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Metabolic profiling in combination with pathway-based analyses and com-

putational modelling are becoming increasingly important in clinical and

preclinical research. Modelling multi-factorial, progressive diseases requires

the integration of molecular data at the metabolome, proteome and tran-

scriptome levels. Also the dynamic interaction of organs and tissues needs

to be considered. The processes involved cover time scales that are several

orders of magnitude different. We report applications of a computational

approach to bridge the scales and different levels of biological detail. Analy-

sis of dynamic adaptations in parameter trajectories (ADAPTs) aims to

investigate phenotype transitions during disease development and after a

therapeutic intervention. ADAPT is based on a time-dependent evolution

of model parameters to describe the dynamics of metabolic adaptations.

The progression of metabolic adaptations is predicted by identifying necess-

ary dynamic changes in the model parameters to describe the transition

between experimental data obtained during different stages. To get a

better understanding of the concept, the ADAPT approach is illustrated in

a theoretical study. Its application in research on progressive changes in

lipoprotein metabolism is also discussed.
1. Introduction
In preclinical and clinical research, different stages of a disease can be phenotyped

by collecting information of the genome, proteome, microbiome, etc. Likewise, the

effect of therapeutic interventions can be analysed in longitudinal studies. The

data at each stage provide a snapshot of the phenotype [1]. To integrate and inter-

pret this multivariate data, systems biology approaches, such as pathway-based

analyses and computational modelling, are becoming increasingly important

[2,3]. Despite the progress in bioinformatics and computational systems biology,

novel computational approaches are necessary to exploit the full potential of the

information contained in the data.

Differential equation models can capture causal relationships in biomolecu-

lar reaction networks and describe system dynamics [4,5]. Many established

numerical methods are available to simulate and analyse such models. We

hypothesized that computational modelling using differential equations pro-

vides a suitable basis for the development of an approach to link phenotype

snapshots as a function of time, hereby providing an integrated understanding

of disease progression. In our approach, several challenges are faced. First,

understanding and modelling disease progression such as in cancer and type

2 diabetes needs to consider the multiple factors involved. On the one hand,

molecular data at the metabolome, proteome and transcriptome levels should

be integrated (the field of molecular systems biology). On the other hand, the

dynamic interactions of organs and tissues should be considered (physiology).

Secondly, dynamic computational models in biology are typically constructed
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Figure 1. The ADAPT approach is founded at the metabolic level. The top-
ology of metabolic networks is mostly known. The metabolic interaction
network is shown as a directed graph. Also the kinetics of many of the inter-
actions (enzymatic reactions) in metabolic pathways have been studied. The
interaction networks of genes and proteins are less well known. However, an
intervention at one level will result in changes in the other levels as well (the
vertical arrows). ADAPT does not model changes in gene expression and
protein activity mechanistically, but these interactions are incorporated by
introducing time-varying parameters in the description of the metabolic
network. (Online version in colour.)
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to simulate processes at a single time scale, usually capturing

short-term dynamics ranging from seconds to hours [4,6,7].

However, diseases typically develop and progress over a

period of years, and also therapeutic interventions take con-

siderable time to become effective. The time scales of the

molecular mechanisms governing cell behaviour versus the

gradual and adaptive (patho)physiological changes induced

by a progressive disease differ many orders of magnitude.

The presence of these largely different time scales imposes

serious challenges for the well-established modelling

approaches. Thirdly, a major challenge in computational sys-

tems biology is to obtain values for parameters such that the

model adequately represents the in vivo system. Quantitative

biological data needed as input for model development are

still relatively sparse, despite many innovations in measure-

ment technologies. Because of the uncertainties associated

with the data and the complexity of the system at hand, in

general, multiple acceptable parameter values are obtained.

Here acceptable means that the parameter values yield a

model that is in agreement with the experimental data. It is

important to analyse how uncertainties in experimental

data propagate through parameter values and model predic-

tions. The last two topics have triggered important new

developments in parameter estimation and computational

statistics [8,9].

We have developed a computational approach which con-

tributes to a solution for the challenges describe earlier. The

approach, called Analysis of Dynamic Adaptations in Par-

ameter Trajectories (ADAPTs), aims to model and analyse

phenotype transitions during disease progression and after a

therapeutic intervention [10]. With ADAPT, models are devel-

oped that can describe long-term adaptations in a biological

system involving the interactions between metabolome, pro-

teome and transcriptome, despite the lack of mechanistic

details regarding the regulation of metabolic processes by

changes in gene and protein expression. In addition to the

long-term adaptations, the same model can also simulate

short-term dynamics (e.g. on a time scale of seconds) induced

by variations in metabolite concentrations and fluxes. The

finite accuracy of experimental data and the typical experimen-

tal restriction that only a subset of the model variables can be

measured are sources for uncertainty. Errors and simplifications

in the model are an important second type of uncertainty that is

analysed in ADAPT. The latter, referred to as ‘undermodelling’

[11], represents primarily the missing information regarding the

regulation by the transcriptome and proteome.

