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Abstract: Iron is an essential component for growth and development. Despite relative abundance
in the environment, bioavailability of iron is limited due to oxidation by atmospheric oxygen into
insoluble ferric iron. Filamentous fungi have developed diverse pathways to uptake and use iron.
In the current study, a putative iron utilization gene cluster (IUC) in Aspergillus flavus was identified
and characterized. Gene analyses indicate A. flavus may use reductive as well as siderophore-
mediated iron uptake and utilization pathways. The ferroxidation and iron permeation process, in
which iron transport depends on the coupling of these two activities, mediates the reductive pathway.
The IUC identified in this work includes six genes and is located in a highly polymorphic region of
the genome. Diversity among A. flavus genotypes is manifested in the structure of the IUC, which
ranged from complete deletion to a region disabled by multiple indels. Molecular profiling of A. flavus
populations suggests lineage-specific loss of IUC. The observed variation among A. flavus genotypes
in iron utilization and the lineage-specific loss of the iron utilization genes in several A. flavus clonal
lineages provide insight on evolution of iron acquisition and utilization within Aspergillus section
Flavi. The potential divergence in capacity to acquire iron should be taken into account when selecting
A. flavus active ingredients for biocontrol in niches where climate change may alter iron availability.

Keywords: iron; gene cluster; deletion; Aspergillus flavus; iron utilization gene cluster; evolution

1. Introduction

Iron is an essential element for the majority of organisms, where it serves as cofactor for
enzymatic reactions and catalyst for electron transport systems. Despite relative abundance
in most environments, bioavailability of iron is limited due to oxidation by atmospheric
oxygen into insoluble ferric (Fe3+) oxyhydroxides, and iron-dependent organisms must
reduce ferric iron to its ferrous (Fe2+) state prior to absorbtion. At the same time, concentra-
tions of this metal must be tightly regulated since it can catalyze the formation of highly
reactive oxygen species and cause tissue damage [1–3]. In most organisms, cellular iron
homeostasis is designed to tightly regulate the iron supply to prevent excess accumulation.
Because of the twin needs of iron uptake and iron regulation, iron-dependent organisms
have evolved tightly regulated acquisition and storage strategies [4,5], and iron often serves
as a signal for gene expression involved in iron uptake and storage. Many prokaryotic and
eukaryotic pathogens require iron for virulence [6,7] and employ multiple pathways for
iron uptake, utilization, and storage [8].

Under iron starvation, many microorganisms, including fungi, utilize low-molecular
mass (<1000 Da) compounds with high iron affinity termed ‘siderophores’ [9,10] for iron
acquisition and storage. Biosynthesis of ferric-specific siderophores is regulated by iron
availability [11]. High iron concentrations repress siderophore production. Most species of
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Aspergillus produce several hydroxamate-type siderophores, which sequester iron in the
surrounding environment [12]. In addition to iron acquisition, siderophores play important
roles in intracellular iron storage [13] and fungal virulence [14]. Studies of many fungal
genome sequences have shown that genes for siderophore-iron transporters are widely
conserved in the fungal kingdom, even in taxa that do not secrete siderophores such as
Sacharomyces cerevisiae, Candida spp., and Cryptococcus neoformans [11,15–18].

Understanding of iron uptake and utilization by plant and animal pathogens and
the underlying molecular mechanisms has recently improved [8,11,19–22]. Iron uptake
mechanisms in the Basidiomycota (Ustilago maydis) and Ascomycota (S. pombe, Neurospora
crassa, Aspergillus nidulans, A. fumigatus, S. cerevisiae, and Candida albicans) have been well
described [8,22,23]. Saccharomyces cerevisiae has two different high-affinity iron uptake sys-
tems [8]. The first is the reductive iron assimilation (RIA) pathway, in which ferric iron is
reduced to ferrous iron by cell surface reductase activity and transported across the plasma
membrane by a high-affinity iron permease (Ftr1)–multicopper ferroxidase (Fet3) com-
plex [24,25]. The second imports siderophores-bound iron via cell surface transporters [26].
Presence of both siderophore-mediated iron uptake and RIA has been functionally val-
idated in A. fumigatus [11]. Though the presence of membrane-bound reductive iron
assimilatory systems has been reported in a broad array of fungi [8,21,27–32], the structure
and diversity of iron uptake and utilization systems in A. flavus remain unknown.

