive cell lines [56,57]

let-7e-5p Low - - [58]

miR-342-3p Low EGFR-TKI therapy High abundance in
gefitinib-resistant cell lines [59]

miR-1290 High EGFR-TKI therapy Longitudinal monitoring of
EGFR-TKI therapy from serum [33]

miR-223-3p High EGFR-TKI therapy High abundance in
erlotinib-sensitive cell lines [60,61]

miR-20a-5p High EGFR-TKI therapy
Increased plasma abundance

in EGFRmut compared to
EGFR wild-type patients

[60,62]

miR-145-5p High EGFR-TKI therapy High abundance in
gefitinib-sensitive cell lines [57,60]

miR-628-3p High - - [63]

miR-29c-3p High Platinum-based
chemotherapy

High abundance enhances
chemotherapy sensitivity in

cell lines
[64,65]

miR-210-3p High Platinum-based
chemotherapy

Decreased serum abundance
in patients responding to

chemotherapy
[66]
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Table A2. Quality control of blood samples; overview about risk of hemolysis in the plasma samples
used for this study. Hemolysis was assessed using differences between hsa-miR-451a and hsa-miR-23a-3p
with a Ct difference >7 being used as a cut-off for hemolytic samples. Lower values indicate little (5–7)
or no (<5) risk of hemolysis [43]. For Patient_37, material was not sufficient for miRNA and mutation
analysis. Hence, risk of hemolysis could not be assessed in this sample.
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Table A3. Applicability of marker panels at individual time points. 

Marker panel day +1 (group A) day +7 (group B) day +14 (group B) 

 R2 R2 R2 

Day +1 0.78 0.11 0.17 

Day +7 0.06 0.71 0.25 

Day +14 0.22 0.21 0.71 
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Table A3. Applicability of marker panels at individual time points.

Marker Panel Day +1 (Group A) Day +7 (Group B) Day +14 (Group B)

R2 R2 R2
Day +1 0.78 0.11 0.17
Day +7 0.06 0.71 0.25

Day +14 0.22 0.21 0.71

The five-marker panels from Figure 5A used at other assessed time points. R2 values were calculated using a
stepwise regression model.
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