The ADAPT approach is outlined in §2. Subsequently, the

mathematical framework and computational methods are

described. To get a better understanding of ADAPT, it was

applied in a theoretical study. After the results for the case

study are presented, the application in a study of progressive

changes in lipoprotein metabolism is discussed. An abnormal

amount of lipids (e.g. cholesterol and/or fat) in blood and

changes in lipoprotein composition (dyslipidemia) is an

important hallmark of metabolic syndrome and recognized

as a risk factor for type 2 diabetes [12].
2. Approach
The foundation of the ADAPT approach is a mathematical

model of the metabolic networks in cells, between cells in

different tissues and in the blood plasma connecting the
tissues (figure 1). ADAPT integrates the large body of work

on the biochemistry of metabolic pathways with metabolomic

data. The metabolic network is described with a high level of

structural complexity. The network topology is available for

different organisms in several pathway/genome databases,

such as listed in Pathguide (http://www.pathguide.org). The

model includes biochemical kinetics and can describe metab-

olite concentrations and fluxes. The model is parametrized

with kinetic information from literature and databases,

where metabolite profiling data are used to estimate unknown

or uncertain model parameters. Transitions between metabolic

phenotypes during disease progression also involve changes

in the transcriptome and proteome. Likewise, interventions

at one level (e.g. adding a protein kinase inhibitor drug) will

result in changes in the other levels as well (figure 1). How-

ever, the interaction networks of genes and proteins are less

well known, and kinetic information is generally lacking. At

this moment, it is not yet feasible to include a mechanistic

description of this level of regulation in the model. ADAPT

uses an innovative approach to overcome this problem.

By collecting data from different stages of disease pro-

gression, different realizations of the model are obtained. If it

is assumed that the structure of the metabolic network is

invariant, then the different clinical phenotype snapshots

translate into different sets of parameter values, each character-

izing a specific disease stage. In case of a progressive disease,

we can also assume that the phenotype snapshots are tempor-

arily related, and therefore also the corresponding models

should have such a relation. Given the invariant structure of

the metabolic network, this relation is captured by the differ-

ence in the values of the kinetic parameters of the different

models. We therefore postulated that the adaptations in the

metabolic network, as a result of a progressing disease or inter-

vention, can be described with parameters that vary as

function of time. The time-varying parameters can be

http://www.pathguide.org
http://www.pathguide.org


progressive disease/
treatment intervention

phenotype data at different
stages

a priori information

metabolic network topology
and reaction kinetics

Monte Carlo sampling of
data interpolants

differential equation model
with time-dependent parameters

rsfs.royalsocietypublishing.org

3
represented as trajectories in the mathematical space spanned

by the parameter vectors. Using the constraints imposed by

the network structure (mass balances and conservation of

mass), kinetic rate equations and the metabolomics snapshot

data per phenotype we can infer trajectories of the model par-

ameters which link the different phenotypes into a model of

disease progression. We hypothesize that the parameter trajec-

tories have a biological interpretation and reflect changes in

the proteome and transcriptome that modulate metabolic

concentrations and fluxes. The computational methods to

implement ADAPT are described in detail in §3.
estimation of parameter and flux trajectories

analysis

Figure 2. Outline of the Analysis of Dynamic Adaptations in Parameter
Trajectories (ADAPT) approach.
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3. Material and methods
An overview of the ADAPT approach is shown in figure 2.

Details about the mathematics and numerical methods have

been described in Tiemann et al. [10,13] and are repeated here

in short for clarity and consistency.

3.1. Differential equation models
We start from the common approach to describe the dynamics of

a biological system by a following set of (non)linear ordinary

differential equations (ODEs):

_xðt; uÞ ¼ Nf ðx; u; uðtÞÞ;
yðt; uÞ ¼ gðx;u; uðtÞÞ

and xðt0; uÞ ¼ x0;

9=
; ð3:1Þ

where _x is a vector of first derivatives of molecular species x

which are given by the topology of the network (matrix N)

and a set of functions f. The initial concentrations of x are

given by x0. The vector y represents the model outputs, which

are described by a set of functions g. Both functions f and g
depend on kinetic parameters u and time-dependent inputs u(t).

3.2. Time-dependent descriptions of model parameters
Dynamic models according to equation (3.1) have been well estab-

lished in modelling metabolic networks, although equation (3.1),

in principle, can describe any biomolecular reaction network.

The topology of metabolic networks is much better known than

for gene and protein networks. For many metabolic pathways

also kinetic information is available, which is generally lacking

at the transcriptome and proteome levels. In ADAPT, the modu-

lating effects on the metabolic pathways via interactions with

the proteome and transcriptome levels are captured with more

crude approximations by time-dependent descriptions of the par-

ameters. The mathematical formulation in equation (3.1) is

extended by introducing a time-dependency of the parameters u:

_xðt; uðtÞÞ ¼ Nf ðx;uðtÞ;uðtÞÞ;
yðt;uðtÞÞ ¼ gðx; uðtÞ; xðtÞÞ

and xðt0;uðtÞÞ ¼ x0:

9=
; ð3:2Þ

Note that it is not known a priori how the model parameters

change during progression of the disease. Consequently, it is not

possible to perform a dynamic simulation of the entire time span

in one go. Latter issue is addressed by simulating the system in a

step-wise manner. Each step a simulation is performed from

current time t to time tþ dt, using the values of x(t) as initial

conditions. Simultaneously, parameters u(tþ dt) are estimated

each step, using u(t) as initial set, by minimizing the difference

between experimental data and corresponding model outputs

y(tþ dt). It is assumed that the induced adaptations proceed pro-

gressively in time. Highly fluctuating parameter trajectories are

considered to be unphysiological. To prevent the occurrence of

such behaviour, a regularization term, given by the sum of

squared derivatives of the normalized parameter values at
current time t, is included in the parameter estimation procedure.

An optimized parameter set, denoted by û(t), is defined as

û ðtÞ ¼ arg min
uðtÞ

ðXdðuðtÞÞ þ lrXrðuðtÞÞÞ; ð3:3Þ

where lr is a constant determining the strength of the regulariz-

ation term. A minimal value for lr is chosen to bias the data

fitting as little as possible [10]. The objective functions Xd and

Xr are given by

XdðuðtÞÞ ¼
XN

i¼1

yiðt;uðtÞÞ � diðtÞ
siðtÞ

� �2

ð3:4Þ

and

XrðuðtÞÞ ¼
XM
i¼1

duiðtÞ
dt

1

uiðtÞ

� �2

; ð3:5Þ

where Xd is the sum of squared errors (SSEs), N the number of

measurements, M the number of parameters, d the experimental

data and s the corresponding standard deviations.