Members of the genus Aspergillus are ubiquitous in nature, frequently occurring as
saprotrophs on decaying organic matter. Aspergillus section Flavi comprises important
opportunistic pathogens of both plants and animals. Aspergillus fumigatus and Aspergillus
niger, common causes of aspergillosis, contain well studied iron uptake and metabolism
systems [18,22,33–35]. The iron metabolism system of A. nidulans, a rare cause of as-
pergillosis in humans, is also described in detail [22,36–38]. In contrast to several fungal
pathogens [39,40], both A. fumigatus and A. nidulans lack the ability to uptake iron from host
sources like heme, ferritin, and transferrin. Instead, both A. fumigatus and A. nidulans use
two high-affinity iron uptake systems, siderophore-assisted iron uptake and reductive iron
assimilation (RIA), which are induced upon iron starvation [18,36]. The molecular mecha-
nisms underlying iron uptake in A. flavus, another common cause of human aspergillosis,
and variation among A. flavus isolates in iron utilization are not well studied.

Certain genotypes of A. flavus produce aflatoxins that contaminate food crops, in-
cluding maize, peanuts, and tree nuts [41,42]. Although incidences and severities of crop
contamination are influenced by the genetic structure of A. flavus populations [43], environ-
mental factors and host nutrient content also play important roles in the pathogenicity of
A. flavus to plants [44–46]. Aspergillus flavus is common in soil environments where iron
availability is limited. Iron also has a strong influence on growth [47] and expression of
genes involved in aflatoxin biosynthesis [48]. Metal ions play an important role in eukary-
ote transcription [49], and iron influences cellular processes through increased production
of RNA and induction of gene expression [50,51].

The current study identified and characterized variation in groups of genes of potential
use in iron utilization in A. flavus. These genes are grouped together forming a putative
cluster that is referred to here as Iron Utilization Cluster (IUC). Analyses of the genes
suggest A. flavus may have two iron uptake and utilization pathways: the reductive and
the siderophore-mediated pathways. Lineage-specific loss of iron utilization genes in
several A. flavus clonal lineages provides insight on evolution of this genomic region within
Aspergillus section Flavi. The ferroxidation and iron permeation pathway, in which iron
transport depends on the coupling of the two activities, is here described for A. flavus.

2. Materials and Methods
2.1. Fungal Isolates and Culture Conditions

Five A. flavus isolates with and without ability to produce aflatoxins were used in the
initial stages of the study (Table 1). Isolates were characterized and described previously [52,53].
Isolates belonging to different vegetative compatibility groups (VCGs) were selected to
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ensure genotypic diversity. Wildtype isolates from silica gel storage were cultivated on
5/2 agar (5% V8 juice, 2% agar, pH 5.2). Wildtype isolates were first transferred by single
spore and then maintained in 4-mL vials by suspending plugs of 5/2 agar with abundant
sporulation in sterile distilled water. Aspergillic acid production was assessed on Aspergillus
flavus and parasiticus agar (AFPA) medium as previously described [54]. AFPA is used
to identify fungi in Aspergillus section Flavi. [54]. When grown on AFPA agar (10g Bacto
agar, 20g yeast extract, 10 g Bacto peptone and 0.5 g ferric ammonium citrate in 500 mL
of water), A. flavus and A. parasiticus develop characteristic orange color on the reverse of
plates from the reaction of ferric iron from ferric ammonium citrate (FAC) with aspergillic
acid molecules [54]. Response of A. flavus isolates to different iron concentrations was
tested on chemically defined Czapek’s agar medium with 4, 2, 0.5, and 0 mM concentration
of FAC. The medium was autoclaved (121 ◦C; 20 min), and filter-sterilized FAC solution
was added prior to pouring. Reverse sides of plates were photographed after 5 days for
color assessment. The color intensity was measured using ImageJ software [55]. At least
three pictures were taken for each strain and FAC concentration.

Table 1. Aspergillus flavus isolates for which sequence analyses of the iron utilization gene cluster
were performed.

Isolate Substrate Aflatoxin * Culture Acces-
sion/Source Reference

AF13 Cotton Toxigenic ATCC 96044 [53]

BY18-A Maize Atoxigenic USDA-ARS,
Tucson [52]

CIA011 Maize Atoxigenic USDA-ARS,
Tucson [52]

DO114-A Maize Atoxigenic USDA-ARS,
Tucson [52]

EC69-E Maize Atoxigenic USDA-ARS,
Tucson [52]

* Ability to produce aflatoxin.

