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of cancer DNA in human blood
using cysteamine-capped AuNPs and a machine
learning-enabled smartphone†
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DNA methylation occurs when a methyl group is added to a cytosine (C) residue's fifth carbon atom,

forming 5-methylcytosine (5-mC). Cancer genomes have a distinct methylation landscape (Methylscape),

which could be used as a universal cancer biomarker. This study developed a simple, low-cost, and

straightforward Methylscape sensing platform using cysteamine-decorated gold nanoparticles (Cyst/

AuNPs), in which the sensing principle is based on methylation-dependent DNA solvation. Normal and

cancer DNAs have distinct methylation profiles; thus, they can be distinguished by observing the

dispersion of Cyst/AuNPs adsorbed on these DNA aggregates in MgCl2 solution. After optimising the

MgCl2, Cyst/AuNPs, DNA concentration, and incubation time, the optimised conditions were used for

leukemia screening, by comparing the relative absorbance (DA650/525). Following the DNA extraction

from actual blood samples, this sensor demonstrated effective leukemia screening in 15 minutes with

high sensitivity, achieving 95.3% accuracy based on the measurement by an optical spectrophotometer.

To further develop for practical realisation, a smartphone assisted by machine learning was used to

screen cancer patients, achieving 90.0% accuracy in leukemia screening. This sensing platform can be

applied not only for leukemia screening but also for other cancers associated with epigenetic

modification.
1 Introduction

DNA methylation is an epigenetic modication involving the
addition of a methyl group to the h carbon atom of the
cytosine (C) residue to form 5-methylcytosine (5-mC) at CpG
sites, the position where the cytosine residue is preceded by
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guanine (G) bases. This biological process plays a signicant
role in genomic imprinting and gene silencing, which are
associated with the regulation of gene expression and heredi-
tary characteristics.1,2 The pattern and level of the cytosine
methylation that occurs across the entire genome dene the
epigenetic state of the cell, developing to certain genetic
diseases and tumours, that have been broadly reported in
various cancers, including leukemia, stomach, breast, lung, and
colorectal cancer.2–6 The epigenetic reprogramming in these
cancer genomes exhibits a distinct methylation landscape
(Methylscape), a unique footprint for cancer genomes, in
specic regions such as the promoter site, particularly in the
CpG island. This Methylscape comprises clustered methylation
at the regulatory regions, which has been found to be a common
feature of most cancer types, implying that it could be employed
as a universal cancer biomarker.7–9 The emergence of a platform
to identify theMethylscape biomarker has the potential to vastly
improve existing multi-cancer early detection (MCED) at its
most treatable stages.

Various approaches to quantifying the level of DNA methyl-
ation have been extensively developed. The bisulte conversion
method, for example, has been frequently employed in the
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analysis of 5-mC.10–18 However, because of DNA degradation
during bisulte conversion, most bisulte conversion-based
techniques require high sample volumes and are frequently
hampered by low amplication efficiency and polymerase chain
reaction (PCR) bias. Enzyme-linked immunosorbent assay
(ELISA)-based methylation assays were proposed to circumvent
the use of bisulte conversion and PCR amplication.19,20 These
assays were reasonably straightforward, but they had low
sensitivity and necessitated the use of many external controls
for quantitative analysis. To address these concerns, methyl
binding domain (MBD)-based assays were developed, in which
MBD protein or another particular antibody was employed to
detect methylated CpG sites within the target DNA sequence.15

In addition to bisulte conversion and MBD-based approaches,
high performance liquid chromatography (HPLC) and mass
spectrometry (MS) have been utilised for direct DNA methyla-
tion measurement.21–23 Although HPLC and MS-based technol-
ogies directly detect DNA methylation, they also require
a considerable volume of input DNA, limiting their applicability
in typical clinical applications. A number of uorescence
readout-based approaches have been effectively employed to
assess DNA methylation in recent years.24–27 Because of its
greater sensitivity, uorescence resonance energy transfer
(FRET) is the most extensively used optical readout method in
DNA methylation study.28 Semiconductor quantum dots (QDs)
have also been used in uorescence-based methylation assays
to increase assay performance since they have broader absorp-
tion spectra and higher detection efficiency, compared to
traditional uorophores.26 Other optical readout methods for
assessing DNA methylation include Raman spectroscopy,27

surface plasmon resonance (SPR),29 electrochemiluminescence
(ECL),30 and colorimetry.31 However, further study is needed to
establish the rapid Methylscape detection that is suitable for
cancer screening in large patient cohorts for early treatment.
Fig. 1 A simple and rapid sensing platform for cancer screening via assem
DNA fragments are dissolved in MgCl2 solution. Subsequently, Cyst/AuNP
biomarker of cancer and normal DNA causes different self-assembly patt
be precisely identified by the machine learning-assisted mobile phone a
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Colorimetric assays for DNA methylation detection have
recently acquired interest since they are simple, reliable, cost
effective, portable, and targets can be observed with the naked
eye.32–36 As native nucleic acids do not absorb in the visible
region, colorimetric biosensors have been developed using
nanoscale organic dyes, conjugated polymers, enzymes con-
nected to a chromogen, and metallic nanoparticles. Gold
nanoparticles (AuNPs) have been widely used in the develop-
ment of colorimetric biosensors,37,38 in which the target mole-
cules can be detected as a colour change in the colloidal
solution. Typical AuNP-based biosensor is replied on the salt-
induced aggregation of AuNPs. However, the development of
these nanoparticles to detect the Methylscape biomarker has
received little attention.