3.3. Experimental data and bootstrap sampling of
interpolants

To enable the estimation of dynamic trajectories of metabolic par-

ameters and fluxes according to equation (3.3), continuous

dynamic descriptions of the experimental data are required as

input for the computational method. For this purpose, cubic

smoothing splines were calculated that describe the dynamic

trend of the experimental data d [14]. To account for experimen-

tal and biological uncertainties, a bootstrapping approach was

used. In bootstrapping, replicates of the observed data are

sampled, and the estimation is repeated for each of these samples

[15–20]. Bootstrap samples of the data were obtained from a

parametric error model distribution, assuming Gaussian distri-

butions with means and standard deviations of the data. For

each generated sample, a cubic smoothing spline was calculated,

resulting in a distribution of data interpolants.

3.4. Numerical algorithms
The mathematical model and parameter estimation routines were

implemented in Matlab (2011b, The MathWorks, Natick, MA,

USA). Software has been developed to reduce the computation

time for the simulation of ODE models in Matlab (CVode Wrap-

per, http://bmi.bmt.tue.nl/sysbio/software/pua.html, [8]). The

CVode Wrapper package for Matlab includes a parser to convert

a Matlab m-file containing the ODEs to a C-file, and compile the

C-source file and the numerical integrators from the SUNDIALS

http://bmi.bmt.tue.nl/sysbio/software/pua.html
http://bmi.bmt.tue.nl/sysbio/software/pua.html
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CVode package (2.6.0, Lawrence Livermore National Laboratory,

Livermore, CA, USA [21]) into a MEX file that can be run in

Matlab. The ODEs were solved with an absolute and relative

tolerance of 1026. The Matlab nonlinear least-squares solver

LSQNONLIN, which uses an interior reflective Newton

method [22], was used to estimate model parameters. Both the

termination tolerances for the objective function and the par-

ameter estimates were set to 1026. The Matlab function CSAPS

was used to calculate the cubic smoothing splines.
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4. Case study
4.1. Rationale
To get a better understanding of the approach, to test the

computational algorithms and to identify possibilities for

further improvements, ADAPT was applied in a theoretical

study using a ‘toy model’. A model was used as the system

under study. In three cases, different parameter inference pro-

blems have been studied. Starting with a ‘classical’ problem

of estimating a parameter in a kinetic model and finally

applying ADAPT. With ADAPT, a model was developed

that is able to describe long-term dynamic changes in

response to an intervention as well as the short-term

dynamics at any time during the progressive adaptation.

This includes stages in between the experimentally observed

phenotypes. This theoretical study allowed comparison of the

ADAPT results with results of the true system.

A small system composed of a metabolic network regulated

by transcriptional feedback was studied. To incorporate adap-

tations in the system that operate at time scales much larger

than the dynamics of metabolic reactions (seconds) and gene

expression (hours), the transcription and translation rates

were changed in a step-wise manner (see table 5 in appendix

B) to create five different phenotypes and five corresponding

datasets. However, in the analyses, this change in the system

was treated as an unknown external intervention, progressively

changing the transcriptome level. In all cases, the same

experimental data were used.

4.1.1. Case 1
First, it was analysed whether changes in the transcriptional

feedback could be identified at different stages of the inter-

vention. It was assumed that only metabolite concentrations

could be measured, and a classical parameter estimation

approach was used to investigate whether parameters of

the gene circuit could be (re)estimated. The parameters

of the metabolic network were kept fixed (known).

4.1.2. Case 2
Secondly, we considered the situation in which we lacked any

information about the transcriptional feedback mechanism,

but only knew which pathway in the metabolic network

was affected by the intervention. The model in this case

was significantly simpler than the true system (undermodel-

ling). To incorporate the effect of the intervention, we

hypothesized that at the metabolic level this effect can be

reproduced by changing (kinetic) parameters in the metabolic

network. In this case, these metabolic parameters lump

enzyme kinetics and possible regulation through changes in

transcription, translation and post-translational modifica-

tion. For each of the five datasets, separate parameter values

were inferred.
4.1.3. Case 3
In case 2, the different phenotype snapshots were translated

into different distributions of parameter values. However,

the parameter values (and hence also the resulting models)

were disjoint from each other. In addition to the prior knowl-

edge that the structure of the metabolic network is the same

for all stages after the intervention, we could also assume that

the phenotype snapshots are temporarily related, and there-

fore also the corresponding models should have such a

relation. However, this information cannot be used in the

modelling approach applied in case 2. In case 3, ADAPT

was applied to link the different phenotypes in a consistent

way and obtain a model able to describe all metabolic data

at all stages using time-varying parameters.

4.2. System and models
4.2.1. System
The metabolic network consists of a conserved moiety cycle

and a branch (figure 3). S1–S4 are intracellular metabolites

and u1 and u2 are input fluxes. The metabolic network is

regulated through a negative feedback gene circuit. An

increase in downstream metabolite S4 results in the inhibition

of an upstream metabolic pathway. The activity of enzymes

in metabolic pathways can be inhibited by, for example,

covalent modification (phosphorylation). This mechanism

resembles catabolite repression in micro-organisms [23,24].