2.2. Gene Identification and Characterization

IUCs were identified while analyzing the deleted regions from A. flavus through com-
parisons with A. oryzae RIB40 [56]. Deletions were predicted using DELLY [57], a variant
detection program that predicts deletions by mapping paired-end reads from an interro-
gated isolate to a reference genome. Regions polymorphic in the five A. flavus isolates were
further annotated using MAKER [58]. Deleted regions were characterized in reference to
corresponding regions from the annotated genome of A. oryzae RIB40. Expression of genes
in IUC was measured by mapping the transcripts from A. flavus NRRL3357 [59] to genomic
regions from different A. flavus genotypes. Sequence reads from the Short Read Archive
(SRA; https://www.ncbi.nlm.nih.gov/sra, accession number; PRJNA144055) were mapped
to A. flavus genomic region using Bowtie [60] and TopHat [61]. Fragment per kilobase pair
of exon model per million fragment mapped (FPKM) values were calculated using Cuf-
flinks [62]. To identify the extra copies of genes in A. flavus genomes, iron permease (Ftr1)
and ferrooxidoreductase (Fet3) genes from A. flavus NRRL3357 were downloaded from
GenBank and used in the BLAST analysis. Functional analysis of the IUC was performed
by using BLAST [63] and protein domains were identified with InterProScan [64,65]. Con-
served domains were identified by comparing with NCBI’s Conserved Domain Database
(CDD) [66], and single nucleotide polymorphisms (SNPs) were called against the refer-
ence IUC of A. oryzae RIB40 using MAQ [67]. Multiple alignments were performed with
CLUSTALW [68]. Sequences of IUC of the initial five genotypes are deposited in GenBank
with accession numbers: KY586947-KY586951.

https://www.ncbi.nlm.nih.gov/sra
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2.3. Neighbor-Net Network

In order to assess the extent of diversity in IUC among A. flavus genotypes, genetic
diversity among 215 A. flavus genotypes (not including the 5 original isolates) from cotton
and corn crops produced in Arizona and Texas was examined using previously identified
simple sequence repeats (SSR) at 17 loci [69]. Amplicons containing the SSRs were scored
with GeneMarker [70] from traces produced with an ABI Capillary Sequencer [71]. Genetic
distance between genotypes was calculated across the 17 loci with the START2 program [72].
The distance matrix was analyzed drawn with the Neighbor-Net algorithm in SplitsTree
v4.13.1 [73]. Edges were colored according to grouping of genotypes based on structures
of IUC.

2.4. Phylogenetic Analysis

Phylogenetic analysis of the partial iron permease gene (637-bp) from the 5 original
A. flavus isolates, A. nomius NRRL13137, A. oryzae RIB40, and A. parasiticus SU-1 was
performed with the UPGMA algorithm using MEGA7 [74]. Multiple alignments were
generated with CLUSTALW. Data sets were bootstrapped with 1000 replicates to generate
branch confidence values, and bootstrap values <80% were omitted. Any gaps in the se-
quence were treated as missing data, and no out-group was applied to build the phylogeny.

2.5. PCR Profiling of the IUC

Whole genome sequencing of A. flavus isolates was done as previously described
(Adhikari et al., 2016). Briefly, genomic DNA was isolated from conidia collected from a
culture grown for 7 days (31 ◦C, dark) on 5/2 agar (5% V-8 vegetable juice, 2% salt, and
2% agar). The FastDNA SPIN Kit and the FastPrep Instrument were used following the
manufacturer’s instructions (MP Biomedicals LLC, Santa Ana, CA, USA). Small DNA
fragments and other contaminants were removed by applying DNA from the FastDNA
SPIN Kit was applied to a SPIN filter column following manufacturer’s instructions.
Quantification of genomic DNA was done by both spectrophotometer (modelND-1000,
NanoDrop) and the Qubit dsDNA BR assay kit (Q32850) using the Qubit 1.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s guidelines.
PCR validation was done by designing primers for each IUC gene (Supplementary Table S1)
and using the PCR conditions described previously [45]. Deletions that were predicted
previously by DELLY were further validated by PCR, using the primers that either bridge
the putative deletion or amplify flanking regions.

3. Results
3.1. Identification, Characterization, and Validation of IUC

In order to identify the structural variants in the five initial A. flavus genotypes,
genome sequences were compared with A. oryzae RIB40 reference [56]. Of the several
regions with identified deletions, a 15 Kb region was highly variable among A. flavus
isolates. The identified region contains 6 genes. Multiple alignments of the gene region
show the location in a region homologous to the centromeric end of Superscaffold124
from A. oryzae RIB40. Genome-wide alignment indicates presence of only one such group
of genes in the five initial A. flavus isolates, A. oryzae, and A. nomius while A. fumigatus,
A. nidulans, and A. niger had no region with significant similarity. Functional analysis
of the genes with BLAST and InterProScan indicated 6 genes (Figure 1, Table 2). Gene
1 on the centromeric-end is present in all isolates and is predicted to be a hypothetical
protein. Gene 2, a LysM domain containing protein, and Gene 3, a C6 transcription factor
containing a GAL4 domain, are present in only two of the 5 A. flavus (BY18-A and DO114-
A). Genes 1 through 3 have the closest homologs in A. oryzae RIB40. Gene 4 is a ferric
reductase gene with a ferric reductase-like transmembrane component also found in A.
oryzae RIB40. Gene 5 encodes a multicopper oxidase with ferroxidation activity, which is
the closest homolog (e-value = 4 × 10−169) of fet3 gene from A. oryzae RIB40. A comparison
of the predicted amino acid sequences from A. flavus showed >95% similarity with fet3
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from A. oryzae RIB40. The last gene (Gene 6) is an iron permease, which is the closest
homolog to ftrA gene from A. oryzae RIB40 and has 95% similarity in predicted amino acid
sequences to FtrA (Table 2). Search of iron permease (ftr1) and ferrooxidoreductase (fet3)
genes in A. flavus genomes showed presence of multiple ftr1 and fet3 genes in few A. flavus
isolates outside the IUC. Few of the A. flavus isolates with complete IUC have ftr1 and fet3
homologs outside the IUC. A. flavus isolates with either partial or complete deletion of
IUC, however, either lack the extra copies of genes or have partially deleted genes outside
the IUC. Interestingly, none of the fet3 genes present outside the IUC were clustered with
ftr1 genes as seen in IUC. Expression analysis of the genes within IUC showed that all six
genes are expressed. FPKM values varied between genes, with the second set of 3 genes
having higher expression values than the first set of 3 genes (Supplementary Table S2). To
validate the genes, all six were PCR amplified from genomic DNA extracted from the 5
initial A. flavus isolates. BY18-A and DO114-A have all IUC genes intact, while CIA011 and
EC69-E are missing the middle two genes (gene 3 and 4) and have lost portions of the last
two genes through deletion.