Analysing the physicochemical properties alone could serve
as a straightforward and effective method of determining the
Methylscape biomarker for MCED. Normal DNA contains
considerable amounts of dispersed 5-mC throughout the
genome, but cancer cells' DNA is hypermethylated at the
methylation landscape and tends to form clusters of 5-mC in
the CpG rich regulatory regions. As a result of the heteroge-
neous methylation landscape, distinct solvations in aqueous
solutions occur. Apart from the entire genome, small fragments
of DNA circulate freely in the peripheral blood of healthy and
diseased individuals. These cell-free DNA (cfDNA) molecules
have been reported to originate from dying cells, reecting the
body's ongoing cell death.2,39,40 Circulating cfDNA methylation
patterns contain important information about recent cell death
events in the body, and they are a fundamental marker of cell
identity. This Methylscape biomarker, which is typical of cancer
DNAs and not present in DNAs from healthy individuals, would
drive a unique self-assembly process, and regardless of their
global methylation content, creating a distinctive assembly
footprint that can be used to infer their clinicopathological
blies of Cyst/AuNPs could be completed in two simple steps. Firstly, the
s are added into the mixed solution. The difference in the Methylscape
erns, resulting in the red-shift phenomenon of Cyst/AuNPs, which can
pplication.
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state. Recently, we reported the insightful discussion of the self-
assembly of the cfDNA in aqueous solution using molecular
dynamics (MD) simulation.41 Our in silico study demonstrated
that cfDNA clusters in aqueous solution in a methylation-
dependent manner, which is due primarily to the higher
hydrophobic force caused by the methyl group addition. Due to
its physicochemical characteristics, the methylation-dependent
assembly of DNA in solution can be used for early cancer
diagnosis.

In the light of this, we present a simple and straightforward
sensing platform for Methylscape detection based on Cyst/
AuNP assemblies, which could be completed in two simple
processes, as depicted in Fig. 1. To begin with, aqueous solution
is used to dissolve the DNA fragments. Cyst/AuNPs are then
added to the mixed solution. The Methylscape of normal and
malignant DNAs differs, resulting in distinct self-assembly
patterns for the DNA fragments. Normal DNA aggregates
loosely, culminating in the aggregation of Cyst/AuNPs. This
results in the red-shiing property of Cyst/AuNPs, whichmay be
observed by the naked eye as a red-to-purple colour change. In
contrast, the distinctive methylation prole of cancer DNA
results in the creation of larger clusters of DNA fragments. As
a result, the solution's colour does not change as Cyst/AuNPs
are adsorbed and disseminated throughout the aggregate.
This straightforward sensing technique was computationally
investigated and recently published elsewhere.41 In this study,
we proved the practicality of this sensing platform and
demonstrated its capability for cancer screening. Additionally,
a smartphone-based biosensor has been developed to facilitate
and expedite cancer screening. Machine learning-enabled
smartphone system without using any optical hardware smart-
phone attachment has been developed for the simple detection.
Our work can explore a rapid multi-cancer early detection
strategy that could pave the way for the development of
a universal cancer screening tool.

2 Experimental
2.1 Materials

Methylated DNA (mDNA) and unmethylated DNA (uDNA) were
purchased from Ward Medic. Adenomatous polyposis coli
(APC) is classied as one of the tumor suppressor genes42 linked
to a variety of cancers, for example, leukemia, esophageal,
stomach, colon, liver, and lung cancer.28,43–45 It has been re-
ported that the APC gene has been found in both serum and
plasma.46 Therefore, the APC gene is a remarkable candidate as
a universal cancer biomarker. A fragment of the APC gene,
which is frequently found in the blood of cancer patients, was
used as a model for cancer DNA in this study. The sequence of
the promoter region of the APC gene is 5′-CAC TGC GGA GTG
CGGGTC GGG AAG CGG AGA GAG AAG CAG CTG TGT AAT CCG
CTG GAT GCG GAC CAG GGC GCT CCC CAT TCC CGT CGG
GAG CCC GCC GAT TGG CTG GGT GTG GGC GCA CGT GAC
CGA CAT-3′, a total of 129 nucleotides with 14 CpG sites.
Sodium borohydride (NaBH4, >98%) was purchased fromMerck
Chemicals. Gold(III) chloride trihydrate (HAuCl4, 99%), sodium
phosphate dibasic (Na2HPO4), sodium phosphate monobasic
© 2023 The Author(s). Published by the Royal Society of Chemistry
monohydrate (NaH2PO4) and magnesium chloride anhydrous
(MgCl2) were purchased from Sigma-Aldrich. Phosphoric acid
(H3PO4) was purchased from Univar USA Inc. Leukemia cancer
patient blood samples were obtained from Srinagarind
Hospital, Khon Kaen, Thailand. The relevant ethical approval
was obtained from Khon Kaen University, Thailand, for blood
patient samples analysis presented in this study.