An external intervention has been applied affecting the tran-

scriptome and/or proteome level of the system. Typical

perturbations can be a pharmacological intervention, or a

gene knockdown with siRNA. Reactions 6 and 7 in figure 3

represent transcription and translation, and enzyme

inhibition, respectively. R1 is the mRNA of the regulator.

The system is described according to

_x1;...;4ðt; uÞ ¼ Nf1;...;5ðx;u;uÞ;
_x5ðt; uÞ ¼ f6ðx;uÞ

and yðt;uÞ ¼ Cxðt; u; uÞ;

9=
; ð4:1Þ

where the state variables are x ¼ [S1,S2,S3,S4,R1]T, input fluxes

u ¼ [u1,u2,]T and N is the stoichiometric matrix of the

metabolic network

N ¼

1 0 �1 �1 0
�1 1 0 0 0

1 �1 0 0 0
0 0 0 1 �1

2
664

3
775: ð4:2Þ

The rate equations f describe the kinetics

f1ðt; uÞ ¼
Vmax

Ki þ R1
u1S2;

f2ðt;uÞ ¼ k2u2S3;
f3ðt;uÞ ¼ k3S1;
f4ðt;uÞ ¼ k4S1;
f5ðt;uÞ ¼ k5S4

and f6ðt;uÞ ¼ k6S4 � kdR1;

9>>>>>>>>=
>>>>>>>>;

ð4:3Þ

with parameter vector u ¼ [Vmax, Ki,k2,k3,k4,k5,k6,kd]. Mass

action kinetics was used except for f1, which describes

enzyme inhibition, with Ki the binding affinity of the

inhibitor.

The observation matrix C,

C ¼ diagð½ 1 1 1 1 0�Þ ; ð4:4Þ

indicates that the metabolites are observable outputs of the

system, but the mRNA of the regulator R1 is not. Values for
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Figure 3. As case study a metabolic system with metabolite controlled, negative transcriptional feedback was used. (a) A schematic representation of the system.
The metabolic network is regulated through a negative feedback gene circuit. An external intervention is applied affecting the transcriptome and/or proteome level
of the system. The square boxes and solid lines represent biochemical reactions, S1 – S4 are intracellular metabolites and u1 and u2 are input fluxes. Reactions 6 and 7
marked with circles represent transcription and translation, and inhibition, respectively. R1 is the mRNA of the regulator. (b) Metabolic phenotyping at five different
stages (1, . . . ,5) of the system that progressively adapts to the intervention (the long-term dynamics). The intervention directly affects the transcriptome – proteome
levels, which results in an adaption of the metabolic network, as is clear from the differences in the steady-state metabolite concentrations. The error bars indicate
the standard deviation of the data.
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parameters, input fluxes and initial conditions x0 are

provided in appendix A.

4.2.2. Data
The system was studied at five different stages during its pro-

gressive adaptation to the external intervention. The stages

have been indicated as 1, . . . ,5, in which 1 represents the basal,

reference phenotype. It was assumed that during each examin-

ation the system in equation (4.1) was in steady-state ( _x ¼ 0).

The metabolic profile was taken as the steady-state values of

the outputs yss (the phenotype snapshot). To generate the

‘mock’ experimental data noise was added

di ¼ yi
ss þ ji; i ¼ 1; . . . ; 5; ð4:5Þ

where i refers to the observations of the different stages and ji a

noise sequence with a zero mean Gaussian distribution and a

standard deviation si. si was chosen between 0 and 20 per

cent of the output for the reference phenotype (y1
ss), randomly

generated from a uniform distribution. The data used here are

shown in figure 3b.

To translate this data model to a clinical situation, one

could think of a patient of whom the reference condition is

determined at day 1. Next, a therapeutic intervention is

applied and the effects are observed by measuring the

patient’s metabolic profile once per day for four subsequent

days. All observations are done under fasting conditions,

i.e. at a physiological steady-state.

4.2.3. Case 1
The model was described according to equations (4.1)–(4.3);

however, parameter k6, the rate constant representing tran-

scription and translation, was affected by the intervention

and unknown. A least-squares method (minimizing a

weighted SSEs between model and data according to

equation (3.3) with lr ¼ 0) was used to estimate a value for

k6 for each metabolic phenotype, resulting in four estimates

for k̂i
6 (i ¼ 2, . . . ,5). The value for k6 in the reference condition

was known and used as the initial value (guess) to start the

numerical optimization algorithm to estimate the value for
the other datasets. The only uncertainty that needed to be

considered was due to the noise in the experimental data.

4.2.4. Case 2
The transcriptional regulation of reaction 1 in the scheme of

figure 3a was considered unknown, but it was assumed to

be known that the intervention had changed the flux through

reaction 1. The analysed model consisted of the metabolic

network only (no information about the transcription/

translation process was incorporated):

_xðt; u0Þ ¼ Nf 0ðx; u0Þ
and yðt; u0Þ ¼ Ixðt; u0Þ;

�
ð4:6Þ

where f0 ¼ f1,. . . ,5 in equation (4.3), but with f1 according to

equation (4.7). I is the identity matrix, indicating that all state

variables (metabolite concentrations) are outputs of the model.

f 01 ¼ k1u1S2: ð4:7Þ

The parameter vector is u0 ¼ [k1,k2,k3,k4,k5]. The intro-

duced parameter k1 is a lumped parameter used to capture

and approximate the combined processes of f1 and f6 in the

true system (equation (4.3)). This parameter was estimated

for each phenotype independently. In contrast to case 1,

here two sources of uncertainty were present in the inference

problem. There was the noise in the data, but the model was

also a simplified description of reality (undermodelling).

A Monte Carlo type of approach was used to estimate k1,

with bootstrapping from a parametric error model for the

data, resulting in a distribution of estimated values for each

phenotype. The data distributions were sampled and the

least-squares algorithm was run 1000 times.