AF13

BY18-A

CIA011

RIB40

SU-1

AF70

5 10 15 200

CuRO_3_Fet3p
DUF1421

FTR1 superfamily Cytochrome_b_N
NOX_Duox_like_FAD_NADP

NAD_binding_1
GAL4
LysM

Major facilitator superfamily Las1 super family

P-loop_NTPase super family

C6TFGAL4FeRedMCoIMCoIIIrPmIIrPmII

IUC type C

IUC type A

IUC type A

IUC type B

IUC type C

IUC type C

Deletion

Deletion

Deletion Deletion

Large deletion
Small deletion

Figure 1. Iron utilization gene clusters from Aspergillus flavus (AF13, AF70, BY18-A, and CIA011), Aspergillus parasiticus
(SU-1), and Aspergillus oryzae (RIB40). Top bar is a size reference (0 to 20 kb). Each gene is represented by a different color
with arrows indicating direction of transcription and breaks indicating introns. The black and empty boxes indicate deletions.
Open arrows indicate primer-binding sites and direction of amplification for primers used to assess the distribution of genes
within A. flavus communities and letters above the arrows indicate primer names.
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Table 2. Annotation of putative iron utilization gene cluster.

Protein ID Length ¶ Homologue $
Nucleotide Identity

(%),
Coverage (%)

Functional
annotation £ Protein Domain §

BAE62583.1 459
Hypothetical protein,

Aspergillus oryzae
RIB40

96, 99 C6 transcription
factor DUF1421

BAE62584.1 229
Hypothetical protein,

Aspergillus oryzae
RIB40

99, 86 Predicted protein LysM

BAE62585.1 225
Hypothetical protein,

Aspergillus oryzae
RIB40

99, 98 Unnamed
protein GAL4

BAE62586.1 825
Ferric reductase,
Aspergillus oryzae

RIB40
94, 93 Ferric reductase NOX_Duox_like NAD_NADP,

NAD_binding_1

BAE62587.1 621
Ferrooxidoreductase,

Aspergillus oryzae
RIB40

89, 69 Multicopper
oxidase

CuRO_1_Fet3p, Las1 and
Cupredoxin superfamily

BAE62588.1 370
Iron permease,

Aspergillus oryzae
RIB40

91, 82 Iron permease Iron permease Ftr1 family

¶ Amino acid length. $ Origin of most closely related protein homologue. £ Predicted function based on BLAST against UniProt database.
§ Protein domain predicted by InterProScan [65] and Conserved Domain Database [66].

3.2. Polymorphisms within IUC among A. flavus Isolates

Comparative analysis of the IUC from A. flavus isolates with reference A. oryzae RIB40
shows high levels of polymorphism (Figure 1). CIA011 and EC69-E have the smallest
IUC with >12.5 kb deleted and only portions of genes 1 and 6 maintained (IUC type A).
Both isolates have the same deletion with identical flanking sequences. AF13, which has
two deletions (9 kb and 2 kb), has completely lost three genes (LysM domain containing
protein, C6 transcription factor, and ferric reductase) and partially lost the multicopper
oxidase (IUC type B). The iron permease gene in AF13 remains intact. The remaining
two isolates (BY18-A and DO114-A) have complete IUCs with all 6 genes intact (IUC type
C). Mapping of A. flavus IUCs to the corresponding A. oryzae IUC shows high levels of
polymorphism in the gene that codes for the hypothetical protein. Isolates in IUC type A
have the greatest density of SNPs (65), followed by isolates in IUC type B (52) (Figure 1).
Iron permease genes from BY18-A, CIA011, DO114-A, and EC69-E are almost identical to
the genes in A. oryzae RIB40, with only 1-2 SNPs. The A. flavus AF13 iron permease gene is
highly divergent, with 31 SNPs (Figure 2).