2.2 Apparatus

An absorbance measurement was recorded on a uorescence
microplate reader (SpectraMax M5). Transmission electron
microscopy (TEM) measurements were performed on a Tecnai
(FEI 5022/22 Tecnai G2 20 S Twin, CR). Dynamic light scattering
(DLS) and zeta potential measurement were measured using the
Malvern Zetasizer. The pH of the solution was measured using
a mettler Toledo LE438.

2.3 Synthesis of Cyst/AuNPs

Cyst/AuNPs were synthesized by a reduction method.47 Cyst/
AuNPs were prepared by reducing HAuCl4 with NaBH4.
Briey, 213 mM cysteamine hydrochloride and 0.1 M HAuCl4
were mixed in a glass vial. The mixture was stirred for 20 min at
room temperature in the dark. Freshly prepared 10 mM NaBH4

was then added into the mixed solution under vigorous stirring,
and the mixture was further stirred overnight in the dark. The
resulting wine-red solution was ltered by 0.22 (or 0.45) mm
lter and stored in the refrigerator (4 °C) until use. The as-
prepared Cyst/AuNPs were characterised with UV-Vis absorp-
tion spectra, transmission electron microscopy (TEM) and
dynamic light scattering. The concentration of the Cyst/AuNPs
solution was estimated by the original concentration of the
gold solution. The as-prepared Cyst/AuNPs were wine-red and
showed a characteristic absorption peak at 525 nm, which was
ascribed to the surface plasmon resonance of the Cyst/AuNPs.
The Cyst/AuNPs solution can be highly stabilised against
aggregation due to the positive capping agent's electrostatic
repulsion between Cyst/AuNPs.

2.4 DNA sample preparation

The blood samples were derived from the patients in Srina-
garind Hospital, Khon Kaen, Thailand, and stored in K2-EDTA
tubes. The blood samples used in this study were le-over
from the laboratory, of which its protocols were approved by
the Ethics Committee of Khon Kaen University, Faculty of
Medicine, Khon Kaen, Thailand (HE654010). 4 ml of lysis
solution (1% Triton x-100, 0.32 M Saccharose, 5 mM MgCl2,
10 mM Tris–HCl) were added to the blood sample in 2 ml
volumes, mixed by vortexing and inverting thoroughly for
5 min. Subsequently, the mixture was centrifuged at 10 000 g for
5 min. The supernatant was discarded. For the pellet, 1 ml of
lysis solution was added and the vortexing, inverting, and
centrifuging steps were repeated. Then, 200 ml of enzyme reac-
tion (1% SDS, 5 mM EDTA–Na2, 10 mM Tris–HCl) and 8 ml of
1 mg ml−1 RNase A were added to the pellet and mixed gently,
and it was incubated at room temperature (25–30 °C) for 5 min.
Aer that, 10 ml of 17 mg ml−1 proteinase K was added to the
RSC Adv., 2023, 13, 1301–1311 | 1303
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pellet solution and mixed gently. The mixture was then incu-
bated for 1 h at 60 °C in heating block before 300 ml of 7.6 M NaI
solution (7.6 M NaI, 20 mM EDTA–Na2, 40 mM Tris–HCl) was
subsequently added to the tube and mixed gently a few times by
inversion. Then, 500 ml of 100% isopropanol was added and
mixed well by inverting for 1 min. The mixture was then
centrifuged at 10 000g for 10 min. The supernatant was then
transferred to a fresh tube, and 1 ml of 40% isopropanol was
added. The tube was mixed by inverting for 1 min, and was
centrifuged for 5 min at 10 000g. The supernatant was dis-
carded, and 1 ml 70% ethanol was added. The pellet was tapped
gently, followed by centrifuging at 13 000g for 5 minutes and
then removed the supernatant. The pellet was air-dried in
a laminar air ow, and the dried pellet was resuspended in 20–
40 ml in DI water and frozen at −20 °C or −80 °C until use.
2.5 Methylscape detection

According to our recent study based on MD simulations,41 the
adsorption of Cyst/AuNPs onto DNA clusters in the presence of
MgCl2 can distinguish between methylated and unmethylated
DNA aggregates, suggesting a simple approach for cancer
screening. In the light of this, we investigated the effect of
magnesium ions on the increased stability of commercially
available methylated and unmethylated DNAs in the sensor
system, with the aim of optimising the differentiation of these
two DNA variants. To begin with, MgCl2 (10 mM, 15 ml) was
added to the DNA solution (30 nM, 15 ml) and the mixed solu-
tion was thoroughly mixed and le at room temperature for 15
minutes. Then, 10 nM Cyst/AuNPs (15 ml) were added to the
mixed solution and the volume was adjusted by the addition of
105 ml phosphate buffer solution at a pH of 7.0 (0.1 mM).
Subsequently, the absorbance of the mixture was measured at
525 and 650 nm. In the absence of MgCl2, a 15 ml phosphate
buffer solution was added to the DNA solution and incubated
for 15 minutes at room temperature. Then, 15 ml Cyst/AuNPs (10
nM) were added to the mixed solution and 105 ml of phosphate
buffer solution was then added to reach the same volume as the
system with MgCl2. Then, the mixture was measured for the
absorbance at 525 and 650 nm. The Methylscape detection is
summarised schematically in Fig. S1.† DA650/525 is utilised to
determine the methylation-dependent dispersion of Cyst/
AuNPs in the solution in order to discriminate cancerous and
normal DNAs, where