4.2.5. Case 3
Here the power of the ADAPT approach has been exploited

to integrate the data of the different phenotypes in a

single model. The metabolic model is described with

time-dependent parameters

_xðt; u0ðtÞÞ ¼ Nf 0ðx;u0ðtÞ; uðtÞÞ
and yðt;u0ðtÞÞ ¼ Ixðu0ðtÞ;uðtÞÞ:

�
ð4:8Þ



Table 1. Settings for the ADAPT algorithm.

parameter description value

lr Lagrange multiplier weighting the

regularization of parameter

changes versus datafit

0.1

dt time interval for the step-wise

integration and data

interpolants

0.1

lr lower bound for the range of

which initial values for the

parameters are sampled

0.1

ur upper bound for the range of

which initial values for the

parameters are sampled

10

nr number of repeats/samples of the

parameter trajectories

1000

sseThres threshold for SSE to accept or

reject parameter values

1000
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Again it was assumed to be known that the intervention

had affected reaction 1, and it was analysed whether the

different phenotypes could be linked by introducing a time-

dependent k1(t). For k1(t), a parameter trajectory was inferred

from the joint experimental data. The other parameters were

assumed to be fixed, hence u0(t) ¼ [k1(t),k2,k3,k4,k5].

An ensemble of parameter trajectories was inferred by

repeating the ADAPT algorithm 1000 times. For each run, a

new spline interpolant was fitted through a bootstrap

sample of the data to get a continuous function for the

data. Each time, a different sample was drawn from the dis-

tributions of the experimental data. Because of the

complexity of the optimization problem, there was a fair

chance that some runs of the parameter trajectory analysis

got stuck in some local optimum in parameter space for

which the corresponding model cannot describe the data

accurately. This is reflected by a large SSE value (Xd in

equation (3.3)). If a run did not yield an SSE below a certain

threshold, this result was discarded. To initiate, the trajectory

an initial value was randomly chosen from a log-uniform dis-

tribution between 0.1 and 10, and the parameter was

optimized to describe the data of stage 1 (the reference phe-

notype). The settings used for the ADAPT algorithms can

be found in table 1.
5. Results
5.1. Model including transcriptional feedback
As a first case, it was investigated whether a parameter describ-

ing transcription and translation could be accurately estimated

from steady-state metabolite concentration data. For reference

phenotype 1, the rate constant k1
6 for transcription and translation

was known (equal to 0.01, table 2 in appendix A). Values for k6 in

the four other phenotypes were estimated from the metabolic

data for each stage by a least-squares approach. The results in

figure 4 identified a progressive decrease in k6. The variance in

the estimates k̂6; approximated from the inverse of the Fisher

Information Matrix [25], was small (results not shown).

Moreover, the estimates were also accurate, being close to the

true values of k6 with which the data were generated (listed in

table 5 in appendix A). The five resulting models, only different

in the value for k6, could each describe the corresponding data

accurately (figure 4b). The difference between model and data

and the (minor) uncertainty in parameter values was due to

noise (variance) in the experimental data.

Although the models have been parametrized by fitting

the steady state to the phenotype data, the resulting models

are dynamic. The models can predict responses to variations

in concentrations or fluxes, such as a pulse in one of the input

fluxes. A small pulse (short duration and low amplitude)

results in temporally different metabolite concentrations

and fluxes. The feedback via gene regulation is not activated

and the original steady-state is rapidly recovered (within

seconds). Figure 4c shows the short-term dynamics of the

original metabolic system (stage 1) in response to a pulse

in u1 (at t ¼ 5 s). The system recovered steady-state within

10 s and the transcriptional feedback was not activated

(R1 remained constant, not shown). The different operational

setpoints of the system at the five stages (different steady-

states) were also reflected in differences in the short-term

dynamic responses to a pulse in u1. For comparison, the

response of the model at stage 5 is shown (figure 4d ). Note
that the kinetic parameters of the metabolic network were

the same for all five stages.

5.2. Independent parametrization for each phenotype
For case 2, the progressive adaptation in metabolism was cap-

tured in the lumped parameter k1. This parameter was

estimated for the five different phenotypes using a Monte

Carlo approach. The resulting distributions for k1 are shown

in figure 5. The identified decrease in k6 for case 1 means

the inhibition of the first reaction in the metabolic network

is elevated resulting in a larger flux. In case 2, it is shown

that the phenomenological parameter k1 can reproduce the

same behaviour in the metabolic network. In addition to

the gradual increase in the average value of k1, there is a

difference in the precision (variance) of the estimated

values. Especially in stage 4, the variance is much smaller

than for the other data. This can partly be explained from

the low variance in the data of stage 4 (figure 3).

In case 2, the observations and the five resulting models

are treated independently. To illustrate the difference with

ADAPT (case 3), the model was simulated with the mean

value of the ensemble of parameter k1 for the different

stages (figure 6). Since the model is parametrized for

steady-state data at the different stages (the black dots), and

further information on the dynamic behaviour in between

these observations is lacking, five separate steady-state simu-

lations have been performed.

5.3. Analysis of dynamic adaptations in parameter
trajectories

Figure 7 shows a subset of the spline interpolants fitted

through the data. The splines provide a description of the

data such that Xd in equation (3.4) can be calculated for each

time interval dt of the step-wise simulation with the time-

varying parameters. The complete distributions are shown as
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two-dimensional histograms. A darker colour represents

a higher density of the splines in that specific region and

time point.

