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Out of hospital cardiac arrest is the leading cause of death in industrialized countries. Recovery of hemodynamics does not
necessarily lead to recovery of cerebral perfusion. The neurological injury induced by a circulatory arrest mainly determines the
prognosis of patients after cardiac arrest and rates of survival with a favourable neurological outcome are low. This review focuses
on the temporal course of cerebral perfusion and changes in cerebral autoregulation after out of hospital cardiac arrest. In the early
phase after cardiac arrest, patients have a low cerebral blood flow that gradually restores towards normal values during the first 72
hours after cardiac arrest. Whether modification of the cerebral blood flow after return of spontaneous circulation impacts patient
outcome remains to be determined.

1. Introduction

The prognosis of cardiac arrest patients is mainly determined
by the extent of neurological injury induced by the circulatory
arrest. Return of spontaneous circulation (ROSC) does not
naturally result in recovery of cerebral perfusion, as cerebral
perfusion failure after ROSC is well described in animal
models with no-reflow, hypoperfusion, and hyperperfusion.
In animals, cerebral blood flow (CBF) ultimately restores
towards normal [1]. Human studies have revealed that, in the
early phase after cardiac arrest, patients have a low CBF that
gradually restores towards normal values during the first 72
hours following the arrest [2–4]. In the first part of this review,
the temporal course of cerebral blood flow after ROSC is
described.This is relevant, because changes in cerebral blood
flow can contribute to secondary brain injury. The second
part of this review will focus on cerebral autoregulation after
cardiac arrest, because this is an important factor in the
development of ischaemia and secondary brain damage.

2. Cerebral Blood Flow after Cardiac Arrest

Cerebral perfusion after resuscitation is characterized by
early hyperemia followed by hypoperfusion and, finally,

restoration of normal blood flow. Furthermore, the blood
flow is heterogeneous, with areas of no flow, low flow, and
increased flow at the level of the microcirculation [5].

2.1. Early Hyperemia (Vasoparalysis) (0–20min after ROSC).
Reduction of vascular tone due to tissue acidosis leads to
vasoparalysis [6], which does not respond to changes in blood
pressure or CO

2
[7]. Hypoxia-induced vasoparalysis has been

demonstrated in rats in the very early phase of cardiac arrest
[8] and is suggested to result from an imbalance between
vasodilatory and vasoconstrictive mediators in the cerebral
circulation, including nitric oxide (NO) [9] and adenosine
[10].There is no direct evidence for this phenomenon in vivo.
Hyperemia, in combination with brain swelling, can cause
increased intracranial pressure, which usually normalizes
before the hypoperfusion phase initiates [11]. Antioxidants
and polynitroxyl albumin represent therapies that may be of
value in the early hyperemia phase [12, 13].

2.2. Hypoperfusion Phase (20min–12 h after ROSC). The
hypoperfusion phase is due to an impairment of the meta-
bolic/hemodynamic coupling mechanisms, and its severity is
independent of the duration of ischaemia [14]. We confirmed
this lack of a relationship between ischaemia duration and the
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severity of hypoperfusion in comatose patients after cardiac
arrest (data not published) [15]. During the hypoperfusion
phase, the CBF decreases by approximately 50% [16, 17]. Sev-
eral factors are implicated to play a role, including endothelial
damage and an imbalance of local vasodilators (NO) and
vasoconstrictors such as endothelin [18]. In this phase,
impairment of the autoregulation may further decrease CBF
in the setting of low blood pressure. Viable therapies for this
hypoperfusion phase have been examined in animal models
and include 20-hydroxyeicosatetraenoic acid inhibition by
HET0016, nimodipine, and endothelin type A-antagonists
[19–23].

2.3. Restoration of Normal Blood Flow (12–72 h after ROSC).
Finally, CBF returns to normal, remains low, or increases
[24, 25]. In more recent literature, only a return to normal
or an increase in CBF is described [2, 26]. Bisschops et al.
described a low mean flow velocity in the middle cerebral
artery (MFVMCA) on admission, which remained relatively
stable during the first day and increased to normal levels at
48 hours [2].