DA650/525 = (AAuNPs+DNA
650 /AAuNPs+DNA

525 ) − (AAuNPs
650 /AAuNPs

525 ) (1)
2.6 Machine learning-based biosensing

In the present work, we investigated the possibility of using
machine learning to convert the colour of Cyst/AuNPs solutions
into either normal or cancer DNA using an image of a 96-well
plate taken with a smartphone camera. The determination of
cancer DNA by a smartphone equipped with machine learning
was compared to an approach based on spectroscopy. Following
the process described in Section 2.5, these were carried out on
1304 | RSC Adv., 2023, 13, 1301–1311
the DNA extracted from real blood samples. We compared two
well-known machine learning models: Random Forests (RF)
and Support Vector Machine (SVM) through the binary classi-
cation task, negative (normal DNA) and positive (cancer DNA).
Images of 15 96-well plates containing normal DNA, cancer
DNA, and the reference Cyst/AuNPs solution were captured for
data preparation using a customized iOS application on an
iPhone 12. Each plate contained ve unknown columns, each of
which could be populated with either normal or cancer DNA.
We photographed each plate twice and indicated the actual
chemical class of the substance contained in each well. This
step resulted in the collection of 30 images, each of which
contained 150 unknown columns. We constructed a feature
vector for each data point by extracting the colour intensity of
the red channel from the centre region of each well; six wells in
the centre column were designated as unknown substances to
be predicted, while 18 wells surrounding the centre column
were designated as wells lled with the reference substance. As
a result, we concatenated 24 colour intensity values from six
unknown wells and 18 reference wells to create a 24-dimension
feature vector for each unknown substance. We ended up col-
lecting 150 data points, 100 of which were positive and 50 of
which were negative. The data was then divided into 100
training samples and 50 test samples based on the plate;
samples from the same plate will be included in either the
training or test samples. The machine learning models were
implemented using the Scikit-Learn package,48 with the best
parameters chosen using a 5-fold cross-validation procedure on
the training set. The optimal parameters for random forests
were 800 trees with a maximum depth of 5 and a minimum
sample split of 2. The best parameters for support vector
machine were Radial Basis Function Kernel (RBF kernel) with C
= 1 and g = 0.001.

3 Results and discussion
3.1 Nanoprobe characterisation

To evaluate the efficacy of our approach in detecting the
Methylscape biomarker, we used positively charged AuNPs to
perform a simple cancer detection based on the different
physicochemical properties of DNA. The abnormal 5-mC's
physicochemical properties are primarily due to its hydro-
phobic nature and larger size than an ordinary cytosine.2,49 Due
to their distinct hydrophobic properties, cancer and healthy
DNA agglomerate differently in aqueous solutions. The differ-
ence in the Methylscape of the DNA results in distinct patterns
of self-assembly for the DNA fragments. The adsorption of
positively charged AuNPs onto DNA aggregates may indicate
distinct self-assembly patterns in normal and cancer genomes
due to the presence of different Methylscapes. In this study,
Cyst/AuNPs were used as a nanoprobe for the detection of
Methylscape. Cyst/AuNPs were prepared according to the re-
ported literature.47 The UV-Vis spectrum of the Cyst/AuNPs
exhibited an absorption peak at a wavelength of 525 nm
(Fig. 2a), which is due primarily to the localised surface plas-
mon resonance (LSPR) phenomenon found in Cyst/AuNPs.
Based upon the absorption of the solution, the concentration
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 (a) Cyst/AuNPs absorption spectra under various conditions. A TEM image of Cyst/AuNPs is shown in (b). TEM images of Cyst/AuNPs with
mDNA and uDNA are shown in (c) and (d), respectively. TEM images of Cyst/AuNPs with mDNA and uDNA in the presence of 1 mM MgCl2 are
shown in (e) and (f), respectively. Each TEM image includes a scale bar.
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of as-prepared Cyst/AuNPs was approximated to be 10 nM using
UV-Vis spectroscopy with an extinction coefficient of 3.67 ×

108 M−1 cm−1 at the wavelength of 525 nm. The transmission
electron microscopy image revealed that the nanoparticles were
sphere-shaped nanostructure with a diameter of 33.5 ± 4.8 nm
as shown in the ESI (Fig. S2†). The zeta potential of the Cyst/
AuNPs was 31.7 ± 0.3 mV, indicating that the positively
charged cysteamine stabilised the AuNP surfaces. Due to the
electrostatic repulsion force, the Cyst/AuNPs exhibit excellent
dispersion and resistance to aggregation. The Cyst/AuNPs was
shown to be extremely stable, with the Cyst/AuNPs solution
remaining stable for up to nine weeks without aggregation
(Fig. S3†), indicating that it could be a promising candidate for
a nanoprobe in a practical application.
3.2 Development and evaluation of the nanoparticle-based
Methylscape detection

To apply Cyst/AuNPs in the Methylscape detection of cancer
DNA in human blood, a fragment of the APC gene, fund in both
serum and plasma46 of leukemia, esophageal, stomach, colon,
liver, and lung cancer patients,28,44,45 is chosen as an initial
model for the development of a Methylscape sensing platform.
The sequence of the APC gene is provided in the Materials
section. A fragment of the APC gene with and without methyl-
ation was used asmodels for DNA with varyingMethylscapes. As
previously reported by our computational study, distinct
Methylscapes of these DNAs result in different agglomeration
sizes. Different adsorption patterns of positively charged AuNPs
onto negatively charged aggregates result in different disper-
sions of these nanoparticles.