3.3. Production of Siderophores

Members of Aspergillus section Flavi produced a distinct bright orange color on the
reverse of colonies grown on AFPA medium. The orange color results from reaction of
ferric citrate with aspergillic acid, forming a colored complex [75]. All five of the initial
A. flavus isolates used produced the characteristic orange color (Figure 3). Aspergillic
acid, an N-hydroxylated pyrazine, is a naturally occurring hydroxamic siderophore [76].
A total of fifteen isolates (including the original five isolates) were tested, and similar
results were obtained with all fifteen isolates grown on AFPA medium. Production of the
characteristic orange color is used for taxonomic assessments [54] and indicates the ability
to produce siderophores.
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Figure 3. Effect of iron concentration on siderophore production by Aspergillus flavus genotypes.
The orange color is due to the binding of the aspergillic acid with ferric ions from ferric ammonium cit-
rate used as the iron source. Fungi were grown in Czapek’s agar with higher (4 mM), normal (2 mM),
and lower (0.5 mM) ferric ammonium citrate (FAC) concentration.

3.4. Response to Reduced Iron Media

The response of A. flavus isolates to reduced iron media was variable and dependent
upon IUC composition. Isolates categorized as IUC type C (e.g., C6-E) did not produce
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siderophores, as indicated by lack of orange color (aspergillic acid) on the reverse of the
plate (Figure 3). On the other hand, A. flavus isolates with IUC types A and B produced
more siderophores than IUC type C in media with higher concentration of FAC. IUC type
C isolates grown on 0 mM FAC produced no siderophore, while those from IUC types A
and B produced large quantities of siderophore, as shown by a bright orange color on the
reverse of the plate (Figure 3). Increasing the concentration of FAC decreased siderophore
production, and at 4 mM FAC concentration, siderophore production was greatly reduced.
Measurement of red pixel count on the images of the reverse side of the plates showed
higher number at both 0.5 mM and 2 mM concentrations as compared to 4 mM concentration
for both isolates with partial or deleted IUC (Supplementary Table S3). The red pixel count is
higher for isolate with partial or deleted IUC as compared to complete IUC.

3.5. Presence of Reductive Iron Assimilation (RIA) Pathway

Fungi use secreted iron chelators (siderophores) and reductive iron assimilation (RIA)
mechanisms to acquire iron in a high affinity manner. RIA processes originally character-
ized in Saccharomyces cerevisiae [77] involved three different genes. Ferric iron is reduced
by ferric reductase and then oxidized by the iron multicopper oxidase while being trans-
ported across the plasma membrane by the high-affinity iron permease. All three genes
(ferric reductase, multicopper oxidase, and iron permease) are located on one scaffold of
the A. flavus genome assembly and separated by intergenic spaces of 1300-bp and 618-bp
respectively (Figure 1). In isolates with IUC type A, both ferric reductase and fet3 genes
are missing and a partial ftr1 gene is present (Table 3). ftr1 gene remnants in all isolates
with IUC type A have identical sequence ends. IUC type B isolates lack ferric reductase but
have a complete ftr1 gene with partial fet3. IUC type B isolates have remnants of various
deletion events and are separated by the highest number of SNPs when compared with
A. oryzae RIB40 or with each other (Figure 2).

3.6. Lineage-Specific Loss of IUC

Relationships among 215 genotypes of A. flavus were analyzed using Neighbor-Net
network based on genetic distance estimated from SSR data from 17 loci distributed across
8 chromosomes of A. flavus [69]. Initial examination revealed that 79% of the 215 genotypes
have IUC type C, 10% have IUC type B, and 11% have IUC type A (Table 3). In general, the
Neighbor-Net network reflects IUC structure (Figure 4). One well-resolved clade contains
only genotypes with IUC type A with 81% of type A genotypes. Ten clades with 6 to
16 members contain IUC type C. Genotypes with IUC type B didn’t group into large clades
but were co-distributed with IUC type C genotypes in many smaller clades. For IUC types
B and C, deletion locations and sizes often vary, as do sequences of flanking regions. When
genotypes are divided into groups based on the sequence flanking the IUC deletion, IUC
type B segregates into three distinct groups while IUC type A and C each belong to a single
group (Table 3).
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Table 3. Characterization of deletions in the iron utilization gene clusters from Aspergillus flavus isolates.