The ADAPT results, including the parameter trajectory

for k1(t) and corresponding five fluxes in the metabolic

network, are shown in figure 8. The ADAPT results were

consistent with the observations in cases 1 and 2. The size

of fluctuations in the parameter trajectory is controlled by

setting (tuning) lr.

These results show that (i) the approach can infer accurate

information about the molecular adaptations in the metabolic

network, without having explicit information available about
changes in gene expression and protein activity, (ii) it pro-

vides a model that can link different metabolic phenotypes,

and (iii) provides an analysis of the uncertainty in model par-

ameters and model results (the accuracy of the data

description as well as predictions of unobserved quantities).
5.4. Application: variations in lipoprotein metabolism
To show the relevance of the ADAPT approach for real-life

applications, we discuss its recent application in a biomedical

study investigating changes in hepatic lipid and plasma lipo-

protein metabolism [10]. Understanding the metabolism of
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apoB containing very low-density lipoprotein (VLDL) and

apoA containing high-density lipoprotein (HDL) particles is

of high importance, as these are risk factors for metabolic syn-

drome and associated cardiovascular diseases [26,27]. In this

study, changes in lipoprotein metabolism were induced by

activating liver X receptor (LXR) in mice during a period of

several days [12]. The LXR family (LXRa and LXRb) are

nuclear receptors and plays a central role in the control of

cellular lipid and sterol metabolism. We were able to quantitat-

ively integrate data of control mice as well as mice with

activated LXR into a computational model (figure 9a). The

model has three compartments representing the liver, blood

plasma and peripheral tissues. The liver compartment includes

reactions representing the production, utilization and storage

of triglycerides and cholesterols, and the mobilization of
these metabolites to the endoplasmic reticulum (ER), where

they are incorporated into nascent produced VLDL particles.

The VLDL particles are secreted in the plasma compartment

where they serve as nutrients for peripheral tissues. Remnant

particles are taken up and cleared by the liver. The model

also includes the hepatic uptake of free fatty acids and reverse

cholesterol transport via HDL. The model consists of eight

ODEs and 24 fluxes. All metabolic reactions are described

with mass actions kinetics and the model contains 24 par-

ameters. Activation of LXR is known to affect most processes

included in the model. However, many details on how LXR

regulates these metabolic processes are unknown or unclear.

With the current knowledge, it is impossible to mechanistically

describe how changes in LXR result in changes in transcription

and translation of the target genes and protein expression

(including many post-translational modifications). ADAPT

was successfully applied to infer and analyse the changes in

the metabolic network during a 4-day intervention in which

LXR was activated by an agonist.

As can be seen in figure 9b, several trajectories were very

constrained, whereas others showed a large variability.

Uncertainty in the model is associated with a wide distri-

bution of acceptable values for some parameters and in

some cases with multimodality. These distributions are

different for the wild-type and LXR-activated phenotypes.

With a modelling and parametrization approach such as

applied in case 2 in the theoretical study differences in the

distributions of the parameter estimates for the two datasets

can be analysed. With ADAPT, it can also be traced how

these parameter distributions are related and dynamically

adapt during the phenotype transition. Moreover, there

were also situations in which the data of the LXR-activated

phenotype could not be successfully described by direct fit-

ting of the data (i.e. without using ADAPT, appendix B). In

appendix B, more information can be found on how the

parameters of the ADAPT algorithm were chosen.

This study also showed that in addition to analysing pro-

gressive changes in metabolic concentrations and fluxes, the

ADAPT approach can be useful for pharmaceutical research

to study and identify the mode of action of (new)
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pharmaceutical compounds at the system level. To activate

LXR, the mice were treated with LXR agonist T0901317,

which has been considered as an interesting compound for

new medication to halt the development of atherosclerosis.

Using ADAPT, it was understood how on one hand

LXR activation increases cholesterol efflux (whole-body

uptake of cholesteryl ester, CE, figure 9b(v)), the anti-

atherosclerotic mode of action, but simultaneously results in

accumulation of fatty acids in the liver (hepatic triglycerides,

TG, figure 9b(iv)). Hepatic steatosis is a serious side-effect

which has hampered clinical testing of the compound.

Hence, a potential application of the ADAPT approach is the

prediction and analysis of the effectiveness of pharmacological

interventions to treat progressive diseases.
6. Discussion
We presented applications of a recently developed, generic

computational workflow employing mathematical modelling

to predict the long-term metabolic adaptations in the develop-

ment and progression of multi-factorial diseases, or after a

therapeutic intervention. In these conditions, the metabolic

parameters and fluxes can generally not be considered con-

stant in time. ADAPT identifies which metabolic parameters

and consequently fluxes necessarily have to change to describe

the dynamics of the experimental data collected at different

stages of a disease or treatment intervention. Here the

ADAPT approach was tested in a theoretical study. Our

approach was shown to be particularly useful to study biologi-

cal systems from which the network topology is relatively well

known, e.g. for metabolic pathways. The modulating effects on

these pathways via interactions with the proteome and tran-

scriptome, which are less well understood, could be

captured by the time-dependent descriptions of the par-

ameters. The concept of time-dependent model parameters

was discussed as a way to describe the dynamics of molecular

adaptations consistent with the available metabolic data. The

case study concerned a relatively simple example, but there-

fore the results could be easily analysed. Its main purpose

was to explain the concept behind ADAPT and provide insight

in the approach. The relevance of ADAPT for real-life
problems in which a disease or intervention affects many

metabolic processes simultaneously was demonstrated by the

analysis of progressive changes in lipoprotein metabolism

induced upon pharmacological treatment of mice by LXR

agonist T0901317.