To develop the sensor for Methylscape detection, the inter-
action between Cyst/AuNPs and DNA with different methylation
landscapes (with and without methylation) has been observed.
As shown in Fig. 2a, the AuNP solution shows a characteristic
absorption peak at 525 nm, which is due primarily to the LSPR
phenomenon found in spherical Cyst/AuNPs. This corresponds
to the dispersion of Cyst/AuNPs in the solution, as illustrated in
Fig. 2b. The color of the solution appears in red-wine. In the
presence of methylated DNA (mDNA), the absorption spectrum
© 2023 The Author(s). Published by the Royal Society of Chemistry
was obviously changed owing to the electrostatic attractions
between Cyst/AuNPs and the mDNA aggregate. This resulted in
the aggregation of the Cyst/AuNPs, as conrmed by the TEM
image shown in Fig. 2c. In the case of unmethylated DNA
(uDNA), the mixture of Cyst/AuNPs and uDNA led to a dramatic
aggregation of Cyst/AuNPs in a similar manner to that observed
in mDNA (Fig. 2d). These ndings show that the hydrophobic
force that maintains mDNA aggregation is weaker than the
electrostatic interactions that cause the DNA assembly to
collapse. As a result, the Cyst/AuNPs in both mDNA and uDNA
are equally aggregated in the solution. This suggests that
detecting Methylscape based upon this approach in aqueous
solution is impossible.

Electrostatic screening was employed to decrease the
attractive interactions between the nanoparticles and DNA
aggregates while retaining the assembly of the Cyst/AuNPs used
for Methylscape indication. To preserve DNA aggregation and
enhance DNA stability, 1 mM MgCl2 was added to the solution.
In the case of the mDNA aggregate, the addition of MgCl2
results in the electrostatic screening. The hydrophobic force
contributed by the methyl group and the electrostatic attraction
between the Cyst/AuNPs and DNA backbone are balanced,
maintaining the aggregation of the methylated DNA in the
presence of the Cyst/AuNPs. This suggests that the densely
mDNA aggregate will inuence the dispersion of the Cyst/
AuNPs, adsorbed on the DNA assemblage, in a different
manner from the loosened uDNA aggregates. The absorption
spectra of both cases revealed different absorption behaviours
of both cases. This was conrmed by the TEM image, as illus-
trated in Fig. 2e and f for mDNA and uDNA, respectively. In
a nutshell, Methylscape detection could be accomplished
through the dispersion of Cyst/AuNPs adsorbed on DNA
agglomerate while being electrostatically screened by MgCl2.

To further investigate the role of electrostatic screening in
the Methylscape detection, the hydrodynamic size and zeta
potential of DNA clusters under different conditions were
determined, as summarised in Table 1. In the aqueous solution,
the hydrodynamic size (dH) of the mDNA aggregate was much
smaller than that of the uDNA aggregate (DdH= 91.1± 70.6 nm)
RSC Adv., 2023, 13, 1301–1311 | 1305



Table 1 Hydrodynamic size and zeta potential of DNA aggregates
with (+) and without (−) MgCl2 determined by DLS technique. This
experiment was performed under the following conditions: MgCl2
concentration, 1 mM; DNA concentration, 3 nM; incubation time, 15
min

Sample MgCl2 Size (nm) Zeta potential (mV)

mDNA − 632.4 � 45.4 −27.2 � 4.7
uDNA − 723.5 � 54.1 −23.6 � 1.0
mDNA + 717.1 � 37.6 −16.7 � 2.0
uDNA + 761.1 � 28.8 −11.5 � 0.2
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due to the increased hydrophobic force of the methyl group in
mDNA. In the presence of MgCl2, the difference of the hydro-
dynamic size betweenmDNA and uDNA (DdH= 44.0± 47.4 nm)
is smaller than that in aqueous solution. However, the addition
of Cyst/AuNPs into the DNA solution resulted in an electrostatic
attraction between these nanoparticles and the DNA aggregate.
In aqueous solution, in the presence of Cyst/AuNPs, the uDNA
aggregate was disintegrated in a similar manner to mDNA due
to the strong electrostatic attraction between the Cyst/AuNPs
and DNA. However, in the presence of MgCl2, once Cyst/
AuNPs were added into the DNA solution, the hydrophobic
force contributed from the methyl group and the electrostatic
attraction between the Cyst/AuNPs and DNA backbone are
balanced, maintaining the aggregation of the mDNA and uDNA
in the presence of the Cyst/AuNPs. This indicates that the
densely mDNA aggregate will inuence the dispersion of the
Cyst/AuNPs, adsorbed on the DNA assemblage, in a different
manner from the loosened uDNA aggregates. This implies that
Methylscape detection could be accomplished through the
dispersion of Cyst/AuNPs adsorbed on DNA agglomerate while
being electrostatically screened by MgCl2.
Fig. 3 (a) AuNP absorption at 525 nm (A525) in the presence of MgCl2
with different concentrations ranging from 0–100mM. (b) DA650/625 of
AuNP solution in the presence of either mDNA or uDNA with varying
Cyst/AuNP concentrations. (c) DA650/625 of AuNP solution in the
presence of either mDNA or uDNA with different DNA concentrations.
(d) DA650/625 of AuNP solution as a function of incubation time.
3.3 Sensing performance optimisation