The MFVMCA was shown to be similar in survivors
and nonsurvivors upon ICU admission [26]. However, in
survivors of cardiac arrest, the MFVMCA increases towards
normal values in the following 72 hours, whereas a much
more pronounced increase in MFVMCA, resulting in an
overshoot of CBF, was observed in nonsurvivors [26]. This
overshoot is most likely the result of a loss in vascular tone
resulting in a decrease in cerebrovascular resistance in these
nonsurvivors [26].

Low CBF after cardiac arrest may cause a mismatch
between cerebral oxygen demand and supply. A reduction in
cerebral metabolism after cardiac arrest has been described
in humans and animals [27–31]. In the first 48 hours after
cardiac arrest, cerebral oxygen extraction remains normal
with a lowCBF.This lowCBF is not associated with anaerobic
metabolism, determined by the jugular venous-to-arterial
CO

2
/arterial-to-jugular venous O

2
content difference ratio

[32]. The jugular venous CO
2
content significantly decreases

after cardiac arrest, suggestive of low CO
2
production due to

low cerebral metabolism [32].
In survivors, the MFVMCA is low immediately after car-

diac arrest, accompanied by low metabolism, with a gradual
restoration towards normal values accompanied by restora-
tion of metabolism. This gradual increase of metabolism in
survivors is consistent with recovery of neuronal activity.
These results imply that the cerebrovascular coupling is intact
in patients with a favourable neurological outcome.

In contrast, in nonsurvivors with cerebral hyperfusion,
the cerebral oxygen extraction is strongly reduced, suggesting
decoupling of cerebral flow and metabolism in nonsurvivors.
This ongoing low metabolism likely reflects irreversible neu-
ronal damage [32].

3. Cerebral Autoregulation following
Cardiac Arrest

3.1. Cerebral Autoregulation. Generally, it is assumed that
cerebral autoregulation maintains CBF at a constant level
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Figure 1: Cerebral autoregulation maintains cerebral blood flow
at a constant level when the mean arterial pressure is between
approximately 50 and 150mmHg (the plateau phase).
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Figure 2: More recent data support the opinion that cerebral
autoregulation does not maintain constant blood flow through a
broadMAP range of 50–150mmHg, but probably in a smaller range.
Cerebral autoregulation is more effective in the range above baseline
mean arterial pressure, compared to the range below.

when the mean arterial pressure (MAP) is between approxi-
mately 50 and 150mmHg (the plateau phase) (Figure 1). How-
ever, more recent data suggest that cerebral autoregulation
maintains constant blood flow in a smaller range [33, 34]
(Figure 2). Cerebral autoregulation is more effective in the
range above baseline MAP than below baseline MAP [35]
(Figure 2).

The upper and lower limits of cerebral autoregulation
are not fixed [36]. For example, chronic hypertension shifts
these limits up. This adaptation protects the brain against
high blood pressure but makes it also more vulnerable to
hypoperfusion during periods of hypotension.

Dynamic cerebral autoregulation is clinically more rel-
evant than static autoregulation, because it protects the
brain against rapid alterations in blood pressure. Various
methods and models are available for estimating dynamic
cerebral autoregulation, using both spontaneous and induced
fluctuations in blood pressure.
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3.2. Cerebral Autoregulation following Cardiac Arrest. Cere-
bral autoregulation after cardiac arrest has been investigated
in various studies. Initially, a linear relationship was demon-
strated between MAP and CBF [37], suggesting a completely
dysfunctional (static) cerebral autoregulation after cardiac
arrest. Static cerebral autoregulation curves were constructed
for patients after cardiac arrest by stepwise increasing MAP
with vasopressors and simultaneous determination of CBF
using TCD [38]. Of the 18 patients after cardiac arrest studied
by Sundgreen et al., static cerebral autoregulation was absent
in 8 and present in 10 patients. In five out of ten patients with
preserved cerebral autoregulation, the lower limit of autoreg-
ulation was shifted upwards (range 80–120mmHg) [38]. In
fact, autoregulation may remain intact, but with a narrowed
and upward shifted intact zone. This study demonstrated the
heterogeneous nature of cerebral autoregulation in cardiac
arrest patients.