6.1. Comparison and relation with other modelling
approaches

ADAPT is based on ODEs, a common modelling approach in

systems biology. Many of the well-established methods for

simulation, analysis and parametrization of ODE models can

be used with ADAPT. Modelling in molecular systems biology

typically focuses on molecular pathways and mechanisms at

the sub-cellular level (‘bottom-up’). These models are con-

structed to describe processes at a single time scale, usually

capturing short-term dynamics ranging from seconds to hours

[4,6,7]. This is, in general, also the case for ‘top-down’

approaches for modelling of biological systems. For example,

compartment modelling to describe whole-body glucose

homeostasis in diabetes research [7,28], and pharmacokinetic–

pharmacodynamic modelling of the distribution, metabolism

and biological effects of drugs used in pharmacology. In these

models, the physiology is described in an empirical fashion,

and body compartments and biological processes are treated

with highly lumped approximations. To simulate the model

and make predictions, parameter values are typically estimated

from experimental data. In these kinetic models, inferred par-

ameters and model results are constrained by the network

topology, kinetic equations of the molecular processes and

experimental data. Another important class of models applied

in systems biology are constrained-based modelling approaches,

e.g. genome-scale metabolic models (GSMM). By applying

methods such as flux balance analysis (FBA), these models

describe steady-state flux distributions under different physio-

logical conditions or in different tissues [2]. Constrained-based

modelling primarily exploits the constraints imposed by the

structure of the metabolic network, without information about

the kinetics and dynamics.

An extension of FBA with attempts to describe dynamic

changes in metabolic network is dynamic flux balance analy-

sis (dFBA, [29,30]). dFBA describes time-varying fluxes, but
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does not include kinetic equations. Another approach in

which constant quantities in a simpler modelling approach

are made time-varying to describe more complicated systems

is linear parameter-varying (LPV) models. LPV is a class of

systems studied in systems and control theory [31,32], and

primarily used to design nonlinear controllers. To our knowl-

edge, LPV models have not been applied in modelling of

biomolecular networks.

The dynamic trajectories of model parameters as well as

concentrations and fluxes obtained by ADAPT are con-

strained by the network topology, kinetic equations of the

molecular processes and data. As such, our method exploits

and integrates the merits from constrained-based modelling

approaches to describe steady-state conditions and kinetic

modelling for system dynamics. Similar to GSMM, ADAPT

focuses on a level of biological systems of which we, in general,

have particular good insights, metabolism, and combines

aspects from different approaches. Hence, it could be referred

to as a ‘middle-out’ approach.
6.2. Advantages of ADAPT
Several of the merits of ADAPT are discussed here.

— In case of multi-factorial, progressive diseases, but also for

fundamental biological processes, such as development

and adaptation, the dynamic interaction between different

biological levels (transcriptome, proteome, metabolome)

needs to be considered and understood. With ADAPT,

adaptations in the metabolic network can be described

without the necessity to develop detailed kinetic models

of the modulating mechanisms (e.g. changes in gene

expression, modified protein activity through changes in

phosphorylation). The parameter trajectories provide

coarse-grained approximations of these levels of regu-

lation. However, with currently available information on

gene and protein interaction networks attempts to include

a mechanistic description of these interactions and how

they regulate metabolism will also result in models that

can only be crude approximations.

— ADAPT provides an approach to develop and analyse

models of processes involving time-scales that are

orders of magnitude different. In preclinical and clinical

research, data are typically collected after an overnight

fast. The aim is to study the metabolic system in a

(pseudo) steady-state condition that is reproducible on

a day-to-day basis. The models can describe short-term

dynamics (in the order of seconds) of a metabolic network

in response to a metabolic variation, for example, a

small, rapid change in blood plasma glucose. The same

model can also describe the long-term adaptations

induced by a progressing disease or intervention. An

important benefit of ADAPT is that it enables analysis

of changes in metabolic control, including the prediction

of the short-term dynamics, at any time during the pro-

gressive adaptation. This includes stages in between the

experimentally observed phenotypes.

— Because of the uncertainties associated with the data and

the complexity of the system at hand, in many systems

biology models multiple parameter sets can be inferred that

adequately describe the data. In case of ADAPT, in general

multiple acceptable parameter transition trajectories are

obtained. Analysing how uncertainties in experimental data
propagate through parameter values and model predictions

is an increasingly important topic in systems biology [8,9].

Undermodelling can be an important source of errors in the

model and results in a bias in parameters values. An impor-

tant merit of the ADAPT framework is that it accommodates

different types of uncertainties associated with modelling of

biological systems. In the design and development of the

approach, both the uncertainty arising from natural, unpre-

dictable variation in the (observations of the) system under

study, as well as uncertainty due to the lack of knowledge

about the system have been considered.

To account for uncertainties a bootstrapping approach was

used. Replicates of the observed data were sampled from a

parametric error model distribution, and the estimation was

repeated for each of these samples. Moreover, the optimiz-

ation procedures were repeated for a dispersed range of

initial parameter values (Monte Carlo multiple minimiz-

ation), which enables to probe the parameter space for the

existence of multiple minima [8]. Alternatively, a Bayesian

approach could have been used to infer the probability

density of parameter values and model results [8,9]. The

resulting variations in parameter trajectories, fluxes and con-

centrations are also dependent on the regularization included

in the objective function. Via a Pareto analysis (appendix B) a

trade-off can be made between accuracy of the data fit versus

some a priori knowledge, assumption or hypothesis. Here, it

was assumed that progressive adaptations in metabolic

networks correspond to smooth parameter trajectories. How-

ever, this is not a requirement of our approach. Other prior

knowledge can be incorporated through regularization as

well. For example, if gene expression data are available, one

could select for parameter trajectories that correlate with

changes in gene expression.