Based on the detection principle shown in Fig. 1, the developed
biosensor shows a characteristic peak of the UV-Vis spectrum at
l = 525 nm. The absorption of the sensor at this signature
wavelength decreases once Cyst/AuNPs interact with the DNA
aggregate. This is due to the adsorption of the positively
charged AuNPs on the negatively charged DNA, resulting in the
red shi of the absorption spectrum. The colour of the AuNP
solution therefore changes from red to purple-blue. To optimise
parameters affecting the analytical gure of merit of the sensor,
DA650/525 was optimised for all related parameters including (i)
the concentrations of MgCl2; (ii) Cyst/AuNPs concentration; (iii)
DNA concentration; and (iv) incubation time. The strong elec-
trostatic interactions between Cyst/AuNPs and DNA aggregate
result in the disintegration of the agglomerated DNA, as dis-
cussed in the previous section. Electrostatic screening in the
presence of MgCl2 can reduce the strong attractive interactions
between Cyst/AuNPs and DNA, allowing normal and cancer
DNA to be distinguished in a divalent electrolyte. The concen-
tration of MgCl2 was initially varied to optimise the analytical
gure of merit of the sensor. MgCl2, however, may cause
nanoparticle aggregation. The absorbance of Cyst/AuNPs
1306 | RSC Adv., 2023, 13, 1301–1311
solutions with different MgCl2 concentrations (0–100 mM) was
measured to determine the optimal condition, the MgCl2
concentration that Cyst/AuNPs remain dispersed in the solu-
tion. The absorbance of Cyst/AuNPs at 525 nm decreased with
increasing MgCl2 concentrations, as shown in Fig. S4.† The
solution colour appeared red at low MgCl2 concentrations (1–10
mM), while increasing MgCl2 concentrations resulted in
a dramatic decrease in absorbance at l = 525 nm, indicating
that the nanoparticles were aggregated provided that the MgCl2
concentrations were greater than 10 mM, as shown in Fig. 3a.
Thus, 1 mMMgCl2 was used for further studies to reduce strong
electrostatic attraction between DNA and the nanoparticles
while maintaining their dispersion in solution.

To further optimise the conditions, the effect of Cyst/AuNP
concentration on sensing performance was evaluated by
varying nanoparticle concentrations from 0.1–3 nM. It was
discovered that different concentrations of Cyst/AuNPs interact
with both mDNA and uDNA aggregates in distinct manners, as
shown in Fig. 3b. The DA650/525 of uDNA (0.450) was much
higher than that of mDNA (0.190) at a concentration of 1 nM
Cyst/AuNPs. This suggests that in the MgCl2 solution, uDNAs
were loosely agglomerated, causing Cyst/AuNPs to be closer
together than those adsorbed on the mDNA aggregate. For
further optimisation, Cyst/AuNPs at a concentration of 1 nM
were used.

Another crucial factor for Methylscape detection is DNA
concentration. The DNA concentration optimisation in the
present study was performed in the range of 0.5–15 nM, in
which the concentrations of MgCl2 and Cyst/AuNPs were xed
at 1 mM and 1 nM, respectively. As depicted in Fig. 3c, at low
(0.5–1 nM) and high (10–15 nM) DNA concentrations, the DA650/
525 of uDNA and mDNA was not signicantly different. These
DNA concentrations cannot be used to distinguish between the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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two forms of DNA. When the concentration of DNA is between
3–5 nM, the DA650/525 of Cyst/AuNPs treated with both uDNA
and mDNA shows a signicant difference. This DNA concen-
tration range provides the most distinction between uDNA and
mDNA. Thus, the concentration of DNA at 3 nM was used to
further optimise the sensing performance.

Finally, the incubation time between the DNA and Cyst/
AuNPs was observed. This was investigated in the time range
of 0–60 min. As shown in Fig. 3d, the DA650/525 of Cyst/AuNPs
with uDNA and mDNA remained relatively constant as the
reaction time increased. This suggests that the reaction time
between the nanoparticles and DNA was rapid. Therefore, to
ensure the complete interactions, the incubation time at 15
minutes was selected to develop the sensor for cancer screening
based upon the Methylscape detection.

Aer optimising the conditions, we obtained the optimal
parameters as follows: MgCl2 concentration, 1 mM; Cyst/AuNPs
concentration, 1 nM; DNA concentration, 3 nM. The incubation
time of 15 minutes was selected. To demonstrate that these
conditions can be used for Methylscape detection, the DA650/525
of Cyst/AuNPs solution in the presence of either mDNA or uDNA
under the optimised conditions was observed. It was revealed
that the developed sensor can obviously distinguish DNA with
a distinct methylation prole, as shown in Fig. 4a. The averages
of DA650/525 of Cyst/AuNPs solution (n = 4) in the presence of
uDNA and mDNA were 0.5581 ± 0.0572 and 0.2275 ± 0.0542,
respectively. This is in good agreement with our previously re-
ported MD simulation.41 Our simulations revealed that the
solvation of DNA is methylation-dependent as the addition of
Fig. 4 (a) Box plot showing the relative absorbance values DA650/525 of
Cyst/AuNPs solutions in the presence of uDNA (blue) and mDNA (red)
under the optimised conditions: MgCl2 concentration, 1 mM; Cyst/
AuNPs concentration, 1 nM; DNA concentration, 3 nM; incubation
time; 15 min (n = 4). (b) Schematic illustration of Cyst/AuNPs absorbed
on (left) unmethylated and (right) methylated DNA agglomerates.