Cluster Type § Genes Deleted ¶ Sequence End (5′-3′)

1 
 

⌘ Sequence End (3′-5′) Group ∞ Proportion of Isolates $

Type C None CGGGCAACTCTCCCCTTGCG TATGTTCCAGTCAAAGACGT I 79%
Type B FeRed, MCO CTGGCAGTTCATCGTTTGCG TATGTTCCAGTCAAAGACGT II 1%
Type A IrPm (partial), MCO, FeRed, GAL4 TGTCCTATCTATCTCTGGTG CTGGTGTTGCAGTAGGCTAT III 11%

Type B IrPm (partial), MCO, FeRed, GAL4,
LysM TGTCCTATCTATCTCTGGTG CTGGTGTTGCAGTAGGCTAT II 1%

Type B FeRed, MCO (partial) CTGGCAGTTCTTCGTTTGCG T-TGATCATGCTGCGGAAGG IV 2%
Type B FeRed, MCO (partial) CTGGCAGTTCATCTCTTGCG T-TGATCATGCTGCGGGAGG V 6%

§ Cluster type based on the structure of the cluster. ¶ Genes deleted from the IUC. FeRed, Ferric reductase; IrPm, Iron permease; MCO, Multicopper oxidase; GAL4, GAL4 domain containing protein; LysM, LysM

domain containing protein.

1 
 

⌘ Ends of the sequences flanking the same deletion or region corresponding to flanking region. ∞ Grouping of the isolates based on genes deleted and sequenced ends. Isolates in the
same group have similar deletion and sequence ends. $ Proportion based on genomic profiling of 215 Texas and Arizona A. flavus genotypes.
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3.7. Evolutionary Relationship of Iron Permease Gene

Aspergillus flavus isolates with IUC type C have iron permease genes with 1345-bp
while isolates with deletions have partial ftr1 with 637-bp. Phylogenetic analysis of these
637-bp from A. flavus isolates, A. nomius NRRL13137, A. oryzae RIB40, and A. parasiticus
SU-1 resulted in a UPGMA tree with 5 well-supported clades (Figure 5). A. parasiticus SU-1
and A. nomius formed a clade separate from A. flavus. A. flavus isolates with IUC type
B (AF13) and IUC type A (CIA011 and EC69-E) were resolved into a clade distinct from
A. oryzae and A. flavus isolates with IUC type C. Phylogenetic relationships based on the
637-bp of iron permease gene recapitulate the grouping of the fungi based on the structure
and presence/absence of genes in the IUC (Figure 2). A summary of the fungal isolates
and the IUC type they belong to is provided in Supplementary Table S4.

3.8. Presence of IUC in Other Fungi

We searched genome sequence databases both within and outside Aspergillus to find
homologues of the IUC. BLAST searches revealed that the IUC of A. flavus has very high
similarity to A. oryzae RIB40 IUC (evalue = 0.00) (Table 2) followed by A. flavus NRRL3357.
Recently sequenced A. flavus NRRL335 [78] and two other members of section Flavi, A.
nomius, and A. parasiticus, both contain similar gene groups. When searched against larger
datasets, except for A. nidulans, most Aspergillus genomes have at least one ftrA-fetC (Iron
permease-ferroxidase) gene pair similar to the one found in A. flavus IUC [34]. The co-
occurrence of the iron permease/multicopper oxidase genes has also been reported in
many fungal genomes outside Aspergillus. For example, genes similar to fet3 and ftr1 have
counterparts in many Ascomycete (Neofusicoccum parvum, evalue=4× 10−116; Fusarium
oxysporum, evalue = 5 × 10−107) and Basidiomycete (Ustilago maydis, evalue = 1× 10−125)
fungi [8,79].
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Figure 5. Phylogeny of partial iron permease gene (637-bp) from Aspergillus flavus isolates, A. nomius
NRRL13137, A. oryzae RIB40, and A. parasiticus SU-1 using UPGMA algorithm. Supporting values
for nodes were estimated with 1,000 bootstrap replicates. The phylogenetic tree lends support to
lineage-specific loss of IUC as shown by Neighbor-Net analysis. Filled, partial, and empty circles on
the nodes denote full, partial, and deleted, iron utilization gene clusters.

4. Discussion

Iron uptake and homeostasis functions are important for pathogenesis, and iron levels
influence growth and development of A. flavus. There is considerable genetic diversity
among isolates of A. flavus, and this variation is particularly frequent in genes encoding
products used to produce secondary metabolites. In the current study, we applied whole
genome comparative analysis to assess diversity among A. flavus isolates. In doing so,
we identified group of genes potentially functional in iron uptake and utilization and
forming a putative gene cluster (IUC) spanning 15 Kb. The putative IUC identified in
this work contains 6 genes, including putative transcription factors. Among the various
A. flavus isolates, multiple indels that disable genes in the IUC were detected in multiple
genotypes, suggesting these mutations were fixed in the resulting clonal lineage. The cur-
rent work indicates that A. flavus may have two different mechanisms for iron utilization,
a siderophore-mediated iron utilization system and a reductive iron assimilation (RIA)
pathway. Sequence similarity to genes responsible for high-affinity iron uptake in other
fungi suggests a fully functional IUC in most A. flavus genotypes. Isolates missing genes
in the IUC responded differently to iron starvation conditions by possibly employing a
different pathway for iron uptake and utilization. These isolates produced siderophores
when grown under low-iron conditions, while those with a complete IUC did not produce
siderophores (Figure 3). These results, together with the A. flavus population profiling
data, indicate lineage-specific loss of iron utilization genes and suggest the possibility that
different genotypes of A. flavus have distinct iron uptake and utilization systems.