— Another advantage of ADAPT is that it is not necessary to

have the same type of data (the same measurements)

available for all time points (phenotypes). Missing data

are a common situation in many datasets. This might

make parametrization impossible in case of independent

parameter estimation for each phenotype. Because of

the data interpolation, it does not cause a fundamental

problem for ADAPT.

— Independent parametrization for each phenotype (such as

case 2 with the toy model) has to assume a steady state

(figure 6). In case the true system is continuously

changing, independent parametrization can result in

inaccurate parameter estimates. ADAPT does not rely on

a steady-state assumption.

— The computational implementation of ADAPT generates

a collection of possible solutions reflecting the uncer-

tainty in experimental data and the uncertainty in the

model. This requires many iterative simulations of

the model. To effectively calculate the solutions software

optimized for high-performance computing was used.

Once the ensembles of trajectories of metabolic states, par-

ameters and fluxes have been obtained it opens the

possibility for a wide range of analysis techniques [13].

For example, analyses which require a time-course, such

as the calculation of a total production (integral of certain

fluxes), or the rise and fall periods of certain adaptations.

Analyses of the differences in the trajectories might ident-

ify biologically different scenarios of disease progression,

critical transition thresholds and possible biomarkers for

improved patient stratification. Ultimately such models



Table 5. External perturbation to generate the mock data. The information
in table 5 was not used in the algorithm (was considered unknown).

phase parameter kd

1 10 � 1023

2 4.2 � 1023

Table 4. Initial conditions.

state variable value

S1 1.03

S2 0.38

S3 0.62

S4 0.52

R1 0.52

Table 3. Input fluxes.

flux value

u1 1

u2 1

Table 2. Parameters.

parameter value

Vmax 1

Ki 0.1

k2 1

k3 0.1

k4 0.5

k5 1

k6 0.01
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could contribute to the development of novel and/or

patient-specific interventions.

6.3. Outlook
The development of ADAPT was motivated by the need to

understand multi-factorial progressive diseases and to integrate

and interpret multivariate phenotype data in clinical and precli-

nical research. Other applications are foreseen. The approach

can also be applied in case the dynamics of the metabolic net-

work and the time-scale of the unknown interactions with the

transcriptome–proteome levels are of the same order of

magnitude. For example, the glycolytic enzymes phosphofruc-

tokinase (PFK) and pyruvate kinase (PK) are regulated by

allosteric effectors and by covalent modification. Phosphoryl-

ation of PFK and PK is regulated by the blood glucose level,

mediated by glucagon and insulin. As many details are

unknown, this regulation has not been incorporated in existing

models of glycolysis [33–35]. ADAPT could offer a possibility to

improve and extend these models.

In case of progressive metabolic diseases, such as type 2 dia-

betes and metabolic syndrome, many details of the underlying

metabolic networks are known. The second source of infor-

mation can be obtained from experimental data on metabolite

concentrations and fluxes (metabolic profiling). Metabolic pro-

filing of blood plasma, urine, but also tissues becomes

increasingly feasible, using technological advances such as in

(in vivo) nuclear magnetic resonance spectroscopy [36,37].

Metabolomics is expected to contribute significantly to the

development of personalized healthcare and personalized

medicine (also referred to as precision medicine, [38]). The

metabolite profile of a subject constitutes the interaction of

the genotype with the environment and therefore is the

molecular reflection of the (clinical) phenotype. Hence, meta-

bolomics has relevance for other diseases than only the

‘typical’ metabolic pathologies [39]. ADAPT could be one of

the novel computational approaches necessary to structure

and interpret the multivariate phenotype data and translate it

in useful information and understanding.

This research was funded by the Netherlands Consortium for
Systems Biology (NCSB). The authors acknowledge the comments
of the reviewers which helped in making the introduction of the
novel approach accessible for a broad audience.
3 1.8 � 1023

4 0.7 � 1023

5 0.3 � 1023
Appendix A. Parameters, input fluxes and initial
conditions
Tables 2–4.
Appendix B. Effect of settings of ADAPT
algorithm
ADAPT contains several algorithmic parameters (table 1).

How these values should be chosen, is problem dependent,

and their tuning involves some trial an error. Two of the set-

tings are briefly discussed here for the model describing

progressive changes and phenotype transitions in hepatic

lipid and plasma lipoprotein metabolism.

The step-wise optimization used in ADAPT guides the par-

ameter estimation algorithm to infer parameter trajectories that

describe the phenotype transition. Hereby convergence of the
minimization algorithm to local unacceptable minima can be

prevented. Figure 10 shows an example of an acceptable par-

ameter set describing the wild-type phenotype, which was not

successfully reoptimized if the model was fitted directly to the

data of the LXR-activated phenotype (i.e. the same approach as

used in case 2 of the case study). This problem was circumvented

by the multi-step optimization used in ADAPT.

The parameter trajectories were regularized according to

equation (3.3) to avoid needless change of parameters.

A trade-off has to be made between the two objectives in

the optimization. For low lr, the regularization term has no

effect, whereas for large lr the parameter estimation algor-

ithm might focus on minimizing the regularization term

while describing the experimental data inaccurately. There-

fore, the effect of lr on the sum of squared model errors Xd
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and the sum of squared parameter differences Xr was inves-

tigated for a collection of acceptable parameter sets for the

transition from wild-type to LXR-activated phenotype.

Figure 11a shows Xd for increasing lr, where light grey indi-

cates an acceptable data fit and dark grey an unacceptable
data fit. Figure 11b shows Xr for increasing lr. Note that a

small lr is already sufficient to minimize parameter changes,

while the experimental data are still described very well. It is

preferred to bias the data fitting as little as possible, and

therefore a lr of 0.01 was selected.
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