© 2023 The Author(s). Published by the Royal Society of Chemistry
the methyl group to cytosine residues results in an increased
hydrophobic force. Our MD simulation demonstrated that the
nanoparticles are adsorbed on the methylated DNA aggregate in
a different manner from the unmethylated one in the presence
of divalent electrolyte. The backbone of the oligonucleotide
plays a signicant role in the adsorption mechanism onto the
gold surface. The methyl group increases the p electron density
in the pyrimidine ring due to the electron donating mechanism
as revealed by the density functional theory (DFT) study. The
adsorption energy of 5-mC onto the AuNP surface is lower than
that of C, resulting in increased binding affinity onto the gold
surface. Due to the enhanced hydrophobic force, the dense
aggregation of the mDNA can prevent the aggregation of the
Cyst/AuNPs as these nanoparticles are dispersed exclusively on
the outer layer of the mDNA aggregate, as schematically illus-
trated in Fig. 4b. This results in different dispersions of the
Cyst/AuNPs adsorbed on the methylated and unmethylated
DNA aggregates.
3.4 Cancer screening in real blood samples

To extend the sensing platform's practicality, we applied
a sensor that is successful in distinguishing mDNA and uDNA
in real blood samples. Typically, epigenetic changes like DNA
methylation have been extensively reported. The methylation
pattern of CpG sites regulates gene expression epigenetically. In
almost all cancer types, extensive changes in DNA methylation
have been observed, resulting in an alternation in gene
expression that promotes oncogenesis. Particular changes in
methylation proles are reproducibly found in specic cancer
types such as leukemia, stomach, breast, lung, and colorectal
cancer.2–6,50–55 As a model for other cancers associated with DNA
methylation, we used blood samples from leukemia patients
and healthy controls to investigate the utility of the methylation
landscape (Methylscape) in differentiating leukemia cancers.
This Methylscape biomarker not only outperformed current
methods for rapid leukemia screening, but it also demonstrated
the feasibility of extending this approach to multi-cancer early
detection using a simple and straightforward assay. To assess
the clinical utility of the assay, we analysed DNA derived from
the blood samples of 31 leukemia patients and 12 healthy
individuals under the optimised conditions obtained from the
previous section. We extracted the DNA from 12 healthy indi-
viduals and 31 leukemia patients. Clinical information of
representative blood samples is summarised in Table S1.† As
shown in the box plot in Fig. 5a, cancer samples provided
a lower relative absorbance (DA650/525) than that of DNA derived
from normal samples. This is due primarily to the enhanced
hydrophobic force, which led to the dense aggregation of the
cancer DNA that prevented the aggregation of Cyst/AuNPs. As
a result, these nanoparticles are dispersed exclusively on the
outer layer of the cancer aggregate, as discussed in the previous
section. This results in different dispersions of the Cyst/AuNPs
adsorbed on the normal and cancer DNA aggregates. The ROC
curve was then generated by varying the threshold from the
minimum of DA650/525 to its maximum. As shown in Fig. 5b, the
area under the ROC curve (AUC = 0.9274) derived from our
RSC Adv., 2023, 13, 1301–1311 | 1307



Fig. 5 (a) Box plot showing the relative absorbance values (DA650/525) of Cyst/AuNPs solutions in the presence of normal (blue) and cancer (red)
DNAs under the optimised conditions: MgCl2 concentration, 1 mM; Cyst/AuNPs concentration, 1 nM; the DNA concentration, 3 nM; the
incubation time; 15 min. (b) The ROC analysis and diagnostic test evaluation. (c) The confusion matrix for diagnosing normal and cancer indi-
viduals. (d) Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the accuracy of the developed method.
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developed sensor demonstrates a high level of sensitivity and
specicity. According to the box plot, the whisker representing
the lowest point of the normal DNA group and the whisker
representing the highest point of the cancer DNA group are not
well separated; therefore, logistic regression is used to distin-
guish between the normal and cancer groups. On the basis of
a given set of independent variables, it estimates the probability
of an event, such as cancer or a normal group, occurring. The
dependent variable is bounded between 0 and 1; thus, the
outcome is a probability. We determined the probability of
cancer identication (P) in term of DA650/525 as follows,

P
�
Y
��DA650=525; q

� ¼ 1

1þ e�ðbþDA650=525$w1Þ (2)

where b = 5.3533 and w1 = −6.965. For sample classication,
a probability less than 0.5 indicates a normal sample, whereas
a probability of 0.5 or greater implies a cancer sample. Fig. 5c
depicts the confusion matrix generated by the leave-one-out
cross validation used to validate the robustness of our classi-
cation method. This approach's diagnostic test evaluation,
including sensitivity, specicity, positive predictive value (PPV),
and negative predictive value (NPV), is summarised in Fig. 5d.
The calculations for these values are explained in detail in the
ESI.† It was revealed that the statistical diagnostic efficacy test
provides an accuracy of 95.34%. These results demonstrate that
an AuNP-based assay could potentially detect the presence of
a small amount of cancer DNA (3 nM) in a rapid and cost-
effective manner.
3.5 Mobile phone-based biosensing