The IUC identified in the current study resides on a region homologous to Chromo-
some 5 of A. oryzae RIB40 and primarily contains genes with predicted functions in iron
uptake and utilization (Figure 1). Functional prediction of IUC genes indicates possible
involvement in the uptake and utilization of iron (Table 2). The first two genes are hypothet-
ical proteins with either a GAL4 domain or a fungal-specific LysM domain. LysM domain
containing proteins act as effectors that play important roles in promoting virulence [80].
The third gene in the IUC contains a domain of unknown function with homology to fungal
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C6 transcription factors. Some members of the fungal-specific C6 transcription factor
family are strongly associated with secondary metabolite gene clusters in A. flavus and
A. parasiticus [81]. For example, aflR, one of the C6 transcription factors in A. flavus, is the
key positive regulator of expression of most aflatoxin genes [82,83]. Based on the position
of the gene in the IUC, we anticipate that this C6 transcription factor plays a role in the
regulation of genes involved in iron uptake and utilization. The IUC ferric reductase gene
has a ferric reductase like transmembrane domain. Ferric reductase facilitates the use of
siderophore-bound iron. Ferric reductases in fungi play important roles in iron acquisition
and virulence [84]. Another gene of particular interest is fet3, encoding the multicopper
oxidase (MCO). Based on the domain structure of the predicted Fet3 protein, we anticipate
this enzyme is involved in the ferroxidation process (Figure 1). MCO plays an important
role in high affinity iron uptake through Fe2+ to Fe3+ [85,86] conversion. The gene next to
MCO in the IUC is a putative iron permease, involved in iron transport in iron-depleted
environments. In many pathogenic fungi [8,87] products of similar iron permease genes are
virulence factors. Clustering of genes encoding MCO and an iron permease is not unique
to A. flavus. Such clustering is also found in many other fungi [27,88]. Although the link
between ferroxidation and iron transport by the iron permeation depends on the coupling
of these two enzymes (iron permease and multicopper oxidase), the process is not well
understood [8]. The current results suggest reductive mobilization of iron is common in
A. flavus.

The complete IUC was conserved in most (79%) A. flavus isolates analyzed in this
study. Considering the wide distribution of complete IUC among A. flavus genotypes,
RIA can be considered the index (basal) pathway for high affinity iron uptake [8]. RIA is an
extracellular membrane-bound process whereby ferric iron is reduced and subsequently
oxidized while being transported across the plasma membrane by the high-affinity iron
permease Ftr1 [8,89]. As observed in A. flavus (Figure 1), Ftr1 and Fet3 are closely linked
and co-dependent on the plasma membrane [25,90]. In S. cerevisiae vacuoles store iron, and
homologs of Fet3/Ftr1 are reported to be involved in vacuolar iron storage in addition to
their involvement in iron uptake [91–93]. Membrane-bound reductive iron assimilatory
systems have been reported for a broad array of fungi [8,27–32,94] but the existence of
this system in A. flavus was previously unknown. Clustering of the genes in biosynthetic
pathways is the hallmark of bacteria and filamentous fungi [95]. In that sense the potential
clustering of the IUC genes of A. flavus is not surprising, but the magnitude of differences
among closely related A. flavus genotypes reveals unexpected diversity within species of
A. flavus in terms of iron uptake and utilization.

Discovery of new metabolic pathways and associated gene clusters through genome
mining is greatly accelerated by the availability of sequenced genomes from multiple
species of Aspergillus [96–98]. The genes identified within IUC and involved in iron
ferroxidation and permeation have homologs in other fungi [79]. Homologs of fet3 and
ftr1 genes were identified from A. flavus genomes but in our case none of those genes
seem to be clustered outside the IUC. This suggests that fungal genera share common iron
uptake utilization pathways, including genes involved in ferroxidation and permeation,
siderophore synthesis, and transport. However, differences may exist in mechanisms
through which iron utilization could be modulated by environmental factors. Phylogenetic
analysis based on the partial iron permease gene (Figure 5) reflects evolution of the IUC
in Aspergillus section Flavi and strongly supports the relationship observed by multiple
alignment of the IUC. The diversity of the IUC among A. flavus isolates suggest that A. flavus
has iron utilization pathways similar to those observed in many other fungi and that these
pathways could play important roles in adaptation to the diverse ecological niches this
species is known to occupy.