Ameloot et al. showed that (dynamic) cerebrovascular
autoregulation, determined by the moving correlation coeffi-
cient betweenMAPand the ratio of oxygenated versus deoxy-
genated hemoglobin (COX), was not preserved in one-third
of postcardiac arrest patients [39]. Disturbed autoregulation
was associated with unfavourable outcome [39, 40]. A MAP
below the optimal autoregulatory range during the first 48
hours after cardiac arrest was associatedwithworse outcomes
compared to patients with higher blood pressures [41].

The relationship between brain tissue oxygen saturation
and MAP can also be used to determine the optimal MAP
in individual patients after cardiac arrest. The feasibility of
this technique to obtain real-time values for optimal MAP
was demonstrated in a small prospective cohort study [42].
The optimalMAP for patients after cardiac arrest in this study
was found to be 75mmHg. In a retrospective study, Ameloot
estimated the optimal MAP in patients after cardiac arrest to
be 85mmHg in patients with preserved autoregulation and
100mmHg in patients with disturbed autoregulation [39].

Taken together, these results emphasize the importance
of accurate blood pressure control in patients after cardiac
arrest. Larger prospective cohort studies are required to
establish the value of a tailored blood pressure targeted
therapy versus conventional blood pressure targets.

The CBF changes after cardiac arrest. The critical closing
pressure (CrCP) is a reliable method to quantify character-
istics of the cerebrovascular bed and is defined as the lower
limit of arterial blood pressure below which vessels collapse
and flow ceases [43, 44]. Immediately following cardiac
arrest, CrCPwas shown to be high, accompanied by increased
cerebrovascular resistance [26]. The CrCP decreased in the
first 48 hours after admission towards normal values [26].
The CrCP was significantly higher in patients who survived
compared to those who deceased [26]. Apparently, vasoactive
tone was lost in patients with unfavourable outcome, result-
ing in reduced cerebrovascular resistance and a subsequent-
increased CBF. In contrast, vasoactive tone and cerebral
blood flow velocities returned to normal values in patients
with favourable neurological outcome.

In addition, immediately following cardiac arrest, sponta-
neous variability ofMFVwas found to be low [15]. MFV vari-
ability increased to normal values in patients who survived,

whereas it further decreased in patients who did not survive
after cardiac arrest [15]. It is plausible that these changes
are the consequence of the associated severe brain damage,
resulting in impaired control of intrinsic myogenic vascular
function and autonomic dysregulation. These changes in
spontaneous fluctuations in MFV imply changes in dynamic
cerebral autoregulation after ROSC.

Bisschops et al. showed a preserved cerebrovascular
reactivity to fluctuations in PaCO

2
during mild therapeu-

tic hypothermia after cardiac arrest [2]. Previously, Yenari
et al. demonstrated a preserved cerebrovascular reactivity
to changes in PaCO

2
under normothermic conditions in

patients after ROSC [45]. This emphasizes the importance of
strict control of blood gas values during mechanical ventila-
tion in cardiac arrest patients, because secondary neuro-
logical damage as a result of cerebral ischaemia could be
prevented by avoiding iatrogenic hypocapnia.

4. Conclusion

CBF is low after cardiac arrest and returns towards normal
values in patients that ultimately survive. In patients with
severe postanoxic encephalopathy disturbed autoregulation,
loss of normal vascular tone, and increased CBF may con-
tribute to the development of secondary brain damage, ulti-
mately leading to fatal brain injury.

The changes in CBF after cardiac arrest may be regarded
merely as a feature of severe primary brain damage resulting
from ischaemia and reperfusion injury. Alternatively, they
may contribute to the development of secondary brain dam-
age. Whether modulation of the CBF after ROSC, for exam-
ple, by maintaining MAP at optimal autoregulation ranges,
impacts the outcome of these patients remains to be deter-
mined.

In addition, differences between CBF in the microcircu-
lation are poorly understood and deserve more attention.
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