To further simplify sample testing without using a spectropho-
tometer, articial intelligence (AI) was used for interpreting the
solution colour and distinguishing normal and cancerous
1308 | RSC Adv., 2023, 13, 1301–1311
individuals. In the light of this, we utilised a computer vision to
translate the colour of the Cyst/AuNPs solution into either
normal DNA (purple) or cancer DNA (red) via the image of the
96-well plate taken by a mobile phone camera. AI was used to
reduce the cost and increase the accessibility of interpreting the
colour of the nanoparticle solution without using any optical
hardware smartphone attachment. To analyse the DNA extrac-
ted from the blood, the mobile phone-based biosensing was set
up as follows. In the image acquisition step, we prepared 15 96-
well plates lled with normal DNA, cancer DNA, and the refer-
ence solution, as shown in Fig. 6a. Subsequently, we took 3–5
images of the 96-well plates along with recording the actual
class of the solution in each well via our designed mobile phone
application which provided 96-well plate to assist data
capturing process (see Fig. S5† and 6b). With the AI, a machine
learning model was developed to map feature vector (x) to the
target class (y). In this step, we initially extracted a colour
intensity from the red channel of the image from each well. We
then constructed a feature vector (x) which consisted of colour
intensities from the designated wells, eight from the unknown
solution in which we wish to predict the class and 16 from the
reference ones used as a reference colour, as shown in Fig. 6c.
Finally, two machine learning models, including Random
Forest (RF) and Support Vector Machine (SVM), were trained to
build a model to map the prepared feature vector (x) to the
target class (y), either normal or cancer DNA samples. As shown
in Table 2, both RF and SVM models correctly classied the
samples as positive and negative, demonstrating an accuracy of
90.0%. It is worth noting that the SVMmodel performed slightly
better precision. This suggests that it is highly possible to use AI
in mobile phone-based biosensing. More importantly, this
mobile phone-based biosensor, which allowed us to develop
a smartphone attachment-free optical sensor for Methylscape
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 (a) Target classes of the solutions recorded while preparing samples for the image acquisition step. (b) An example image taken in the
image acquisition step. (c) Colour intensities of the Cyst/AuNPs solution in eachwell of the 96-well plate extracted from the image (b). The colour
intensity chosen in this study is the colour intensity of the red channel of the image.

Table 2 Comparing the performance of two machine learning
models, including (i) random forests and (ii) support vector machine,
on four performance metrics. Both models were trained to classify the
input vector as either normal or cancer DNA when the input vector
was composed of colour intensities extracted from 6 wells of the
unknown solution and 18 wells of the reference one (24 dimensional
feature vector)

Model

Performance

Accuracy Precision Recall F1-score

Random forests 0.90 0.93 0.90 0.92
Support vector
machine

0.90 0.97 0.90 0.93

Paper RSC Advances
detection, can be conducted in ambient light, making it
possible for its easy practical realisation.
4 Conclusions

A simple sensing platform for Methylscape detection has been
successfully developed using Cyst/AuNPs. The sensing principle
is based on the fact that the physicochemical properties of DNA
in solution are methylation-dependent. This results in a distinct
self-assembly of normal and cancer DNA, which can be distin-
guished by the dispersion of Cyst/AuNPs adsorbed on these
DNA aggregates in MgCl2 solution. Aer optimising the condi-
tions, the following parameters were determined to be
optimal: 1 mM MgCl2; 1 nM Cyst/AuNPs; 3 nM DNA. A 15
minute incubation time was chosen to ensure complete inter-
actions between Cyst/AuNPs and DNA aggregates. These
conditions were initially used to distinguish methylated and
unmethylated DNA, and the sensing platform was demon-
strated by comparing the dispersion of Cyst/AuNPs in the MgCl2
solution in terms of the relative absorbance (DA650/525). To
demonstrate the sensing platform's effectiveness, we used
a sensor that is capable of discriminating between mDNA and
uDNA in leukemia screening using real blood samples. The
developed sensor demonstrates unequivocally that aer the
© 2023 The Author(s). Published by the Royal Society of Chemistry
DNA extraction from real blood samples, an AuNP-based assay
is capable of rapidly and cost-effectively detecting (15 minutes)
the presence of a small amount of cancer DNA (3 nM) in
leukemia patients, demonstrating 95.3% accuracy. To further
simplify sample testing by eliminating the need for a spectro-
photometer, machine learning was used to interpret the solu-
tion colour and discriminate between normal and cancerous
individuals, achieving a 90.0% accuracy. This enables us to
develop a smartphone-based biosensor for Methylscape detec-
tion that can be used in ambient light, enabling its practical
implementation. This sensing platform demonstrated rapid
early cancer screening, not just for leukemia screening, but also
for other cancers associated with DNA methylation. Our study
paves the way for the development of a rapid universal cancer
screening method that is well-suited for screening large patient
cohorts for early detection and treatment.
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