To assess the extent of diversity in IUC among A. flavus genotypes, we character-
ized the patterns of genetic variation among genotypes from Arizona and Texas. A total
of 215 genotypes representing A. flavus associated with either cotton or corn were pro-
filed. The structure of the Neighbor-Net network largely reflects IUC structure (Figure 4),
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with clades including only genotypes lacking copies of all the IUC genes or only genotypes
with all the IUC genes intact. Complete IUC deletions have common boarder sequences
(Table 3), suggesting an ancient deletion event that has been retained through clonal evolu-
tion over tens of thousands of years. In contrast to the homogeneity in this clade, those
containing partial IUCs have more diversity (Figure 4, Table 3). Sequencing of flanking
regions from genotypes with partial IUC revealed a diversity of flanking sequences re-
flecting multiple deletion events (Table 3). In some cases, the same deletion occurred in
multiple clades. This may have resulted from incomplete lineage sorting or gene flow.
Repeated loss of IUC function and success of lineages where the IUC has been lost may
suggest an adaptive advantage to this loss. Although specific ecological or environmen-
tal factors contributing to genetic differences among A. flavus genotypes are not known,
soil types differing in iron content could have contributed to this differential adaptation.
This pattern of multiple deletion events has been demonstrated for other biosynthetic gene
clusters [52,99–101] in Aspergillus section Flavi.

Under iron-limited conditions, most fungi synthesize and secrete siderophores, which
are small organic compounds that bind ferric iron with high affinity and specificity [10].
Virtually all fungi express a nonreductive uptake system that is specific for siderophore iron
chelates [102]. Our analysis revealed that A. flavus isolates with IUC type C are equipped
with all genes required for an RIA system, while isolates with IUC type A and B rely on
siderophore-mediated iron uptake system. To show the function of the IUC type identified
in this study on iron utilization in A. flavus, isolates with different deletions in IUC were
exposed to varying iron concentrations (Figure 3). When grown under iron-limited condi-
tions, A. flavus isolates without IUC produced large quantities of siderophores indicating
siderophore-mediated iron uptake and utilization. In contrast, isolates with complete
IUC did not produce siderophores even under iron-limited conditions, suggesting their
lack of reliance on siderophore-mediated iron uptake system. Nevertheless, these isolates
have retained capacity to produce siderophores, as demonstrated by production on AFPA.
It has been shown that deprivation of iron results in increased synthesis of siderophores
in E. coli [103]; similar production of siderophores under iron-limited conditions in A.
flavus suggests an analogous function. Although the genetic mechanisms that shape iron
utilization pathways are not fully understood, one explanation for the observed diversity
is that A. flavus, as an animal and plant pathogen, evolved in an environment that was
populated by many other microorganisms. Diversity of uptake systems could have enabled
A. flavus to effectively compete with other microorganisms for the limited amounts of
available iron in the environment while facilitating facultative pathogenicity to plants and
animals. Global climate change will influence not only the quantity of crops available but
also compositions of edible crop components including reduction in iron content [104].
Competition for iron may be increasingly important to the ability of atoxigenic biocontrol
strains of A. flavus to outcompete aflatoxin producers. The variability in iron acquisition
processes described in the current work should be considered when selecting atoxigenic
strains for aflatoxin management in altered climates.

Analysis of diversity and evolution within Aspergillus section Flavi suggests the possi-
bility that A. flavus may have multiple pathways for iron acquisition and that the IUC has
been modified in A. flavus lineages through multiple deletion events. Certain IUC deletions
have been retained during lineage divergence. A component of the A. flavus RIA, the fer-
roxidation/permeation iron uptake system, shows similarities with other fungi where it is
important for virulence [105–107]. One of the intriguing questions is why there is variation
among A. flavus genotypes in iron acquisition genes despite evolutionary closeness. It is
possible that the adaptation of A. flavus to different conditions may ultimately determine
the manner in which iron is acquired from the environment. However, empirical data
is required to test this hypothesis. Furthermore, A. flavus is the second leading cause of
invasive aspergillosis and the genes identified in this study could be useful as targets for
disease monitoring and management. Improved understanding of iron uptake and utiliza-
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tion might facilitate better understanding and management of aflatoxin contamination of
food and feed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-260
7/9/1/137/s1, Table S1: Primers used to amplify genes in the iron utilization gene cluster, Table S2:
Expression profiling of Aspergillus flavus genes within IUC, Table S3: Count of the red pixel in the
images of Czapek’s agar plates with different concentrations of FAC. Table S4: List of the Aspergillus
flavus, A. nomius, A. oryzae, and A. parasiticus strains used in the analysis and the IUC type they
belong to.
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